首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helminth infections are of significant concern in veterinary and human medicine. The drugs available for chemotherapy are limited in number and the extensive use of these drugs has led to the development of resistance in parasites of animals and humans ( [Geerts and Gryseels, 2000], [Kaplan, 2004] and [Osei-Atweneboana et al., 2007]). The cyclooctadepsipeptide, emodepside, belongs to a new class of anthelmintic that has been released for animal use in recent years. Emodepside has been proposed to mimic the effects of the neuropeptide PF1 on membrane hyperpolarization and membrane conductance (Willson et al., 2003). We investigated the effects of PF1 on voltage-activated currents in Ascaris suum muscle cells. The whole cell voltage-clamp technique was employed to study these currents. Here we report two types of voltage-activated inward calcium currents: transient peak (Ipeak) and a steady-state (Iss). We found that 1 μM PF1 inhibited the two calcium currents. The Ipeak decreased from −146 nA to −99 nA (P = 0.0007) and the Iss decreased from −45 nA to −12 nA (P = 0.002). We also found that PF1 in the presence of calcium increased the voltage-activated outward potassium current (from 521 nA to 628 nA (P = 0.004)). The effect on the potassium current was abolished when calcium was removed and replaced with cobalt; it was also reduced at a higher concentration of PF1 (10 μM). These studies demonstrate a mechanism by which PF1 decreases the excitability of the neuromuscular system by modulating calcium currents in nematodes. PF1 inhibits voltage-activated calcium currents and potentiates the voltage-activated calcium-dependent potassium current. The effect on a calcium-activated-potassium channel appears to be common to both PF1 and emodepside (Guest et al., 2007). It will be of interest to investigate the actions of emodepside on calcium currents to further elucidate the mechanism of action.  相似文献   

2.
UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca2+ imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at −80 mV, dialyzed with K+-, Na+-free pipette solution, and bathed with K+-free Tyrode’s solution at 22°C. During experiments that lasted for ≈ 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from −80 to −40 mV, but had little effect on background current or on L-type Ca2+ current. Trials with depolarized holding potential, Ca2+ channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na+ current (INa). The amplitude of the late inward current sensitive to 100 μM TTX was increased by 3.5-fold after 20–30 min of irradiation. UVA modulation of late INa may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac INa.  相似文献   

3.
Heart cells from the clam Ruditapes decussatus were routinely cultured with a high level of reproducibility in sea water based medium. Three cell types attached to the plastic after 2 days and could be maintained in vitro for at least 1 month: epithelial-like cells, round cells and fibroblastic cells. Fibroblastic cells were identified as functional cardiomyocytes due to their spontaneous beating, their ultrastructural characteristics and their reactivity with antibodies against sarcomeric α-actinin, sarcomeric tropomyosin, myosin and troponin T-C. Patch clamp measurements allowed the identification of ionic currents characteristic of cardiomyocytes: a delayed potassium current (I K slow) strongly suppressed (95%) by tetraethylammonium (1 mM), a fast inactivating potassium current (I K fast) inhibited (50%) by 4 amino-pyridine at 1 mM and, at a lower level (34%) by TEA, a calcium dependent potassium current (I KCa) activated by strong depolarization. Three inward voltage activated currents were also characterized in some cardiomyocytes: L-type calcium current (I Ca) inhibited by verapamil at 5 × 10−4 M, T-type Ca2+ current, rapidly activated and inactivated, and sodium current (I Na) observed in only a few cells after strong hyperpolarization. These two currents did not seem to be physiologically essential in the initiation of the beatings of cardiomyocytes. Potassium currents were partially inhibited by tributyltin (TBT) (1 μM) but not by okadaic acid (two marine pollutants). DNA synthesis was also demonstrated in few cultured cells using BrdU (bromo-2′-deoxyuridine). Observed effects of okadaic acid and TBT demonstrated that cultured heart cells from clam Ruditapes decussatus can be used as an experimental model in marine toxicology.  相似文献   

4.
In freshly dissociated uterine myocytes, the outward current is carried by K+ through channels highly selective for K+. Typically, nonpregnant myocytes have rather noisy K+ currents; half of them also have a fast-inactivating transient outward current (ITO). In contrast, the current records are not noisy in late pregnant myocytes, and ITO densities are low. The whole-cell IK of nonpregnant myocytes respond strongly to changes in [Ca2+]o or changes in [Ca2+]i caused by photolysis of caged Ca2+ compounds, nitr 5 or DM-nitrophene, but that of late-pregnant myocytes respond weakly or not at all. The Ca2+ insensitivity of the latter is present before any exposure to dissociating enzymes. By holding at −80, −40, or 0 mV and digital subtractions, the whole-cell IK of each type of myocyte can be separated into one noninactivating and two inactivating components with half-inactivation at approximately −61 and −22 mV. The noninactivating components, which consist mainly of iberiotoxin-susceptible large-conductance Ca2+-activated K+ currents, are half-activated at 39 mV in nonpregnant myocytes, but at 63 mV in late-pregnant myocytes. In detached membrane patches from the latter, identified 139 pS, Ca2+-sensitive K+ channels also have a half-open probability at 68 mV, and are less sensitive to Ca2+ than similar channels in taenia coli myocytes. Ca2+-activated K+ currents, susceptible to tetraethylammonium, charybdotoxin, and iberiotoxin contribute 30–35% of the total IK in nonpregnant myocytes, but <20% in late-pregnant myocytes. Dendrotoxin-susceptible, small-conductance delayed rectifier currents are not seen in nonpregnant myocytes, but contribute ∼20% of total IK in late-pregnant myocytes. Thus, in late-pregnancy, myometrial excitability is increased by changes in K+ currents that include a suppression of the ITO, a redistribution of IK expression from large-conductance Ca2+-activated channels to smaller-conductance delayed rectifier channels, a lowered Ca2+ sensitivity, and a positive shift of the activation of some large-conductance Ca2+-activated channels.  相似文献   

5.
Membrane potential and ionic currents were studied in cultured rabbit retinal pigment epithelial (RPE) cells using whole-cell patch clamp and perforated-patch recording techniques. RPE cells exhibited both outward and inward voltage-dependent currents and had a mean membrane capacitance of 26±12 pF (sd, n=92). The resting membrane potential averaged ?31±15 mV (n=37), but it was as high as ?60 mV in some cells. When K+ was the principal cation in the recording electrode, depolarization-activated outward currents were apparent in 91% of cells studied. Tail current analysis revealed that the outward currents were primarily K+ selective. The most frequently observed outward K+ current was a voltage- and time-dependent outward current (I K) which resembled the delayed rectifier K+ current described in other cells. I K was blocked by tetraethylammonium ions (TEA) and barium (Ba2+) and reduced by 4-aminopyridine (4-AP). In a few cells (3–4%), depolarization to ?50 mV or more negative potentials evoked an outwardly rectifying K+ current (I Kt) which showed more rapid inactivation at depolarized potentials. Inwardly rectifying K+ current (I KI) was also present in 41% of cells. I KI was blocked by extracellular Ba2+ or Cs+ and exhibited time-dependent decay, due to Na+ blockade, at negative potentials. We conclude that cultured rabbit RPE cells exhibit at least three voltage-dependent K+ currents. The K+ conductances reported here may provide conductive pathways important in maintaining ion and fluid homeostasis in the subretinal space.  相似文献   

6.
Whole-cell patch-clamp recordings were obtained from 116 freshly dissociated neuronal somata from the optic lobe of adult locusts (Schistocerca gregaria). Prerequisites were a papain treatment and the directed transfer of somata to the recording chamber by dabbing. Of the recorded somata, 65 were from lamina and 51 from other optic lobe neurons. All somata supported voltage-activated outward currents and some (24% of optic lobe, 3% of lamina neurons) also fast inward currents. Most lamina neurons supported an outward current that activated (V 1/2=−8.5 mV) and inactivated rapidly and a sustained outward current. Some lamina and most optic lobe neurons expressed only a sustained outward current (V 1/2=−9.4 mV). GABA and histamine elicited inward currents at negative holding potentials. Most optic lobe (95%) but only 18% of lamina neurons showed a γ-aminobutyric acid (GABA) current, whereas a similar percentage of optic lobe (50%) and lamina neurons (67%) expressed a histamine current. Both currents reversed near the chloride equilibrium potential, were reversibly reduced by picrotoxin, and did not show rundown. Thus, they likely represent chloride currents mediated by ionotropic receptors. Our data indicate that the lamina neurons recorded mainly represent monopolar cells postsynaptic to histaminergic photoreceptors. The optic lobe neurons, on which GABA and histamine apparently act as inhibitory neurotransmitters, are more heterogeneous. Accepted: 30 November 1997  相似文献   

7.
The hyperexcitability of alpha-motoneurons and accompanying spasticity following spinal cord injury (SCI) have been attributed to enhanced persistent inward currents (PICs), including L-type calcium and persistent sodium currents. Factors controlling PICs may offer new therapies for managing spasticity. Such factors include calcium-activated potassium (KCa) currents, comprising in motoneurons an after-hyperpolarization-producing current (I KCaN) activated by N/P-type calcium currents, and a second current (I KCaL) activated by L-type calcium currents (Li and Bennett in J neurophysiol 97:767–783, 2007). We hypothesize that these two currents offer differential control of PICs and motoneuron excitability based on their probable somatic and dendritic locations, respectively. We reproduced SCI-induced PIC enhancement in a two-compartment motoneuron model that resulted in persistent dendritic plateau potentials. Removing dendritic I KCaL eliminated primary frequency range discharge and produced an abrupt transition into tertiary range firing without significant changes in the overall frequency gain. However, I KCaN removal mainly increased the gain. Steady-state analyses of dendritic membrane potential showed that I KCaL limits plateau potential magnitude and strongly modulates the somatic injected current thresholds for plateau onset and offset. In contrast, I KCaN had no effect on the plateau magnitude and thresholds. These results suggest that impaired function of I KCaL may be an important intrinsic mechanism underlying PIC-induced motoneuron hyperexcitability following SCI.  相似文献   

8.
Freshly dissociated myocytes from nonpregnant, pregnant, and postpartum rat uteri have been studied with the tight-seal patch-clamp method. The inward current contains both INa and ICa that are vastly different from those in tissue-cultured material. INa is abolished by Na+-free medium and by 1 μM tetrodotoxin. It first appears at ∼−40 mV, reaches maximum at 0 mV, and reverses at 84 mV. It activates with a voltage-dependent τ of 0.2 ms at 20 mV, and inactivates as a single exponential with a τ of 0.4 ms. Na+ conductance is half activated at −21.5 mV, and half inactivated at −59 mV. INa reactivates with a τ of 20 ms. ICa is abolished by Ca2+-free medium, Co2+ (5 mM), or nisoldipine (2 μM), and enhanced in 30 mM Ca2+, Ba2+, or BAY-K 8644. It first appears at ∼−30 mV and reaches maximum at +10 mV. It activates with a voltage-dependent τ of 1.5 ms at 20 mV, and inactivates in two exponential phases, with τ''s of 33 and 133 ms. Ca2+ conductance is half activated at −7.4 mV, and half inactivated at −34 mV. ICa reactivates with τ''s of 27 and 374 ms. INa and ICa are seen in myocytes from nonpregnant estrus uteri and throughout pregnancy, exhibiting complex changes. The ratio of densities of peak INa/ICa changes from 0.5 in the nonpregnant state to 1.6 at term. The enhanced role of INa, with faster kinetics, allows more frequent repetitive spike discharges to facilitate simultaneous excitation of the parturient uterus. In postpartum, both currents decrease markedly, with INa vanishing from most myocytes. Estrogen-enhanced genomic influences may account for the emergence of INa, and increased densities of INa and ICa as pregnancy progresses. Other influences may regulate varied channel expression at different stages of pregnancy.  相似文献   

9.
Effects of odorants on voltage-gated ionic channels were investigated in isolated newt olfactory receptor cells by using the whole cell version of the patch–clamp technique. Under voltage clamp, membrane depolarization to voltages between −90 mV and +40 mV from a holding potential (Vh) of −100 mV generated time- and voltage-dependent current responses; a rapidly (< 15 ms) decaying initial inward current and a late outward current. When odorants (1 mM amyl acetate, 1 mM acetophenone, and 1 mM limonene) were applied to the recorded cell, the voltage-gated currents were significantly reduced. The dose-suppression relations of amyl acetate for individual current components (Na+ current: INa, T-type Ca2+ current: ICa,T, L-type Ca2+ current: ICa,L, delayed rectifier K+ current: IKv and Ca2+-activated K+ current: IK(Ca)) could be fitted by the Hill equation. Half-blocking concentrations for each current were 0.11 mM (INa), 0.15 mM (ICa,T), 0.14 mM (ICa,L), 1.7 mM (IKv), and 0.17 mM (IK(Ca)), and Hill coefficient was 1.4 (INa), 1.0 (ICa,T), 1.1 (ICa,L), 1.0 (IKv), and 1.1 (IK(Ca)), suggesting that the inward current is affected more strongly than the outward current. The activation curve of INa was not changed significantly by amyl acetate, while the inactivation curve was shifted to negative voltages; half-activation voltages were −53 mV at control, −66 mV at 0.01 mM, and −84 mV at 0.1 mM. These phenomena are similar to the suppressive effects of local anesthetics (lidocaine and benzocaine) on INa in various preparations, suggesting that both types of suppression are caused by the same mechanism. The nonselective blockage of ionic channels observed here is consistent with the previous notion that the suppression of the transduction current by odorants is due to the direst blockage of transduction channels.  相似文献   

10.
H. Stoeckel  K. Takeda 《Protoplasma》2002,220(1-2):0079-0087
Summary.  Plasmalemmal ionic currents from enzymatically isolated protoplasts of suspension-cultured tobacco ‘Bright Yellow-2’ cells were investigated by whole-cell patch-clamp techniques. In all protoplasts, delayed rectifier outward K+ currents having sigmoidal activation kinetics, no inactivation, and very slow deactivation kinetics were activated by step depolarization. Tail current reversal potentials were close to equilibrium potential EK when external [K+] was either 6 or 60 mM. Several channel blockers, including external Ba2+, niflumic acid, and 5-nitro-2-(3-phenylpropylamino)-benzoic acid, inhibited this outward K+ current. Among the monovalent cations tested (NH4 +, Rb+, Li+, Na+), only Rb+ had appreciable permeation (PRb/PK = 0.7). In addition, in 60 mM K+ solutions, a hyperpolarization-activated, time-dependent, inwardly rectifying K+ current was observed in most protoplasts. This inward current activated very slowly, did not inactivate, and deactivated quickly upon repolarization. The tail current reversal potential was very close to EK, and other monovalent cations (NH4 +, Rb+, Li+, Na+) were not permeant. The inward current was blocked by external Ba2+ and niflumic acid. External Cs+ reversibly blocked the inward current without affecting the outward current. The amplitude of the inward rectifier K+ current was generally small compared to the amplitude of the outward K+ current in the same cell, although this was highly variable. Similar amplitudes for both currents occurred in only 4% of the protoplasts in control conditions. Microfilament-depolymerizing drugs shifted this proportion to about 12%, suggesting that microfilaments participate in the regulation of K+ currents in tobacco ‘Bright Yellow-2’ cells. Received December 7, 2001; accepted April 15, 2002; published online July 4, 2002 RID="*" ID="*" Correspondence and reprints: Pharmacologie et Physicochimie, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 74 route du Rhin, BP 24, 67401 Illkirch, France. Abbreviations: TBY-2 Tobacco ‘Bright Yellow-2’; DHCB dihydrocytochalasin B; IKin inward rectifier K+ current; IKout outward K+ current; MFs microfilaments; MTs microtubules; NPPB 5-nitro-2-(3-phenylpropylamino)-benzoic acid.  相似文献   

11.
An inward current in smooth muscle cells (SMCs) of the taenia coli is known to be transferred via potassium channels and nonselective cation channels. The outward current is of a potassium nature and includes several components, Ca-dependent potassium current (I K(Ca)) and delayed rectifying potassium current (I K(V)) in particular. Applications of 100 nM paxilline to SMCs of the guinea-pig taenia coli suppressed considerably the outward current and decreased its oscillations; the effect of paxilline reached its maximum in 2 to 3 min from the beginning of application. Analysis of the current-voltage (I-V) relationship observed under conditions of such applications showed that the paxilline-sensitive current is highly dependent on the intracellular Ca2+ concentration; a change in the I-V slope within a segment of the maximum activation of the calcium current is indicative of this peculiarity. Application of paxilline against the background of the action of 1 mM tetraethylammonium (a nonselective blocker of potassium channels) evoked no additional suppression of the outward current. In most cells, we observed spontaneous outward currents (SOCs). Application of 100 nM paxilline nearly completely blocked high-amplitude SOCs (>10 pA) formed due to activation of big-conductance Ca-dependent potassium channels. At the same time, the frequency of small-amplitude SOCs (<10 pA) practically did not change. Thus, according to the pharmacological and time characteristics, voltage dependence, and sensitivity to the intracellular Ca2+ concentration, we identified a voltage-operated paxilline-sensitive component in I K(Ca) that is transferred via big-conductance Ca-dependent potassium channels. Neirofiziologiya/Neurophysiology, Vol. 39, No. 3, pp. 201–207, May–June, 2007.  相似文献   

12.
Transmembrane ion currents in isolated single smooth muscle cells (SMC) from the guinea pigtaenia coli were investigated using a whole-cell mode of the patch-clamp technique. Currents induced by depolarizing shifts in the membrane potential from its holding level of −60 mV contained an initial inward phase (Ca2+ current), which in 30–40 msec was followed by an outward phase. It was shown that outward current was carried by K ions and consisted at least of three components: one Ca2+-independent K+ current of delayed rectifier (KV) and two Ca2+-dependent K+ currents. The latter can be further divided into the apamin-sensitive (SK) and charybdotoxin-sensitive (BK) currents. It was found that relative contributions of these three components in total outward current at 0 mV were 35–45%, 5–15%, and 45–55% for KV, SK, and BK currents, respectively. A potential-dependent current carried by Ci ions was also found. This Cl current had inward direction within the range of potentials below the chloride equilibrium potential (E Cl) and outward direction above theE Cl. The magnitude of Cl current was significantly lower than the magnitude of total K+ current.  相似文献   

13.
In the present study, the whole-cell voltage clamp technique was used in order to record the T- and L-type Ca2+ currents in single heart cells of newborn and young normal and hereditary cardiomyopathic hamsters. Our results showed that the I/V relationship curve as well as the kinetics of the L-type Ca2+ currents (ICa(L)) in both normal and cardiomyopathic heart cells were the same. However, the proportion of myocytes from normal heart hamster that showed L-type ICa was less than that of heart cells from cardiomyopathic hamster. The I/V relationship curve of the T-type ICa (ICa(T)) was the same in myocytes of both normal and cardiomyopathic hamsters. The main differences between ICa(T) of cardiomyopathic and normal hamster are a larger window current and the proportion of ventricular myocytes that showed this type of current in cardiomyopathic hamster. The high density of ICa(T) as well as the large window current and proportion of myocytes showing ICa(T) may explain in part Ca2+ overload observed in cardiomyopathic heart cells of the hamster.  相似文献   

14.
Summary We examined the variability of occurrence and frequency of voltage-dependent whole-cell currents in human peripheral blood monocyte-derived macrophages (HMDM) maintained in culture for up to three weeks. An increase in cell capacitance from an average value of 9 pF on the day of isolation to 117 pF at 14 days accompanied growth and differentiation in culture. The average resting potential was approximately –34 mV for cells beyond two days in culture. Cells exhibited a voltage-and time-dependent outward current upon membrane depolarization above approximately –30 mV, which appeared to be composed of a number of separate currents with variable expression from donor to donor. Three of these currents are carried by K+. The frequency of each outward current type was calculated for 974 cells obtained from 36 donors. The HMDMs in these studies exhibited two 4-aminopyridine (4-AP) sensitive, time-dependent outward currents (I A andI B ) that could be differentiated on the basis of the presence or absence of steady-state inactivation in the physiological potential range, time course of inactivation during maintained depolarization, as well as threshold of activation. The 4-AP-insensitive outward current activated at approximately 10 mV. One component of the 4-AP insensitive-outward current (I C ) could be blocked by external TEA and by the exchange of internal Cs+ or Na+ for K+. The probability of observingI B andI C appeared to be donor dependent. Following total replacement of internal K+ with Cs+, two additional currents could be identified (i) a delayed component of outward current (I D ) remained which could be blocked by low concentrations of external Zn2+ (4 m) and was insensitive to anion replacement in the external solution and (ii) a Cl current with a reversal potential which shifted in the presence of external anion replacement and which was irreversibly inhibited by the stilbene SITS. The activation of a prominent time-independent inward currents was often observed with increasing hyperpolarization. This inward current was blocked by external Ba2+ and corresponded to the inwardly rectifying K+ current. Neither inward nor outward current expression appeared dependent on whether cells were differentiated in adherent or suspension culture nor was there demonstrable differential current expression observed upon transition from suspension to adherent form.  相似文献   

15.
Xenopus oocytes were injected with total RNA from chicory leaf tissues and then examined by the voltage-clamp technique. A double-step voltage protocol was used, with an initial hyperpolarization step from the holding potential of −35 to −140 mV followed by a second depolarization step to +60 mV. Two different outward currents were observed, one noninactivating (I ni ), and one inactivating (I i ). Only the noninactivating outward current (I ni ) could be induced by depolarization from −35 to +60 mV. The mean amplitude of I ni was 2915 ± 848 nA (n= 11). This current, carried by chloride ions, declined nearly to the baseline in 153 ± 64 sec (n= 13), and was highly dependent on intracellular calcium. After the rundown of I ni , the same oocyte was depolarized from −140 to +60 mV. This protocol induced an inactivating outward current (I i ) with a mean amplitude of 4461 ± 1605 nA (n= 13). I i was also carried by chloride ions and dependent on extracellular calcium. I i was strongly inhibited by 100 μm extracellular La3+. These two types of chloride currents were also observed after IP3 injection in control oocytes. I ni and I i were not observed in noninjected oocytes or water-injected oocytes. We suggest that the expression of total chicory leaf tissue RNA in Xenopus oocytes reveals a calcium homeostasis mechanism responsible for calcium mobilization from internal stores and subsequent calcium entry. Received: 22 May 1998/Revised: 2 October 1998  相似文献   

16.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

17.
V. A. Bouryi 《Neurophysiology》1998,30(4-5):301-304
Barium currents through ion channels formed by α1-subunit of L-type Ca2+ channel (I α1) were recorded from cultured chinese hamster ovary (CHO) cells. The cells were stably transfected with either a cardiac or a smooth muscle (SM) variant of α1-subunit. TheI α1 in both cases exhibited similar fast voltage-dependent activation kinetics and slow apparent inactivation kinetics. With 10 mM Ba2+ in the bath solution,I α1 was activated at potentials more positive than −40 mV, peaked between 0 and +10 mV, and reversed at about +50 mV. In addition to slow apparent inactivation of inward current, both subunits provided an extremely slow voltage-dependent inactivation at potentials more positive than −100 mV, with half-maximum inactivation at −43.4 mV for cardiac and −41.4 mV for SM α1-subunits. The onset of inactivation as well as recovery from this process were within a time range of minutes. The voltage dependence of steady-state inactivation could be fitted by the sum of two Boltzmann's equations with slope factors of about 12 mV and 5 mV. A less sloped component has its midpoints at −75.6 and −63.7 mV, and a steeper component has its midpoints at −42.8 and −37.7 mV for cardiac and SM α1-subunits, respectively. Relative contribution of the steeper component was higher in both subunits (0.86 and 0.66 for cardiac and SM subunits, respectively). For comparison, the inactivation curves for 5-sec-long conditioning prepulses could be fitted by single Boltzmann's distribution with a 20 mV more positive midpoint and a slope factor of about 13 mV. In contrast to the steady-state inactivation curves, they showed considerable overlap with the steady-state activation curve. Our results reflect functional consequences of known sequence differences between α1-subunits of the cardiac and SM L-type Ca2+ channels and could be used in structural modeling of Ca2+ channel gating. In addition, they show that depolarization-induced window current has a transient nature and decays with the development of extremely slow inactivation. This is the first demonstration that slow inactivation of the L-type Ca2+ channel is an intrinsic property of its α1-subunits.  相似文献   

18.
Quantitative time-resolved measurements of cytosolic Ca2+ release by photolysis of caged InsP3 have been made in single rat submandibular cells using patch clamp whole-cell recording to measure the Ca2+-activated Cl and K+ currents. Photolytic release of InsP3 from caged InsP3 at 100 Joules caused transient inward (VH = 60 mV) and outward (VH = 0 mV) currents, which were nearly symmetric in their time course. The inward current was reduced when pipette Cl concentration was decreased, and the outward current was suppressed by K+ channel blockers, indicating that they were carried by Cl and K+, respectively. Intracellular pre-loading of the InsP3 receptor antagonist heparin or the Ca2+ chelator EGTA clearly prevented both inward and outward currents, indicating that activation of Ca2+-dependent Cl and K+ currents underlies the inward and the outward currents. At low flash intensities, InsP3 caused Ca2+ release which normally activated the K+ and Cl currents in a mono-transient manner. At higher intensities, however, InsP3 induced an additional delayed outward K+ current (IK(delay)). IK(delay) was independent of the initial K+ current, independent of extracellular Ca2+, inhibited by TEA, and gradually prolongated by repeated flashes. The photolytic release of Ca2+ from caged Ca2+ did not mimic the IK(delay). It is suggested that Ca2+ releases from the InsP3-sensitive pools in an InsP3 concentration-dependent manner. Low concentrations of InsP3 induce the transient Ca2+-dependent Cl and K+ currents, which reflects the local Ca2+ release, whereas high concentrations of InsP3 induce a delayed Ca2+-dependent K+ current, which may reflect the Ca2+ wave propagation. J. Cell. Physiol. 174:387–397, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
We investigated the effects of pressure overload hypertrophy on inward sodium (I Na) and calcium currents (I Ca) in single left ventricular myocytes to determine whether changes in these current systems could account for the observed prolongation of the action potential. Hypertrophy was induced by pressure overload caused by banding of the abdominal aorta. Whole-cell patch clamp experiments were used to measure tetrodotoxin (TTX)-sensitive inward currents. The main findings were that I Ca density was unchanged whereas I Na density after stepping from –80 to –30 mV was decreased by 30% (–9.0 ± 1.16 pA pF–1 in control and –6.31 ± 0.67 pA pF–1 in hypertrophy, p < 0.05, n= 6). Steady-state activation/inactivation variables of I Na, determined by using double-pulse protocols, were similar in control and hypertrophied myocytes, whereas the time course of fast inactivation of I Na was slowed (p < 0.05) in hypertrophied myocytes. In addition, action potential clamp experiments were carried out in the absence and presence of TTX under conditions where only Ca2+ was likely to enter the cell via TTX-sensitive channels. We show for the first time that a TTX-sensitive inward current was present during the plateau phase of the action potential in hypertrophied but not control myocytes. The observed decrease in I Na density is likely to abbreviate rather than prolong the action potential. Delayed fast inactivation of Na+ channels was not sustained throughout the voltage pulse and may therefore merely counteract the effect of decreased I Na density so that net Na+ influx remains unaltered. Changes in the fast I Na do not therefore appear to contribute to lengthening of the action potential in this model of hypertrophy. However, the presence of a TTX-sensitive current during the plateau could potentially contribute to the prolongation of the action potential in hypertrophied cardiac muscle. (Mol Cell Biochem 261: 217–226, 2004)  相似文献   

20.
The Ca2+-conducting pathway of myocytes isolated from the cricket lateral oviduct was investigated by means of the whole-cell patch clamp technique. In voltage-clamp configuration, two types of whole cell inward currents were identified. One was voltage-dependent, initially activated at –40 mV and reaching a maximum at 10 mV with the use of 140 mM Cs2+-aspartate in the patch pipette and normal saline in the bath solution. Replacement of the external Ca2+ with Ba2+ slowed the current decay. Increasing the external Ca2+ or Ba2+ concentration increased the amplitude of the inward current and the current–voltage (I–V) relationship was shifted as expected from a screening effect on negative surface charges. The inward current could be carried by Na+ in the absence of extracellular Ca2+. Current carried by Na+ (I Na) was almost completely blocked by the dihydropyridine Ca2+ channel antagonist, nifedipine, suggesting that the I Na is through voltage-dependent L-type Ca2+ channels. The other inward current is voltage-independent and its I–V relationship was linear between –100 mV to 0 mV with a slight inward rectification at more hyperpolarizing membrane potentials when 140 mM Cs+-aspartate and 140 mM Na+-gluconate were used in the patch pipette and in the bath solution, respectively. A similar current was observed even when the external Na+ was replaced with an equimolar amount of K+ or Cs+, or 50 mM Ca2+ or Ba2+. When the osmolarity of the bath solution was reduced by removing mannitol from the bath solution, the inward current became larger at negative potentials. The I–V relationship for the current evoked by the hypotonic solution also showed a linear relationship between –100 mV to 0 mV. Bath application of Gd3+ (10 M) decreased the inward current activated by membrane hyperpolarization. These results clearly indicate that the majority of current activated by a membrane hyperpolarization is through a stretch-activated Ca2+-permeable nonselective cation channel (NSCC). Here, for the first time, we have identified voltage-dependent L-type Ca2+ channel and stretch-activated Ca2+-permeable NSCCs from enzymatically isolated muscle cells of the cricket using the whole-cell patch clamp recording technique.Abbreviations I Ca Ca2+ current - I Na Na+ current - I–V current–voltage - NSCC nonselective cation channel Communicated by G. Heldmaier  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号