首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2–3 months old) and juvenile (4 weeks old) Git1−/− mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in Git1−/− mice.  相似文献   

2.
Reduced basal ganglia function has been associated with fatigue in neurologic disorders, as well as in patients exposed to chronic immune stimulation. Patients with chronic fatigue syndrome (CFS) have been shown to exhibit symptoms suggestive of decreased basal ganglia function including psychomotor slowing, which in turn was correlated with fatigue. In addition, CFS patients have been found to exhibit increased markers of immune activation. In order to directly test the hypothesis of decreased basal ganglia function in CFS, we used functional magnetic resonance imaging to examine neural activation in the basal ganglia to a reward-processing (monetary gambling) task in a community sample of 59 male and female subjects, including 18 patients diagnosed with CFS according to 1994 CDC criteria and 41 non-fatigued healthy controls. For each subject, the average effect of winning vs. losing during the gambling task in regions of interest (ROI) corresponding to the caudate nucleus, putamen, and globus pallidus was extracted for group comparisons and correlational analyses. Compared to non-fatigued controls, patients with CFS exhibited significantly decreased activation in the right caudate (p = 0.01) and right globus pallidus (p = 0.02). Decreased activation in the right globus pallidus was significantly correlated with increased mental fatigue (r2 = 0.49, p = 0.001), general fatigue (r2 = 0.34, p = 0.01) and reduced activity (r2 = 0.29, p = 0.02) as measured by the Multidimensional Fatigue Inventory. No such relationships were found in control subjects. These data suggest that symptoms of fatigue in CFS subjects were associated with reduced responsivity of the basal ganglia, possibly involving the disruption of projections from the globus pallidus to thalamic and cortical networks.  相似文献   

3.
Trace elements and the relationships among them were investigated by direct chemical analysis in three basal ganglia regions in very old age individuals and age- and gender-related differences were assessed. After ordinary dissections at Nara Medical University were finished, the caudate nucleus, putamen, and globus pallidus belonging to the basal ganglia were removed from the identical cerebra of the subjects who consisted of 22 men and 23 women, ranging in age from 70 to 101 years (average age?=?83.3?±?7.5 years). After incineration with nitric acid and perchloric acid, the element contents were determined by inductively coupled plasma-atomic emission spectrometry. It was found that the Ca, P, and Mg contents increased significantly in the putamen with aging and the Mg content increased significantly in the globus pallidus with aging, but no elements increased significantly in the caudate nucleus with aging. Regarding the relationships among elements in the basal ganglia, extremely significant direct correlations were found among the Ca, P, and Mg contents in the putamen. These results suggested that slight calcification occurred in the putamen in very old age. With regard to seven elements of Ca, P, S, Mg, Zn, Fe, and Na, it was examined whether there were significant correlations among the caudate nucleus, putamen, and globus pallidus. It was found that there were extremely significant direct correlations among all of the three basal ganglia in the P content. Likewise, with regard to the Fe content, there were extremely or very significant direct correlations among all of the three basal ganglia. Regarding the gender difference in elements, it was found that the Ca content of the caudate nucleus was significantly higher in women than in men.  相似文献   

4.
Autism spectrum disorder (ASD) symptoms frequently occur in individuals with attention-deficit/hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD have differential structural brain correlates, knowledge of the structural brain profile of individuals with ADHD with raised ASD symptoms is limited. The presence of ASD-like symptoms was measured by the Children''s Social Behavior Questionnaire (CSBQ) in a sample of typically developing controls (n = 154), participants with ADHD (n = 239), and their unaffected siblings (n = 144) between the ages of 8 and 29. Structural magnetic resonance imaging (MRI) correlates of ASD ratings were analysed by studying the relationship between ASD ratings and grey matter volumes using mixed effects models which controlled for ADHD symptom count and total brain volume. ASD ratings were significantly elevated in participants with ADHD relative to controls and unaffected siblings. For the entire group (participants with ADHD, unaffected siblings and TD controls), mixed effect models revealed that the left caudate nucleus volume was negatively correlated with ASD ratings (t = 2.83; P = 0.005). The current findings are consistent with the role of the caudate nucleus in executive function, including the selection of goals based on the evaluation of action outcomes and the use of social reward to update reward representations. There is a specific volumetric profile associated with subclinical ASD-like symptoms in participants with ADHD, unaffected siblings and controls with the caudate nucleus and globus pallidus being of critical importance in predicting the level of ASD-like symptoms in all three groups.  相似文献   

5.
The distribution and function of neurons coexpressing the dopamine D1 and D2 receptors in the basal ganglia and mesolimbic system are unknown. We found a subset of medium spiny neurons coexpressing D1 and D2 receptors in varying densities throughout the basal ganglia, with the highest incidence in nucleus accumbens and globus pallidus and the lowest incidence in caudate putamen. These receptors formed D1-D2 receptor heteromers that were localized to cell bodies and presynaptic terminals. In rats, selective activation of D1-D2 heteromers increased grooming behavior and attenuated AMPA receptor GluR1 phosphorylation by calcium/calmodulin kinase IIα in nucleus accumbens, implying a role in reward pathways. D1-D2 heteromer sensitivity and functional activity was up-regulated in rat striatum by chronic amphetamine treatment and in globus pallidus from schizophrenia patients, indicating that the dopamine D1-D2 heteromer may contribute to psychopathologies of drug abuse, schizophrenia, or other disorders involving elevated dopamine transmission.  相似文献   

6.
Huntington''s disease (HD) is an inherited neurodegenerative disorder with progressive impairment of motor, behavioral and cognitive functions. The clinical features of HD are closely related to the degeneration of the basal ganglia, predominantly the striatum. The main striatal output structure, the globus pallidus, strongly accumulates metalloprotein-bound iron, which was recently shown to influence the diffusion tensor scalar values. To test the hypothesis that this effect dominates in the iron-rich basal ganglia of HD patients, we examined the globus pallidus using DTI and T2 relaxometry sequences. Quantitative magnetic resonance (MR), clinical and genetic data (number of CAG repeats) were obtained from 14 HD patients. MR parameters such as the T2 relaxation rate (RR), fractional anisotropy (FA) and mean diffusivity (MD) were analysed. A positive correlation was found between RR and FA (R2=0.84), between CAG and RR (R2=0.59) and between CAG and FA (R2=0.44). A negative correlation was observed between RR and MD (R2=0.66). A trend towards correlation between CAG and MD was noted. No correlation between MR and clinical parameters was found. Our results indicate that especially magnetic resonance FA measurements in the globus pallidus of HD patients may be strongly affected by metalloprotein-bound iron accumulation.  相似文献   

7.
Nigrostriatal dopaminergic denervation is associated with complex changes in the functional and neurochemical anatomy of the basal ganglia. The excitatory neurotransmitter glutamate mediates neural signaling at crucial points of this circuitry, and glutamate receptors are differentially distributed in the basal ganglia. Available evidence suggests that the glutamatergic corticostriatal and subthalamofugal pathways become overactive after nigrostriatal dopamine depletion. In this study, we have analyzed the regulation of the GluR1 subunit of the a-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptor in the basal ganglia of primates following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopamine denervation. The dopamine denervation resulted in distinct alterations in GluR1 distribution: (1) GluR1 protein expression was markedly increased in caudate and putamen, and this was most pronounced in the striosomes; (2) GluR1 protein was altered minimally in subthalamic nucleus; (3) expression of GluR1 was down-regulated in the globus pallidus by 63% and in the substantia nigra by 57%. The down-regulation of GluR1 expression in the output nuclei of the basal ganglia, the internal segment of the globus pallidus and the substantia nigra pars reticulata, may be a compensation for the overactive glutamatergic input from subthalamic nucleus, which arises after striatal dopamine denervation. Our results indicate that the glutamatergic system undergoes regulatory changes in response to altered basal ganglia activity in a primate model of Parkinson's disease. Targeted manipulation of the glutamatergic system may be a viable approach to the symptomatic treatment of Parkinson's disease.  相似文献   

8.
目的:探索帕金森病(PD)的磁敏感加权成像(SWI)的表现。方法:34例帕金森病患者作为病例组和30例正常人作为对照组,采用GE1.5T磁共振成像系统,行常规的快速自旋回波T1、T2加权像后,加扫三维磁敏感加权成像覆盖基底节区及中脑。使用SWI后处理软件在校正相位图上两次测量双侧尾状核头、苍白球、壳核、黑质、红核的相位值,最终的相位值取两次测量的平均值。结果:病例组患者黑质、壳核的相位值较对照组明显降低,差异具有统计学意义(P<0.05),PD患者黑质及壳核铁沉积增加。病例组壳核的相位值与PD病程之间存在负相关。对照组中尾状核头、壳核、黑质相位值左侧低于右侧。结论:SWI是显示PD患者脑内铁沉积的有效的检查方法。  相似文献   

9.
Huntington's Disease, an autosomal dominant neurological disorder, is characterized by diffuse neuronal degeneration particularly in the basal ganglia and cerebral cortex. The purpose of this study was to examine various discrete regions of choreic and control brains for alterations in muscarinic cholinergic receptor binding and choline acetyltransferase (ChAc) activity. Nine postmortem brains, three from patients with Huntington's Disease and six controls, were dissected into 17 discrete regions. Each regional homogenate was assayed for muscarinic receptor concentration by measuring specific membrane binding of [3H]-QNB, a potent muscarinic antagonist which selectively labels brain muscarinic receptors. Aliquots from each brain region were also assayed for ChAc activity. Of significance was the marked reduction in specific [3H]-QNB receptor binding in the caudate nucleus, putamen and globus pallidus of choreic brain while no significant alterations were detected in other brain regions. Significant decreases in ChAc activity were found in the caudate nucleus, putamen, and globus pallidus with no alterations in ChAc activity in the rest of the brain regions examined. The tissues were chosen such that protein levels were similar in both choreic and normal brain samples. The apparent reduction in the number of muscarinic cholinergic receptors in the choreic brains suggests that treatment with cholinomimetic drugs might be beneficial in Huntington's Disease.  相似文献   

10.
BACKGROUND: The basal ganglia contain the highest levels of iron in the brain and post-mortem studies indicate a disruption of iron metabolism in the basal ganglia of patients with neurodegenerative disorders such as Alzheimer's disease (AD) and Huntington's disease (HD). Iron can catalyze free radical reactions and may contribute to oxidative damage observed in AD and HD brain. Magnetic resonance imaging (MRI) can quantify transverse relaxation rates, which can be used to quantify tissue iron stores as well as evaluate increases in MR-visible water (an indicator of tissue damage). METHODS: A magnetic resonance imaging (MRI) method termed the field dependent relaxation rate increase (FDRI) was employed which quantifies the iron content of ferritin molecules (ferritin iron) with specificity through the combined use of high and low field-strength MRI instruments. Three basal ganglia structures (caudate, putamen and globus pallidus) and one comparison region (frontal lobe white matter) were evaluated. Thirty-one patients with AD and a group of 68 older control subjects, and 11 patients with HD and a group of 27 adult controls participated (4 subjects overlap between AD and HD controls). RESULTS: Compared to their respective normal control groups, increases in basal ganglia FDRI levels were seen in both AD and HD. FDRI levels were significantly increased in the caudate (p = 0.007) and putamen (p = 0.008) of patients with AD with a trend toward an increase in the globus pallidus (p = 0.13). In the patients with HD, all three basal ganglia regions showed highly significant FDRI increases (p<0.001) and the magnitude of the increases were 2 to 3 times larger than those observed in AD versus control group comparison. For both HD andAD subjects, the basal ganglia FDRI increase was not a generalized phenomenon, as frontal lobe white matter FDRI levels were decreased in HD (p = 0.015) and remained unchanged in AD. Significant low field relaxation rate decreases (suggestive of increased MR-visible water and indicative of tissue damage) were seen in the frontal lobe white matter of both HD and AD but only the HD basal ganglia showed such decreases. CONCLUSIONS: The data suggest that basal ganglia ferritin iron is increased in HD and AD. Furthermore, the increased iron levels do not appear to be a byproduct of the illness itself since they seem to be present at the onset of the diseases, and thus may be considered a putative risk factor. Published post-mortem studies suggest that the increase in basal ganglia ferritin iron may occur through different mechanisms in HD and AD. Consistent with the known severe basal ganglia damage, only HD basal ganglia demonstrated significant decreases in low field relaxation rates. MRI can be used to dissect differences in tissue characteristics, such as ferritin iron and MR-visible water, and thus could help clarify neuropathologic processes in vivo. Interventions aimed at decreasing brain iron levels, as well as reducing the oxidative stress associated with increased iron levels, may offer novel ways to delay the rate of progression and possibly defer the onset of AD and HD.  相似文献   

11.
To elucidate the compositional changes of the amygdala with aging, the authors investigated age-related differences of elements in human amygdalae. In addition, the relationships between the amygdala and other brain regions were investigated from a viewpoint of elements. After ordinary dissections at Nara Medical University were finished, the amygdalae were removed from the cerebra of the subjects who consisted of 22 men and 23 women, ranging in age from 70 to 101 years. In addition, the hippocampus, dentate gyrus, mammillary body of the limbic system and the caudate nucleus, putamen, and globus pallidus of the basal ganglia were also removed from the identical cerebra. After the brain samples were incinerated with nitric acid and perchloric acid, the element contents were determined by inductively coupled plasma-atomic emission spectrometry. It was found that both the Ca and Mg contents increased significantly in the amygdalae with aging, but the other five element contents (P, S, Zn, Fe, and Na) did not change significantly in the amygdalae with aging. Regarding the relationships among elements, very significant or significant direct correlations were found among the Ca, P, and Mg contents in the amygdalae. To explore the relationships between the amygdala and either other limbic system or basal ganglia, the correlations between seven elements of the amygdala and hippocampus, dentate gyrus, or mammillary body, and between those of the amygdala and caudate nucleus, putamen, or globus pallidus which derived from the identical cerebra, were analyzed with Pearson’s correlation. It was found that regarding the four elements of Ca, P, Mg, and Fe, a close relationship existed between the amygdala and hippocampus, globus pallidus, or mammillary body.  相似文献   

12.
Abstract : Administration of high doses of methamphetamine (METH) produces both short- and long-term enzymatic deficits in central monoaminergic systems. To determine whether a correlative relationship exists between these acute and long-term consequences of METH treatment, in the present study we examined the regional effects of METH on tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH) activities in various regions of the caudate nucleus, nucleus accumbens, and globus pallidus. A single METH administration decreased TPH activity 1 h after treatment in the globus pallidus, in the nucleus accumbens, and throughout the caudate ; in the anterior caudate, the ventral-medial was more affected than the dorsal-lateral region. In contrast, TH activity was not decreased in either the caudate or the globus pallidus after a single METH administration ; however, it was altered in the nucleus accumbens. Seven days after multiple METH administrations, TH and TPH activities were decreased in most caudate regions but not in the nucleus accumbens or globus pallidus. These data demonstrate that (1) the effects of METH on TPH and TH vary regionally ; and (2) the short-term and long-term regional responses of TPH to METH in the caudate and globus pallidus correlated. In contrast, METH-induced acute TH responses did not predict the long-term changes in TH activity.  相似文献   

13.
苍白球γ-氨基丁酸能神经传递及其与神经系统疾病的关系   总被引:1,自引:0,他引:1  
Chen L  Yung WH 《生理学报》2004,56(4):427-435
苍白球是基底神经节间接环路的重要核团,在机体运动功能调节中发挥重要作用。近年来,苍白球在基底神经节正常及异常功能调节中的重要性已日渐受到重视。然而,目前对苍白球内各种神经递质系统的功能活动了解较少。GABA是苍白球主要的神经递质。采用电生理记录、免疫组织化学及行为测试等实验方法,人们对大鼠苍白球GABA能神经传递系统的受体分布及功能活动有了新的认识。形态学研究揭示,苍白球存在GABAA受体及其苯二氮卓结合位点和GABAB受体。在亚细胞水平,GABAA受体主要位于对称性突触(GABA能突触)的突触后膜,而GABAB受体则位于对称性突触和非对称性突触(兴奋性突触)的突触前膜及突触后膜。功能学研究进一步揭示,激活苍白球突触前膜GABAB自身和异源性受体可分别减少GABA和谷氨酸释放;激活突触后膜GABAB受体,可引起苍白球神经元超极化。除GABAB受体外,激活苍白球GABAA受体苯二氮卓结合位点及阻断GABA重摄取可延长GABA电流持续时间,从而改变苍白球神经元兴奋性。与离体实验结果相一致,激活苍向球GABAB受体和苯二氮卓结合位点及阻断GABA重摄取可引起整体动物旋转行为。苍白球GABA神经递质系统与帕金森病病因学及癫痫发病有关。已证实,苍白球神经元放电频率的降低及簇状放电的产生与帕金森病运动减少及静止性震颤等症状直接相关。此外,电牛理及行为学实验发现,新型抗癫痫药物替加平可调节苍白球神经元功能活动.这为进一步了解苍白球与癫痫发病的关系提供了新的理论及实验依据。  相似文献   

14.
In vivo release of transmitters in the cat basal ganglia   总被引:3,自引:0,他引:3  
The release of transmitters was studied in various structures of the basal ganglia in cats implanted with several push-pull cannulas. Local depolarization enhanced Met-enkephalin release in the globus pallidus. Activation of striatonigral substance P(SP) neutrons stimulated the transmitter release from terminals. Unilateral electrical stimulation of the caudate nucleus evoked GABA release in both substantia nigrae and pallidoentopeduncular nuclei. The unilateral facilitation or interruption of nigral SP transmission modified dopamine (DA) release in the ipsilateral caudate nucleus in contrast, modifications of GABAergic or glycinergic nigral transmissions induced bilateral symmetrical effects, whereas bilateral asymmetrical changes in DA release in the two caudate nuclei were seen during the unilateral modification of nigral DA transmission. Changes in the dendritic release of DA induced changes in serotonin release both in the substantia nigra and in the ipsilateral caudate nucleus. Finally, it will be shown that acetylcholinesterase can be released from the substantia nigra and the caudate nucleus through processes dependent on nerve activity.  相似文献   

15.
Synchronized activity (spindles, augmentation response) evoked by stimulation of thalamic nonspecific, association, and specific nuclei was investigated in chronic experiments on 11 cats before and after successive destruction of the caudate nuclei. After destruction of the caudate nuclei the duration of spindle activity in the frontal cortex and subcortical formations (thalamic nuclei, globus pallidus, putamen) was reduced to only three or four oscillations. In the subcortical nuclei its amplitude fell significantly (by 50±10%); in the cortex the decrease in amplitude was smaller and in some cases was not significant. Different changes were observed in the amplitude of the augmentation response, depending on where it was recorded. In the subcortical formations it was considerably and persistently reduced (by 50±10%); in the cortex these changes were unstable in character. Unilateral destruction of the caudate nucleus inhibited synchronized activity evoked by stimulation of the thalamic nuclei on the side of the operation only. Destruction of the basal ganglia (caudate nucleus, globus pallidus, entopeduncular nucleus, and putamen) did not prevent the appearance of synchronized activity; just as after isolated destruction of the caudate nucleus, after this operation synchronized activity was simply reduced in duration and amplitude. It is suggested that the caudate nucleus exerts an ipsilateral facilitatory influence on the nonspecific system of the thalamus during the development of evoked synchronized activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 239–248, May–June, 1977.  相似文献   

16.
In situ hybridization histochemistry has been used to analyze the regional expression of a class of voltage-dependent K+ channel that is sensitive to two polypeptide toxins (MCD peptide and dendrotoxin I) that produce spectacular effects on brain function. A heterogeneous expression of this K+ channel was observed throughout the brain. High mRNA contents were observed in the granule cells of the gyrus dentatus as well as in pyramidal cells of the Ammon horn (CA3 greater than CA1) and in the cerebellum. Conversely, low levels of expression were found in basal ganglia (caudate putamen, globus pallidus, and ventral pallidum).  相似文献   

17.
Abstract: The K+-induced release of amino acids and dopamine from synaptosomes of basal ganglia and substantia nigra of sheep was studied. K+ (56 mM) caused an increase in the release of GABA from caudate, putamen, globus pallidus, and substantia nigra, the increased release being 227, 171, 198, and 366%, respectively, compared with samples incubated without stimulation. The release of glutamate was also increased by 56 mM-K+ (136–183%) from all regions except the globus pallidus, and a significant release of aspartate was only seen in response to K+ stimulation of synaptosomes from putamen (50%). Veratrine (75 μM) also stimulated a similar pattern of amino acid release from these regions. Regional correlation was shown between the presence of an uptake system for an amino acid and its evoked release. [14C]Dopamine formed from L-[U-14C]tyrosine was released only from caudate and putamen synaptosomes by K+ stimulation, the increases being 105% and 74%, respectively. Synthesis of [14C]dopamine from L-[U-14C]tyrosine occurred only in synaptosomes prepared from these two regions and was not detected in synaptosomes from substantia nigra or globus pallidus although whole-tissue homogenates of substantia nigra were able to synthesise dopamine.  相似文献   

18.
Soluble proline endopeptidase (EC 3.4.21.26) activity was measured by a fluorometric assay in eight human brain areas (caudate nucleus, lateral globus pallidus, medial globus pallidus, substantia nigra-zona compacta, substantia nigra-zona reticulata, frontal cortex-Brodmann area 10, temporal cortex-Brodmann area 38, and hippocampus), in 10 control and 10 Huntington's disease brains. An abnormally low activity (22% of control activity) was found in the caudate nucleus of Huntington's disease brains; significantly decreased activity was also detected in the lateral globus pallidus and medial globus pallidus (37% and 40% of control, respectively).  相似文献   

19.
Methylphenidate (MPD) is a psychostimulant widely used to treat behavioral problems such as attention deficit hyperactivity disorder. MPD competitively inhibits the dopamine (DA) transporter. Previous studies demonstrated that stimulants of abuse, such as cocaine (COC) and methamphetamine differentially alter rat brain neurotensin (NT) systems through DA mechanisms. As NT is a neuropeptide primarily associated with the regulation of the nigrostriatal and mesolimbic DA systems, the effect of MPD on NT-like immunoreactivity (NTLI) content in several basal ganglia regions was assessed. MPD, at doses of 2.0 or 10.0 mg/kg, s.c., significantly increased the NTLI contents in dorsal striatum, substantia nigra and globus pallidus; similar increases in NTLI were observed in these areas after administration of COC (30.0 mg/kg, i.p.). No changes in NTLI occurred within the nucleus accumbens, frontal cortex and ventral tegmental area following MPD treatment. In addition, the NTLI changes in basal ganglia regions induced by MPD were prevented when D(1) (SCH 23390) or D(2) (eticlopride) receptor antagonists were coadministered with MPD. MPD treatment also increased dynorphin (DYN) levels in basal ganglia structures. These findings provide evidence that basal ganglia, but not limbic, NT systems are significantly affected by MPD through D(1) and D(2) receptor mechanisms, and these NTLI changes are similar, but not identical to those which occurred with COC administration. In addition, the MPD effects on NT systems are mechanistically distinct from the effects of methamphetamine.  相似文献   

20.
In recent years, cannabinoid receptors and their endogenous ligands (endocannabinoids) have been identified within the brain. The high density of CB1 cannabinoid receptors within the basal ganglia suggests a potential role for endocannabinoids in the control of voluntary movement and in basal ganglia-related movement disorders such as Parkinson's disease. However, whether endocannabinoids play a role in regulating motor behavior in health and disease is unknown. Here we report the presence in two regions of the basal ganglia, the globus pallidus and substantia nigra, of the endocannabinoids 2-arachidonoylglycerol (2AG) and anandamide. The levels of the latter compound are approximately threefold higher than those previously reported in any other brain region. In the reserpine-treated rat, an animal model of Parkinson's disease, suppression of locomotion is accompanied by a sevenfold increase in the levels of the 2AG in the globus pallidus, but not in the other five brain regions analyzed. Stimulation of locomotion in the reserpine-treated rat by either of the two selective agonists of D2 and D1 dopamine receptors, quinpirole and R-(+/-)-3-allyl-6-chloro-7, 8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (Cl-APB), respectively, results in the reduction of both anandamide and 2AG levels in the globus pallidus. Finally, full restoration of locomotion in the reserpine-treated rat is obtained by coadministration of quinpirole and the selective antagonist of the cannabinoid CB1 receptor subtype, SR141716A. These findings indicate a link between endocannabinoid signaling in the globus pallidus and symptoms of Parkinson's disease in the reserpine-treated rat, and suggest that modulation of the endocannabinoid signaling system might prove useful in treating this or other basal ganglia-related movement disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号