首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Carbohydrate research》1999,315(1-2):180-186
In the present work, we aimed to develop a new chemoenzymatic procedure for the synthesis of β-maltooligosaccharide glycosides. The primer in the enzymatic reaction was 2-chloro-4-nitrophenyl β-maltoheptaoside (G7-CNP), which was synthesised from β-cyclodextrin (β-CD) using a very convenient chemical method [E. Farkas, L. Jánossy, J. Harangi, L. Kandra, A. Lipták, Carbohydr. Res., 303 (1997) 407–415]. Shorter chain length CNP-maltooligosaccharides in the range of dp 3–6 were prepared using rabbit skeletal muscle glycogen phosphorylase b (EC 2.4.1.1). Detailed enzymological investigations revealed that the conversion of G7-CNP was highly dependent on the conditions of phosphorolysis. A 100% conversion of G7-CNP was achieved during 10 min in 1 M phosphate buffer (pH 6.8) at 30 °C with the tetramer glycoside (77%) as the main product. Phosphorolysis at 10 °C for 10 min resulted in 89% conversion and G4-, G5-, and G6-CNP oligomers were detected in the ratio of 29:26:34%, respectively. The reaction pattern was investigated using an HPLC system. The preparative scale isolation of G3→6-CNP glycosides was achieved by size-exclusion column chromatography (SEC) on Toyopearl HW-40 matrix. The productivity of the synthesis was improved by yields of up to 70–75%.  相似文献   

2.
A beta-D-xylosidase with molecular mass of 250+/-5 kDa consisting of two identical subunits was purified to homogeneity from a cultural filtrate of Aspergillus sp. The enzyme manifested high transglycosylation activity in transxylosylation with p-nitrophenyl beta-D-xylopyranoside (PNP-X) as substrate, resulting in regio- and stereoselective synthesis of p-nitrophenyl (PNP) beta-(1-->4)-D-xylooligosaccharides with dp 2-7. All transfer products were isolated from the reaction mixtures by HPLC and their structures established by electrospray mass spectrometry and 1H and 13C NMR spectroscopy. The glycosides synthesised, beta-Xyl-1-->(4-beta-Xyl-1-->)(n)4-beta-Xyl-OC6H4NO2-p (n=1-5), were tested as chromogenic substrates for family 10 beta-xylanase from Aspergillus orizae (XynA) and family 11 beta-xylanase I from Trichoderma reesei (XynT) by reversed-phase HPLC and UV-spectroscopy techniques. The action pattern of XynA against the foregoing PNP beta-(1-->4)-D-xylooligosaccharides differed from that of XynT in that the latter released PNP mainly from short PNP xylosides (dp 2-3) while the former liberated PNP from the entire set of substrates synthesised.  相似文献   

3.
The enzymatic synthesis of 6-O-alpha-glucopyranosyl-glucopyranose (isomaltose) was achieved. The regiospecific transglycosylation reaction was catalyzed by a crude preparation of alpha-D-glucosidase from Aspergillus niger, using p-nitrophenyl alpha-D-glucopyranose as the donor and glucopyranose as the acceptor. The yield of the reaction was 59% on a molar basis with respect to the donor. The structural identity of the product was fully determined by HPLC, HPAEC-PAD, ionspray mass spectrometry and (13)C NMR.  相似文献   

4.
Directed evolution was applied to the beta-glycosidase of Thermus thermophilus in order to increase its ability to synthesize oligosaccharide by transglycosylation. Wild-type enzyme was able to transfer the glycosyl residue with a yield of 50% by self-condensation and of about 8% by transglycosylation on disaccharides without nitrophenyl at their reducing end. By using a simple screening procedure, we could produce mutant enzymes possessing a high transferase activity. In one step of random mutagenesis and in vitro recombination, the hydrolysis of substrates and of transglycosylation products was considerably reduced. For certain mutants, synthesis by self-condensation of nitrophenyl glycosides became nearly quantitative, whereas synthesis by transglycosylation on maltose and on cellobiose could reach 60 and 75%, respectively. Because the most efficient mutations, F401S and N282T, were located just in front of the subsite (-1), molecular modeling techniques were used to explain their effects on the synthesis reaction; we can suggest that repositioning of the glycone in the (-1) subsite together with a better fit of the acceptor in the (+1) subsite might favor the attack of a glycosyl acceptor in the mutant at the expense of water. Thus these new transglycosidases constitute an interesting alternative for the synthesis of oligosaccharides by using stable and accessible donor substrates.  相似文献   

5.
Amylosucrase (ASase, EC 2.4.1.4) is a member of family 13 of the glycoside hydrolases that catalyze the synthesis of an α-(1→4)-linked glucan polymer from sucrose instead of an expensive activated sugar, such as ADP- or UDP-glucose. Transglycosylation reactions mediated by the ASases of Deinococcus geothermalis (DGAS) and Neisseria polysaccharea (NPAS) were applied to the synthesis of salicin glycosides with sucrose serving as the glucopyranosyl donor and salicin as the acceptor molecule. Two salicin glycoside transfer products were detected by TLC and HPLC analyses. The synthesis of salicin glycosides was very efficient with NPAS with a yield of over 90%. In contrast, DGAS specifically synthesized only one salicin transglycosylation product. The transglycosylation products were identified as α-d-glucopyranosyl-(1→4)-salicin (glucosyl salicin) and α-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-salicin (maltosyl salicin) by NMR analysis. The ratio between donor and acceptor had a significant effect on the type of product that resulted from the transglycosylation reaction. With more acceptors present in the reaction, more glucosyl salicin and less maltosyl salicin were synthesized.  相似文献   

6.
1-O-Acetyl-beta-D-galactopyranose (AcGal), a new substrate for beta-galactosidase, was synthesized in a stereoselective manner by the trichloroacetimidate procedure. Kinetic parameters (K(M) and k(cat)) for the hydrolysis of 1-O-acetyl-beta-D-galactopyranose catalyzed by the beta-D-galactosidase from Penicillium sp. were compared with similar characteristics for a number of natural and synthetic substrates. The value for k(cat) in the hydrolysis of AcGal was three orders of magnitude greater than for other known substrates. The beta-galactosidase hydrolyzes AcGal with retention of anomeric configuration. The transglycosylation activity of the beta-D-galactosidase in the reaction of AcGal and methyl beta-D-galactopyranoside (1) as substrates was investigated by 1H NMR spectroscopy and HPLC techniques. The transglycosylation product using AcGal as a substrate was beta-D-galactopyranosyl-(1-->6)-1-O-acetyl-beta-D-galactopyranose (with a yield of approximately 70%). In the case of 1 as a substrate, the main transglycosylation product was methyl beta-D-galactopyranosyl-(1-->6)-beta-D-galactopyranoside. Methyl beta-D-galactopyranosyl-(1-->3)-beta-D-galactopyranoside was found to be minor product in the latter reaction.  相似文献   

7.
A basic possibility of enzymic synthesis of alkyl glycosides in a system of the Aerosol-OT (AOT) reverse micelles was studied. Octyl beta-D-galactopyranoside and octyl beta-D-glucopyranoside were synthesized from the corresponding sugars (lactose or glucose) and octyl alcohol under catalysis with glycolytic enzymes, beta-galactosidase and beta-glucosidase, respectively. The transglycosylation/hydrolysis ratio was shifted toward transglycosylation by using octyl alcohol, one of the substrates, as an organic solvent. The alkyl glycosides were thus obtained in one step from a hydrophilic mono- or disaccharide and a hydrophobic aliphatic alcohol. The direction of the reaction was shown to depend on the pH of aqueous solution immobilized in nerves micelles. The maximum yields were 45% and 40% for octyl galactoside and octyl glucoside, respectively; they markedly exceeded the yields of enzymic syntheses in a two-phase system reported previously.  相似文献   

8.
The intermolecular transglycosylating reaction of cyclodextrin glucanotransferase ([EC 2.4.1.19]; CGTase) immobilized on a capillary membrane was investigated using low molecular weight substrates such as cyclodextrin (CD), maltooligosaccharide (MOS), and a CD-MOS mixture. The immobilized CGTase catalyzed the conversion reaction of α-CD to β-CD and MOS or β-CD to α-CD and MOS within a short residence time. The conversion ratio increased as the amount of immobilized CGTase increased. The addition of glucose, maltose, and sucrose as acceptors in the substrate solution containing CD resulted in the acceleration of CD degradation compared with only CD substrate. Furthermore, the MOS substrate (degree of polymerization =2–6) was disproportionated with a conversion ratio exceeding 70% by the immobilized CGTase. These data demonstrate that immobilized CGTase can catalyze intermolecular transglycosylation between low molecular substrates in a few minutes by regulating the amount of immobilized enzyme and the residence time. This might contribute to our comprehension of CGTase-immobilized bioreactors for CD production as well as to the development of new glycosides through its excellent transglycosylation ability.  相似文献   

9.
We explored the ability of a Thai rosewood β-glucosidase-displaying P. pastoris whole-cell biocatalyst (Pp-DCBGL) system to synthesize alkyl β-d-glucosides. The primary investigation centered on the synthesis of octyl-β-d-glucopyranoside (octyl-glu, OG). OG could be synthesized through reverse hydrolysis reaction with very low efficiency. Then, OG was synthesized between BG and octanol by a transglycosylation reaction. In a 2-ml reaction system, OG was synthesized with a conversion rate of 51.1% in 3 h when 5 mg/ml BG was utilized as the glucosyl donor under optimized conditions. And, even after being reused four times, the Pp-DCBGL was relatively stable. Additionally, a 500-ml-scale reaction system was conducted in a 2-L stirred reactor with a conversion rate of 47.5% in 1.5 h. Moreover, the conversion rate did not decrease after the whole-cell catalyst was reused two times. In conclusion, Pp-DCBGL has high reaction efficiency and operational stability, which is a powerful biocatalyst available for industrial synthesis.  相似文献   

10.
Arbutin (Ab, 4-hydroxyphenyl β-glucopyranoside) is a glycosylated hydroquinone known to prevent the formation of melanin by inhibiting tyrosinase. An arbutin-α-glucoside was synthesized by the transglycosylation reaction of amylosucrase (AS) of Deinococcus geothermalis (DGAS) using arbutin and sucrose as an acceptor and a donor, respectively. The maximum yield of the arbutin transglycosylation product was determined to be over 98% with a 1:0.5 molar ratio of donor and acceptor molecules (sucrose and arbutin), in 50 mM sodium citrate buffer pH 7 at 35 °C. TLC and HPLC analyses revealed that only one transglycosylation product was observed, supporting the result that the transglycosylation reaction of DGAS was very specific. The arbutin transglycosylation product was isolated by preparative recycling HPLC. The structural analyses using 13C and 1H NMR proved that the transglycosylated product was 4-hydroxyphenyl β-maltoside (Ab-α-glucoside), in which a glucose molecule was linked to arbutin via an α-(1 → 4)-glycosidic linkage.  相似文献   

11.
The purification and characterisation of the alpha-glucosidase from the marine mollusc Aplysia fasciata are reported. Overall substrate specificity of the pure enzyme for both hydrolytic and transglycosylation reactions was studied. Remarkable characteristics of this enzyme are indicated by the results of the interesting survey of transglycosylation reactions reported: pyridoxine glucosylation, synthesis of chromophoric (pNP) di- and trisaccharides, glucosylation of cellobiose and sucrose. For these last two acceptors both the yields of reactions and the concentrations of products are comparable to those obtained using glycosyl transferases; in addition, synthesis of pyridoxine and chromophoric glycosides were still possible using a 1:1 ratio maltose:acceptor which is a very interesting characteristic from a synthetic point of view (effortless purification, productivity of each reaction batch, etc.).  相似文献   

12.
The regioselectivity of enzymatic transglycosylation of 6-O-acetyl glycosides in supersaturated solutions was investigated using a range of commercially available enzymes, Escherichia coli, barley, and Kluyveromyces spp. beta-galactosidase, green coffee bean alpha-galactosidase, jack bean alpha-mannosidase, rice alpha-glucosidase, and almond beta-glucosidase. It has been shown that 6-O-acetyl glycosides serve as good substrates for these enzymes, which, under the reaction conditions, are "forced" to transfer monosaccharide units to the secondary hydroxyl groups of the acceptors. In a variety of transglycosylations studied the (1-3)-linked disaccharide products were the predominant regioisomers isolated. The selectivity of the reaction varied significantly depending on the acceptor glycosides and the enzyme used. Exquisite specificity was observed in some cases, but in others approximately equal quantities of two disaccharides products were isolated. In the best transfers the yield approached 30%. The methodology described offers a quick and facile route to disaccharides that may be difficult and/or time consuming to make by conventional chemical synthesis.  相似文献   

13.
Two long-standing questions about glucansucrases (EC 2.4.1.5) are how they control oligosaccharide versus polysaccharide synthesis and how they direct their glycosidic linkage specificity. This information is required for the production of tailor-made saccharides. Mutagenesis promises to be an effective tool for enzyme engineering approaches for altering the regioselectivity and acceptor substrate specificity. Therefore, we chose the most conserved motif around the transition state stabilizer in glucansucrases for a random mutagenesis of the glucansucrase GTFR of Streptococcus oralis, yielding different variants with altered reaction specificity. Modifications at position S628 achieved by saturation mutagenesis guided the reaction toward the synthesis of short chain oligosaccharides with a drastically increased yield of isomaltose (47%) or leucrose (64%). Alternatively, GTFR variant R624G/V630I/D717A exhibited a drastic switch in regioselectivity from a dextran type with mainly alpha-1,6-glucosidic linkages to a mutan type polymer with predominantly alpha-1,3-glucosidic linkages. Targeted modifications demonstrated that both mutations near the transition state stabilizer, R624G and V630I, are contributing to this alteration. It is thus shown that mutagenesis can guide the transglycosylation reaction of glucansucrase enzymes toward the synthesis of (a) various short chain oligosaccharides or (b) novel polymers with completely altered linkages, without compromising their high transglycosylation activity and efficiency.  相似文献   

14.
Enzymatic synthesis of cephalothin from 7-aminocephalosporanic acid (7-ACA) and amide derivatives of 2-thienylacetic acid (2-TA) using penicillin G acylase (pen G acylase) was studied. Two amide derivatives of 2-TA namely 2-thienylacetamide (2-TAA) and 2-thienylacetohydroxamic acid (2-TAH) were used in this study. The main reason for choosing amide but not the methyl ester derivative of 2-TA for the enzymatic synthesis was to increase their solubilities in water. The solubility of 2-TA methyl ester (2-TAM), 2-TAA, and 2-TAH in aqueous solution is 8 +/- 0.05 mM, 87 +/- 0.75 mM and 120 +/- 1.65 mM, respectively. Enzymatic conversion of 2-TAH to cephalothin yielded side products but they were not found in the conversion of 2-TAA to cephalothin. The side products were derived from reactions between hydroxyamine and 7-ACA. The effects of pH, temperature, initial substrate concentrations and reaction time on the conversion of 2-TAA and 7-ACA to cephalothin were examined. The optimum reaction condition was determined at pH 6.5 and 10 approximately 15 degrees C. The best conversion yield of 72% was obtained when the initial concentration of 2-TAA and 7-ACA was at 0.4 M and 0.1 M, respectively. Furthermore, a one-step method was developed to purify cephalothin from the enzymatic reaction mixture with the purity of 91% and the recovery yield of 96%.  相似文献   

15.
The action pattern and mechanism of the Taka-amylase A-catalyzed reaction were studied quantitatively and kinetically by product analysis, using a series of maltooligosaccharides from maltotriose (G3) to maltoheptaose (G7) labeled at the reducing end with 14C-glucose. A marked concentration dependency of the product distribution from the end-labeled oligosaccharides was found, Especially with G3 and G4 as substrates. The relative cleavage frequency at the first glycosidic bond counting from the nonreducing end of the substrate increases with increasing substrate concentration. Further product analyses with unlabeled and end-labeled G3 as substrates yielded the following findings: 1) Maltose is produced in much greater yield than glucose from unlabeled G3 at high concentration (73 mM). 2) Maltooligosaccharides higher than the starting substrate were found in the hydrolysate of labeled G3. 3) Nonreducing end-labeled maltose (G-G), which is a specific product of condensation, was found to amount to only about 4% of the total labeled maltose. Based on these findings, it was concluded that transglycosylation plays a significant role in the reaction at high concentrations of G3, although the contribution of condensation cannot be ignored. A new method for evaluating subsite affinities is proposed; it is based on the combination of the kinetic parameter (ko/Km) and the bond-cleavage distribution at a sufficiently low substrate concentration, where transglycosylation and condensation can be ignored. This method was applied to evaluate the subsite affinities of Taka-amylase A. Based on a reaction scheme which involves hydrolysis, transglycosylation and condensation, the time courses of the formation of various products were simulated, using the Runge-Kutta-Gill method. Good agreement with the experimental results was obtained.  相似文献   

16.
This paper describes a high yielding coupled enzymatic reaction using Bacillus halodurans purine nucleoside phosphorylase (PNP) and E. coli uridine phosphorylase (UP) for synthesis of 5-methyluridine (5-MU) by transglycosylation. Key parameters such as reaction temperature, pH, reactant loading, reactor configuration and enzyme loading were investigated. A guanosine conversion of 95% and a 5-MU yield of 85% were achieved at 1 l scale, with a productivity of 10 g l−1 h−1.  相似文献   

17.
An alpha-L-fucosidase from porcine liver produced alpha-L-Fuc-(1-->2)-beta-D-Gal-(1-->4)-D-GlcNAc (2'-O-alpha-L-fucosyl-N-acetyllactosamine, 1) together with its isomers alpha-L-Fuc-(1-->3)-beta-D-Gal-(1-->4)-D-GlcNAc (2) and alpha-L-Fuc-(1-->6)-beta-D-Gal-(1-->4)-D-GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl alpha-L-fucopyranoside and beta-D-Gal-(1-->4)-D-GlcNAc. The enzyme formed the trisaccharides 1-3 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. alpha-L-fucosidase led to the regioselective synthesis of trisaccharides containing a (1-->3)-linked alpha-L-fucosyl residue. When beta-D-Gal-(1-->4)-D-GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and alpha-L-Fuc-(1-->3)-beta-D-Gal-(1-->4)-D-Glc (3'-O-alpha-L-fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

18.
The transglycosylation reaction of the cyclodextrin glycosyltransferase from Bacillus megaterium (No. 5 enzyme) and Bacillus macerans (BMA) were examined. No. 5 enzyme was more efficient in transglycosylation reaction than BMA in the every acceptor employed in the present study. The order of the efficient acceptors for No. 5 enzyme was maltose (G2), glucose (Gl), maltotriose (G3) and sucrose (GF). On the other hand, that found for BMA was Gl, G2, GF and G3. The transglycosylation products to glucose formed by the action of No. 5 enzyme on starch were G2, G3, maltotetraose (G4), maltopentaose (G5), maltohexaose (G6) and maltoheptaose (G7) in the order of their quantities, while, in the case of BMA, they were G2, G3, G5, G7=G4 and G6. The larger transglycosylation products to sucrose formed by the action of No. 5 enzyme on starch were maltosylfructose. On the other hand, that formed by the action of BMA was maltoheptaosylfructose.

It was suggested that cyclodextrin glycosyltransferase could transfer the glucosyl residues to an acceptor directly from starch, as well as through cyclodextrin.  相似文献   

19.
The beta-D-galactosidase from porcine liver induced regiospecific transglycosylation of beta-D-galactose from beta-D-Gal-OC6H4NO2-o to OH-6 of, respectively, p-nitrophenyl glycoside acceptors of Gal, GlcNAc and GalNAc to afford beta-Gal-(1-->6)-alpha-Gal-OC6H4NO2-p, beta-Gal-(1--> 6)-beta-Gal-OC6H4NO2-p, beta-Gal-(1-->6)-alpha-GalNAc-OC6H4NO2-p, beta-Gal-(1-->6)-beta-GalNAc-OC6H4NO2-p, beta-Gal-(1-->6)-alpha-GlcNAc-OC6H4NO2-p, and beta-Gal-(1-->6)-beta-GlcNAc-OC6H4NO2-p. The enzyme showed much higher transglycosylation activity for the alpha-glycoside acceptors than the corresponding beta-glycoside acceptors. The regioselectivity of the beta-D-galactosidase from Bacillus circulans ATCC 31382 greatly depended on the nature of the acceptor. When alpha-D-GalNAc-OC6H4NO2-p and alpha-D-GlcNAc-OC6H4NO2-p were used as acceptors, the enzyme showed high potency for regioselective synthesis of beta-Gal-(1-->3)-alpha-GalNAc-OC6H4NO2-p and beta-Gal-(1-->3)-alpha-GlcNAc-OC6H4NO2-p in high respective yields of 75.9 and 79.3% based on the acceptors added. However, replacement of beta-D-Gal-OC6H4NO2-p by beta-D-GalNAc-OC6H4NO2-p did change the direction of galactosylation. The enzyme formed regioselectively beta-Gal-(1-->6)-beta-Gal-OC6H4NO2-p with (beta-Gal-1-->(6-beta-Gal-1-->)n6-beta-Gal-OC6H4NO2-p, n = 1-4). No beta-(1-->3)-linked product was detected during the reaction. Use of the two readily available beta-D-galactosidases facilitates the preparation of (1-->3)- and (1-->6)-linked disaccharide glycosides of beta-D-Gal-GalNAc and beta-D-Gal-GlcNAc.  相似文献   

20.
Divalent glycosides carrying N-acetyl-d-glucosamine (GlcNAc) and N-acetyllactosamine (LacNAc) were designed and prepared as glycomimetics. First, hexan-1,6-diyl bis-(2-acetamido-2-deoxy-beta-d-glucopyranoside) (GlcNAc-Hx-GlcNAc) and 3,6-dioxaoct-1,8-diyl bis-(2-acetamido-2-deoxy-beta-d-glucopyranoside) (GlcNAc-Doo-GlcNAc) were enzymatically synthesized by transglycosylation of an N,N'N',N'-tetraacetylchitotetraose [(GlcNAc)(4)] donor with a primary diol acceptor, utilizing a chitinolytic enzyme from Amycolatopsis orientalis. The resulting divalent glycosides were further converted to the respective hexan-1,6-diyl bis-[beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside] (LacNAc-Hx-LacNAc) and 6-(2-acetamido-2-deoxy-beta-d-glucopyranosyl)-hexyl beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside (LacNAc-Hx-GlcNAc), and respective 3,6-dioxaoct-1,8-diyl bis-[beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside] (LacNAc-Doo-LacNAc) and 8-(2-acetamido-2-deoxy-beta-d-glucopyranosyl)-3,6-dioxaoctyl beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside (LacNAc-Doo-GlcNAc) by galactosyltransferase. The interaction of wheat germ agglutinin (WGA) with a series of divalent glycosides and related compounds were studied using a biosensor based on surface plasmon resonance (SPR) and by precipitation analysis. Our results demonstrated that divalent glycosides carrying GlcNAc on both sides and GlcNAc and LacNAc on each side are capable of precipitating WGA as divalent ligands, but that the corresponding monovalent controls and divalent glycosides carrying LacNAc on both sides are unable to precipitate the lectin and bind as univalent ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号