首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bean lectins     
Summary Seeds of forty bean cultivars having different lectin types based on two-dimensional isoelectric focusing-sodium dodecyl sulfate polyacrylamide gel electrophoresis (IEF-SDS/PAGE) were analyzed for quantities of lectin, phaseolin and total protein. Significant differences were found among groups of cultivars with different lectin types for the quantity of lectin and phaseolin. Cultivars with more complex lectin types based on IEF-SDS/PAGE tended to have higher quantities of lectin and lower quantities of phaseolin than cultivars with simple lectin types. An association between lectin type and the quantity of lectin and phaseolin was found also in the seeds of F2 plants that segregated in a Mendelian fashion for two lectin types. Seeds from plants with the complex lectin type had more lectin and less phaseolin than seeds from plants with the simple lectin type. Therefore, the genes controlling qualitative lectin variation also may influence the quantitative variation of lectin and phaseolin. The results of this study are related to other studies on the quantitative variation for seed proteins and to the possible molecular basis for variation in the quantity of lectins in beans.  相似文献   

2.
A lectin has been isolated from the roots of 7-day-old Dolichos biflorus plants and has been compared with the D. biflorus seed lectin. The root lectin differs from the seed lectin in molecular weight, subunit stoichiometry, amino acid composition, amino terminal amino acid sequence, and isoelectric focusing pattern. However, the root lectin has in common with the seed lectin a specificity for N-acetyl-D-galactosamine, and upon denaturation the root lectin will react weakly with antiserum made to denatured seed lectin. Distribution studies of this lectin in germinating seedlings show that the highest levels of lectin are found in 1-day-old roots. Upon dissection and analysis of 7-day-old roots, the highest levels of the lectin are in the uppermost segment. In addition, isoforms of this lectin also exist in the stems and leaves of the plant.  相似文献   

3.
cDNA cloning and in vitro synthesis of the Dolichos biflorus seed lectin   总被引:2,自引:0,他引:2  
The Dolichos biflorus seed lectin contains two structurally related subunits. A cDNA library was constructed using RNA isolated from D. biflorus seeds actively synthesizing the seed lectin. The library was expressed in Escherichia coli using a lambda Charon 16 vector, and lectin-specific antiserum was used to isolate a seed lectin cDNA. Hybridization of the D. biflorus seed lectin cDNA to RNA isolated from seeds actively producing both lectin subunits identifies a single-size RNA of 1100 bases. An oligodeoxyribonucleotide probe, constructed from an amino acid sequence common to both lectin subunits, detects the same size RNA. Translation of seed mRNA in vitro and immunoprecipitation of translation products using a lectin-specific antiserum yields a single polypeptide of slightly higher molecular mass than the largest seed lectin subunit. This seed lectin precursor is indistinguishable from a polypeptide synthesized from mRNA hybrid selected by the seed lectin cDNA. These data support the existence of a single polypeptide precursor for both subunit types of the D. biflorus seed lectin and suggest that differences between the subunit types arise by posttranslational processing.  相似文献   

4.
Membrane fractions from seedlings of four soybean [Glycine max (L.) Merr.] lines were examined by radioimmunoassay and hemagglutination assay for the 120,000 dalton soybean lectin. Two of the lines (Sooty and T-102) are genotypically lele and lack buffer-soluble soybean lectin; the remaining two lines (Beeson and Harosoy 63) are Le and produce seeds that contain the lectin (Su et al. 1980 Biochim. Biophys. Acta 629: 292-304). Both Triton X-100 (0.5% v/v) and nonidet P-40 (0.05% v/v) solubilized soybean lectin from membrane fractions of Le cotyledons. Triton X-100 interfered substantially with the assay of protein and hemagglutinating activity and was unacceptable for use in quantitative measurements. The nonidet P-40-solubilized soybean lectin from Le cotyledons was consistently present both in washed 13,000g and 82,500g membrane fractions, but it accounted for less than 1.5% of the total (buffer-soluble plus membrane-bound) soybean lectin. The membrane lectin was purified by the affinity chromatography procedure devised for soluble soybean lectin, and it was immunologically indistinguishable from authentic soybean lectin. Membrane fractions from Le cotyledons contained insignificant amounts of radioisotope-labeled soybean lectin that had been added during homogenization, and purified membrane fractions did not bind the lectin in the presence of the hapten, d-galactose. These controls make it unlikely that the membrane soybean lectin was of cytoplasmic origin. Soybean lectin and other hemagglutinins were not present in buffer-soluble or membrane fractions from lele cotyledons or from roots and hypocotyls of any of the lines.  相似文献   

5.
The complete amino acid sequence of a beta-galactoside-binding lectin from human placenta was determined at protein level. The lectin consists of 134 amino acids and its N-terminal alanine is blocked with acetate. The lectin shows about 50% similarity with chick 14K lectin, which was the first vertebrate beta-galactoside-binding lectin completely sequenced. Only 14 residues proved to be different from those of rat lung lectin, the sole mammalian lectin of which the complete sequence has been reported.  相似文献   

6.
A lectin with a high affinity for binding ligands through fucose residues has been purified to homogeneity from rat liver. Affinity chromatography of the lectin on fucosyl-bovine serum albumin-agarose is the key step in the purification. Contaminating amounts of a previously described lectin that binds mannose and N-acetylglucosamine are removed from the fucose-binding lectin by either immunoadsorption on anti-mannose/N-acetylglucosamine lectin IgG-agarose or by specific elution of the fucose-binding lectin from fucosyl-bovine serum albumin-agarose. The pure fucose-binding lectin contains two polypeptide subunits with molecular weights of 88,000 and 77,000, respectively, as judged by gel electrophoresis. Peptide maps of the subunits, however, show that they are very similar structurally. In addition, peptide maps show that the fucose lectin is structurally distinct from other rat hepatic lectins. This is supported by the lack of cross-reaction among the different rat liver lectins and their specific antibodies and the inability of specific antibodies to the mannose/N-acetylglucosamine lectin to inhibit the binding of fucosyl-bovine serum albumin by the fucose lectin.  相似文献   

7.
A new type of cereal lectin from leaves of couch grass (Agropyrum repens)   总被引:1,自引:0,他引:1  
Extracts from couch grass (Agropyrum repens) leaves contain relatively high lectin concentrations. Preliminary experiments with crude extracts indicated that the leaf lectin differs from the embryo lectin of the same species and other Gramineae embryo lectins with respect to its sugar and blood group specificity, and serological properties. A comparison of the biochemical, physicochemical and biological properties of purified lectins from couch grass leaves and embryos, and wheat germ agglutinin revealed that the leaf lectin has the same molecular structure as the embryo lectins. It is a dimer composed of two identical subunits, which, however, are slightly larger than embryo lectin subunits. Structural differences between both couch grass lectins were further inferred from in vitro subunit exchange experiments and serological analyses. Whereas the embryo lectin readily forms heterodimers with embryo lectins from other cereal species and also is serologically indistinguishable from them, the leaf lectin does not exchange subunits with the same embryo lectins and is serologically different. In addition, couch grass leaf lectin exhibits specificity for N-acetylgalactosamine and agglutinates preferentially blood-group-A erythrocytes whereas the embryo lectin is not inhibited by N-acetylgalactosamine and exhibits no blood-group specificity. It was observed also that the lectin content of couch grass leaves varies enormously during the seasons.  相似文献   

8.
The cDNA for a 14 kDa human β-galactoside-binding lectin was inserted into a plasmid carrying a taq promoter, and the lectin protein was expressed in E. coli cells. The recombinant lectin was extracted from the cells and purified to apparent homogeneity by a single-step chromatography on an asialofetuin-agarose column. Subunit molecular mass (14 kDa), hemagglutinating activity and antigenicity were indistinguishable from those of the human placental lectin. Though the N-terminal of the placental lectin is blocked with an acetyl group, the recombinant lectin was found to have a free amino group. However, the N-terminal amino acid sequences were identical. The recombinant lectin was considered to have the same three-dimensional structure as the placental lectin.  相似文献   

9.
紫藤凝集素的分离纯化及理化性质研究   总被引:2,自引:0,他引:2  
用常规方法处理的DEAE离子交换纤维素柱,通过线性离子强度梯度洗脱,从紫藤种子的蛋白粗提液中得到一定纯度的紫藤凝集素。纯化的凝集素凝集兔红血球的比活提高40倍,总活力回收率为19.2%。紫藤凝集素的分子量经PAGE鉴定为205kd,是由两种亚基构成的四聚体,这两种亚基各有2个,分子量SDS-PAGE鉴定分别为77600d和25100d。紫藤凝集素是一种糖蛋白,等电点约为4.60。它可凝集人的各种血  相似文献   

10.
From the serum of juvenile freshwater prawns, we isolated by affinity chromatography on glutaraldehyde-fixed rat erythrocytes stroma, immobilized in Sephadex G-25, a sialic acid specific lectin of 9.6[emsp4 ]kDa per subunit. Comparative analysis against adult organisms purified lectin, by chromatofocusing, showed that the lectin from juvenile specimens is composed by four main isoforms with a pl of 4.2, 4.6, 5.1, and 5.6, whereas the lectin from adults is eluted at pH 4.2. The amino acid composition of the lectin obtained from adult and juvenile stages suggest identity, but the compositions are not identical since a higher content of carbohydrates was found in the lectin from younger organisms. The freshwater prawn lectin showed specificity toward N-acetylated amino sugar residues such as GlcNAc, GalNAc, Neu5Ac and Neu5,9Ac; but in juvenile organisms the lectin showed three times less hemagglutinating activity than the lectin from adults. Both lectins agglutinated rat, rabbit and chicken erythrocytes, indicating that Neu5,9Ac in specific O-glycosydically linked glycans seems to be relevant for the interaction of M. rosenbergii lectins with their specific cellular receptor. Our results suggest that the physicochemical characteristics of the lectin from the freshwater prawn are regulated through maturation.  相似文献   

11.
A lectin is isolated from the microsomal fraction of chick embryo kidney after initial extraction with 1 M urea and 0.3 M lactose. To exhibit hemagglutination activity, the lectin in the microsomal fraction requires prior activation by solublization with deoxycholate or by treatment with trypsin, chymotrypsin or phospholipase c. The lectin is partially purified by hydrophobic interaction chromatography about 200 fold from the microsomal fraction. The lectin binds strongly to de-sialated embryonic carbohydrates and shows low affinity toward glucosamine, galactosamine and mannosamine, as judged by the inhibition of hemagglutination. Comparison of the lectin activity from kidneys of embryos at different ages shows that the lectin is developmentally regulated.  相似文献   

12.
A mannose-binding lectin found in vegetative tissues of peanut, Arachis hypogaea, was compared with mannose-binding lectin from pea, Pisum sativum, for toxic effects on larvae of the stem borer Chilo partellus (Swinhoe). After 10 days, the mortality of larvae fed on artificial diet containing 0.5% (m/m) peanut lectin was 46.2%. The mortality of larvae fed on 1.0% peanut lectin was similar (48.1%) but insects were significantly smaller than those of the 0.5% treatment. Larvae of both lectin treatments stopped feeding within three days. Larval size and mortality was not significantly reduced by 0.1% peanut lectin and 1% heat-treated lectin did not show toxic effects. The mannose-binding lectin from pea was not toxic to C. partellus at concentrations up to 1%. Peanut lectin bound to the apical membranes of columnar epithelial cells in the mid-gut of C. partellus. This suggests that peanut lectin has an antinutritive action and that it may protect vegetative tissues of peanut against insect pests.  相似文献   

13.
S Oguri  A Ando    Y Nagata 《Journal of bacteriology》1996,178(19):5692-5698
A novel lectin was isolated from mycelia of the basidiomycete Pleurotus cornucopiae grown on solid medium. The lectin was purified to homogeneity by mucin-Sepharose affinity chromatography. The molecular mass of the lectin was 40 kDa under reducing conditions, but the subunits were polymerized through disulfide bridges under physiological conditions. Hemagglutinating activity of this lectin was completely inhibited by 2-mercaptoethanol, indicating that the multimer is active. The activity was also inhibited by EDTA, and restored by CaCl2. N-Acetyl-D-galactosamine was the most potent hapten inhibitor. N-terminal amino acid sequence analysis revealed that the mycelial lectin was different from the fruit body lectin of this organism. The mycelial lectin appeared prior to fruit body formation and disappeared during the formation of fruit bodies. The lectin was localized on the surface of solid-medium-grown mycelia, and only dikaryotic, and not monokaryotic, mycelia produced the lectin. These results suggest that the appearance of this lectin is associated with fruit body formation.  相似文献   

14.
A novel lectin (CAA-II) was isolated and purified from the seeds of Cicer arietinum by ammonium sulphate fractionation and affinity chromatography on an N-acetyl-D-galactosamine-linked agarose column. The lectin is composed of four identical subunits of 30 kDa and the molecular mass of the native lectin was estimated to be 120 kDa by gel filtration chromatography and confirmed by mass spectrometry. The lectin showed agglutination activity against rabbit erythrocytes (trypsin-treated and untreated) as well as against human erythrocytes. Haemagglutination inhibition assays showed that the lectin is a galactose-specific protein having a high affinity for N-acetyl-D-galactosamine. The molecular weight, haemagglutination pattern, carbohydrate specificity and N-terminal amino acid sequence indicated that the lectin is clearly distinct from the previously reported chickpea lectin CAA-I.  相似文献   

15.
The lectin-binding protein (lectin binder) from the garden pea (Pisum sativum) was studied. It is a glycoprotein composed of four subunits of about 50 000 Da. Its amino-acid composition and molecular mass differ from those of lectin and of storage proteins. The interaction between lectin and lectin binder is demonstrated and quantified by several different methods and is shown to be specifically sugar-dependent. A biological function of lectin binders and lectins is discussed.  相似文献   

16.
In the early stage of ripening of cherry-tomato fruits (Lycopersicon esculentum var. cherry), the lectin activity increased logarithmically and reached a plateau at day 10 after flowering. During purification of lectin from ripe and unripe fruits, a 42-kDa protein was found abundantly in unripe fruits. The protein cross-reacted with anti-cherry-tomato-lectin serum, retained chitin-binding ability, but showed no lectin activity. Comparative studies between the structure of the lectin and the 42-kDa protein were done. N-Terminal amino acid sequences of the lectin, peptides derived from the S-pyridylethylated lectin, and fragments generated by limited proteolysis of the native lectin showed that the lectin was comprised of three domains, Hyp-rich, Cys-rich, and Gln-rich, and the alignment of them was as this order from the N-terminus. Studies on the 42-kDa protein showed that it contained two of the three domains, Cys-rich and Gln-rich, but the amino acid sequence analysis showed that the protein should be a product of another gene.  相似文献   

17.
18.
Amaranthus leucocarpus lectin is a homodimeric glycoprotein of 35 kDa per sub-unit, which interacts specifically with N-acetyl-galactosamine. In this work, we compared different glycoproteins that contain Galbeta1-3 GalNAcalpha1-3 Ser/Thr or GalNAcalpha1-3 Ser/Thr in their structure as ligands to purify the A. leucocarpus lectin. From the glycoproteins tested, fetuin was the most potent inhibitor of the hemagglutinating activity and the better ligand for lectin purification; however, the use of desialylated stroma from erythrocytes represented the cheapest method to purify this lectin. O-linked glycans released from the glycoproteins used as affinity matrix and those from different erythrocytes were less inhibitory than parental glycoproteins. The NH2-terminal of the lectin is blocked; moreover, this is the only example of a lectin isolated from this genus to be a glycoprotein. Analysis of the glycoprotein sequences with inhibitory activity for the lectin, showed a different pattern in the O-glycosylation, which confirms that A. leucocarpus lectin recognizes conformation and, probably, distances among O-linked glycans moieties.  相似文献   

19.
Two lectins were purified by affinity chromatography from mature peanut (Arachis hypogaea L.) nodules, and compared with the previously characterised seed lectin of this plant. One of the nodule lectins was similar to the seed lectin in its molecular weight and amino-acid composition and ability to bind derivatives of galactose. However, unlike the seed lectin, this nodule lectin appeared to be a glycoprotein and the two lectins were only partially identical in their reaction with antibodies prepared against the seed lectin. The other nodule lectin also appeared to be a glycoprotein but bound mannose/glucose-like sugar derivatives, and differed from the seed lectin in molecular weight, antigenic properties and amino-acid composition.Abbreviations Gal galactose - Gle glucose - GNL galactose-binding nodule lectin - Fru fructose - MNL mannosebinding nodule lectin - M r rerative molecular mass - PBS phosphate-buffered saline - PSL peanut seed lectin - SDS sodium dodecyl sulphate - Sorb sorbitol  相似文献   

20.
Two lectins have been isolated: one from the venom of Lachesis muta (bushmaster lectin) and one from Dendroaspis jamesonii venom (Jameson's mamba lectin). The lectin from bushmaster venom (BML) is similar to the lactose-binding lectins previously isolated from snake venoms (Gartner et al. (1980) FEBS Lett. 117, 13-16; Gartner & Ogilvie (1984) Biochem. J. 224, 301-307) in that it is calcium-dependent, lactose inhibitable, and is a dimer of molecular weight 28,000. In contrast, the lactose-blockable lectin from Jameson's mamba venom (JML) has an apparent molecular weight of 26,000 and agglutinates erythrocytes in the presence of EDTA. The absorption spectra of BML were affected by the binding of calcium, or calcium and lactose to the lectin. However, JML spectra were not affected by these conditions. While the hemagglutination activity of each of the previously described lactose-binding snake venom lectins is inhibited by reducing agent, the activities of BML and JML are not affected by reducing agent. Antiserum against bushmaster lectin cross-reacts with thrombolectin, cottonmouth lectin (CML), rattlesnake lectin (RSL), and copperhead lectin (CuHL) but not lectin from Jameson's mamba venom. This evidence plus a comparison of atomic absorption spectra, isoelectric points and amino acid analyses of the lectins demonstrate that JML and BML are different from thrombolectin, CML, RSL, and CuHL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号