首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
Shukla S  Rai V  Banerjee D  Prasad R 《Biochemistry》2006,45(7):2425-2435
Candida drug resistance protein 1 (Cdr1p), an ATP-dependent drug efflux pump, confers multidrug resistance in immunocompromised and debilitated patients. A member of the ATP-binding cassette (ABC) superfamily of membrane transporters, Cdr1p contains two nucleotide binding/utilization sites (NBDs) and two transmembrane domains (TMDs). We had earlier characterized Cdr1p by its overexpression as a GFP-tagged fusion protein that elicits oligomycin-sensitive ATPase activity and is linked to drug extrusion. However, it is essential to have highly purified Cdr1p to understand the detailed molecular basis of structure and functions of this protein. In this study, we have developed a two-step purification protocol using stably overexpressed His-tagged Cdr1p in Saccharomyces cerevisiae. Purified Cdr1p exhibited divalent cation-dependent ATPase activity [approximately 1.2 micromol (mg of protein)(-)(1) min(-)(1)] with an apparent K(M) in the range of 1.8 to 2.1 mM and V(max) between 1.0 and 1.4 micromol (mg of protein)(-)(1) min(-)(1). Unlike its close homologue human P-gp/MDR1, purified Cdr1p only moderately displayed drug stimulated ATPase activity. By exploiting intrinsic fluorescence intensity of purified Cdr1p, which contains 24 tryptophan residues, we could monitor defined conformational changes upon substrate drug and ATP binding. It is observed that ATP binding to Cdr1p (K(d) = approximately 1.7 mM) is not a prerequisite for drug binding, and both the mechanisms of drug as well as ATP binding, which induce specific conformational changes, occur independent of each other. Our study for the first time provides a catalytically active purified ABC transporter from a fungal pathogen, which is amenable to fluorescence measurements and thus would be useful in understanding the molecular basis of antifungal transport.  相似文献   

2.
Herein, we discuss the role of the native cysteines present in a major multidrug ABC transporter of Candida albicans, Cdr1p, and describe the construction of this transporter's functional cysteine-less (cysless) protein version for cross-linking studies. In the experiments in which all 23 cysteines were replaced individually, we observed that most of the cysteine replacements were tolerated by the protein, but the replacement of C1056, C1091, C1106, C1294 or C1336 resulted in an enhanced drug susceptibility together with an abrogated drug efflux. Notably, the ATPase activity was uncoupled, which largely remained unaffected in these variants. The substitution of the critical cysteines with serines restored the normal expression and functionality of Cdr1p because serine can effectively mimic the hydrogen bonding properties of cysteine. Finally, we constructed a functional cysless His-tagged Cdr1p in which all the cysteines of the native protein were replaced with alanines and the critical cysteines were replaced with serines. Notably, cysless GFP-tagged variant of Cdr1p was non-functional. The cysless His-tagged variant of Cdr1p is the first example of a cysless ABC transporter in yeast, and it will lead to a greater understanding of the architecture of this important protein and provide insight into the nature of drug binding and interdomain communication.  相似文献   

3.
Drug-resistant pathogenic fungi use several families of membrane-embedded transporters to efflux antifungal drugs from the cells. The efflux pump Cdr1 (Candida drug resistance 1) belongs to the ATP-binding cassette (ABC) superfamily of transporters. Cdr1 is one of the most predominant mechanisms of multidrug resistance in azole-resistant (AR) clinical isolates of Candida albicans. Blocking drug efflux represents an attractive approach to combat the multidrug resistance of this opportunistic human pathogen. In this study, we rationally designed and synthesized transmembrane peptide mimics (TMPMs) of Cdr1 protein (Cdr1p) that correspond to each of the 12 transmembrane helices (TMHs) of the two transmembrane domains of the protein to target the primary structure of the Cdr1p. Several FITC-tagged TMPMs specifically bound to Cdr1p and blocked the efflux of entrapped fluorescent dyes from the AR (Gu5) isolate. These TMPMs did not affect the efflux of entrapped fluorescent dye from cells expressing the Cdr1p homologue Cdr2p or from cells expressing a non-ABC transporter Mdr1p. Notably, the time correlation of single photon counting fluorescence measurements confirmed the specific interaction of FITC-tagged TMPMs with their respective TMH. By using mutant variants of Cdr1p, we show that these TMPM antagonists contain the structural information necessary to target their respective TMHs of Cdr1p and specific binding sites that mediate the interactions between the mimics and its respective helix. Additionally, TMPMs that were devoid of any demonstrable hemolytic, cytotoxic, and antifungal activities chemosensitize AR clinical isolates and demonstrate synergy with drugs that further improved the therapeutic potential of fluconazole in vivo.  相似文献   

4.
To find novel drugs for effective antifungal therapy in candidiasis, we examined disulfiram, a drug used for the treatment of alcoholism, for its role as a potential modulator of Candida multidrug transporter Cdr1p. We show that disulfiram inhibits the oligomycin-sensitive ATPase activity of Cdr1p and 2.5mM dithiothreitol reverses this inhibition. Disulfiram inhibited the binding of photoaffinity analogs of both ATP ([alpha-(32)P]8-azidoATP; IC(50)=0.76 microM) and drug-substrates ([(3)H]azidopine and [(125)I]iodoarylazidoprazosin; IC(50) approximately 12 microM) to Cdr1p in a concentration-dependent manner, suggesting that it can interact with both ATP and substrate-binding site(s) of Cdr1p. Furthermore, a non-toxic concentration of disulfiram (1 microM) increased the sensitivity of Cdr1p expressing Saccharomyces cerevisiae cells to antifungal agents (fluconazole, miconazole, nystatin, and cycloheximide). Collectively these results demonstrate that disulfiram reverses Cdr1p-mediated drug resistance by interaction with both ATP and substrate-binding sites of the transporter and may be useful for antifungal therapy.  相似文献   

5.
Multidrug resistance-associated protein (MRP1) may function as a floppase in human red blood cells to translocate phosphatidylserine and/or phosphatidylcholine from inner membrane leaflet to outer leaflet. Here we report that the purified and reconstituted MRP1 protein into asolectin proteoliposomes is mainly in an inside-out configuration and possesses the ability to flop a fluorescent labeled phosphatidylcholine (NBD-PC) from outer leaflet (protoplasmic) to inner leaflet (extracytoplasmic). The reconstituted MRP1 protein retains endogenous ATPase activity. ATP hydrolysis is required for the flopping since removal of ATP and/or Mg2+ inhibits the translocation of NBD-PC. Further evidence to support this conclusion is that the translocation of NBD-PC is inhibited by vanadate, which traps ATP hydrolysis product ADP in the nucleotide binding domains. In addition, the translocation of NBD-PC by proteoliposomes containing MRP1 protein is in a glutathione-dependent manner, similar to the process of translocating anticancer drugs such as daunorubicin. verapamil, vincristine, vinblastine, doxorubicin and oxidized glutathione partially inhibited the translocation of NBD-PC, whereas MK 571, an inhibitor of MRP1 protein, inhibited the translocation almost completely. Taken together, the purified and reconstituted MRP1 protein possesses the ability to flop NBD-PC from outer to inner leaflet of the proteoliposomes.  相似文献   

6.
The expression and drug efflux activity of the ATP binding cassette transporters Cdr1p and Pdh1p are thought to have contributed to the recent increase in the number of fungal infections caused by Candida glabrata. The function of these transporters and their pumping characteristics, however, remain ill defined. We have evaluated the function of Cdr1p and Pdh1p through their heterologous hyperexpression in a Saccharomyces cerevisiae strain deleted in seven major drug efflux transporters to minimize the background drug efflux activity. Although both Cdr1p- and Pdh1p-expressing strains CDR1-AD and PDH1-AD acquired multiple resistances to structurally unrelated compounds, CDR1-AD showed, in most cases, higher levels of resistance than PDH1-AD. CDR1-AD also showed greater rhodamine 6G efflux and resistance to pump inhibitors, although plasma membrane fractions had comparable NTPase activities. These results indicate that Cdr1p makes a larger contribution than Phd1p to the reduced susceptibility of C. glabrata to xenobiotics. Both pump proteins were phosphorylated in a glucose-dependent manner. Whereas the phosphorylation of Cdr1p affected its NTPase activity, the protein kinase A-mediated phosphorylation of Pdh1p, which was necessary for drug efflux, did not. This suggests that phosphorylation of Pdh1p may be required for efficient coupling of NTPase activity with drug efflux.  相似文献   

7.
Earlier studies from our laboratories have shown that RLIP76, a previously described Ral-binding GTPase activating protein (Jullien-Flores et al., 1995, J. Biol. Chem. 270: 22473), is identical with the xenobiotic transporter DNP-SG ATPase, and can catalyze ATP-dependent transport of glutathione-conjugates as well as doxorubin (Awasthi et al., 2000, Biochemistry, 39: 9327). We have now reconstituted purified bacterially expressed RLIP76 in proteoliposomes, and have studied ATP-dependent uptake of the glutathione conjugate of 4-hydroxynonenal (GS-HNE) by these vesicles. Results of these studies show that RLIP76 reconstituted in proteoliposomes catalyzes ATP-dependent transport of GS-HNE against a concentration gradient. The transport of GS-HNE is saturable with respect to ATP as well as GS-HNE with K(m) values of 1.4mM and 2.5 microM, respectively. These studies demonstrate that RLIP76 mediates active transport of GS-HNE, and are consistent with our previous work showing that RLIP76-mediated efflux of GS-HNE regulates the intracellular concentration of 4-HNE and thereby affects 4-HNE mediated signaling.  相似文献   

8.
The purified (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B membranes was reconstituted with dimyristoylphosphatidylcholine using a cholate solubilization and dialysis procedure. The incorporation of this enzyme into the phospholipid bilayer is accompanied by an enhancement of its specific activity and by a restoration of its lipid phase state-dependent properties which were lost during solubilization and purification from native membranes. Moreover, reconstitution of this ATPase with phospholipid also stabilizes it against cold inactivation at low temperatures (approximately equal to 0 degrees C), oxidative degradation at room temperature, and thermal denaturation at elevated temperatures (approximately equal to 55 degrees C). The elution profile from a Sepharose 4B-CL column indicates that all of the ATPase protein is associated with the phospholipid vesicles and that the Stoke's radius of the proteoliposomes formed is smaller than that of the lipid vesicles formed in the absence of any protein. The latter conclusion is supported by sedimentation velocity measurements and by an electron microscopic examination of negatively stained preparations. The electron microscopic studies demonstrate that sealed vesicles are formed only at low protein-to-lipid ratios. These observations indicate that the Acholeplasma laidlawii B (Na+ + Mg2+)-ATPase has been structurally and functionally reconstituted into lipid vesicles and that the proteoliposomes formed are amenable to studies aimed at the clarification of its proposed role as a sodium ion pump.  相似文献   

9.
Rai V  Gaur M  Shukla S  Shukla S  Ambudkar SV  Komath SS  Prasad R 《Biochemistry》2006,45(49):14726-14739
The Walker A and B motifs of nucleotide binding domains (NBDs) of Cdr1p though almost identical to all ABC transporters, has unique substitutions. We have shown in the past that Trp326 of Walker B and Cys193 of Walker A motifs of N-terminal NBD of Cdr1p have distinct roles in ATP binding and hydrolysis, respectively. In the present study, we have examined the role of a well conserved Asp327 in the Walker B motif of the N-terminal NBD, which is preceded (Trp326) and followed (Asn328) by atypical amino acid substitutions and compared it with its equivalent well conserved Asp1026 of the C-terminal NBD of Cdr1p. We observed that the removal of the negative charge by D327N, D327A, D1026N, D1026A, and D327N/D1026N substitutions, resulted in Cdr1p mutant variants that were severely impaired in ATPase activity and drug efflux. Importantly, all of the mutant variants showed characteristics similar to those of the wild type with respect to cell surface expression and photoaffinity drug analogue [125I] IAAP and [3H] azidopine labeling. Although the Cdr1p D327N mutant variant showed comparable binding with [alpha-32P] 8-azido ATP, Cdr1p D1026N and Cdr1p D327N/D1026N mutant variants were crippled in nucleotide binding. That the two conserved carboxylate residues Asp327 and Asp1026 are functionally different was further evident from the pH profile of ATPase activity. The Cdr1p D327N mutant variant showed approximately 40% enhancement of its residual ATPase activity at acidic pH, whereas no such pH effect was seen with the Cdr1p D1026N mutant variant. Our experimental data suggest that Asp327 of N-terminal NBD has acquired a new role to act as a catalytic base in ATP hydrolysis, a role normally conserved for Glu present adjacent to the conserved Asp in the Walker B motif of all the non-fungal transporters.  相似文献   

10.
The Candida drug resistance protein Cdr1p (approximately 170 kDa) is a member of ATP binding cassette (ABC) superfamily of drug transporters, characterized by the presence of 2 nucleotide binding domains (NBD) and 12 transmembrane segments (TMS). NBDs of these transporters are the hub of ATP hydrolysis activity, and their sequence contains a conserved Walker A motif (GxxGxGKS/T). Mutations of the lysine residue within this motif abrogate the ability of NBDs to hydrolyze ATP. Interestingly, the sequence alignments of Cdr1p NBDs with other bacterial and eukaryotic transporters reveal that its N-terminal NBD contains an unusual Walker A sequence (GRPGAGCST), as the invariant lysine is replaced by a cysteine. In an attempt to understand the significance of this uncommon positioning of cysteine within the Walker A motif, we for the first time have purified and characterized the N-terminal NBD (encompassing first N-terminal 512 amino acids) of Cdr1p as well as its C193A mutant protein. The purified NBD-512 protein could exist as an independent functional general ribonucleoside triphosphatase with strong divalent cation dependence. It exhibited ATPase activity with an apparent K(m) in the 0.8-1.0 mM range and V(max) in the range of 147-160 nmol min(-)(1) (mg of protein)(-)(1). NBD-512-associated ATPase activity was also sensitive to inhibitors such as vanadate, azide, and NEM. The Mut-NBD-512 protein (C193A) showed a severe impairment in its ability to hydrolyze ATP (95%); however, no significant effect on ATP (TNP-ATP) binding was observed. Our results show that C193 is critical for N-terminal NBD-mediated ATP hydrolysis and represents a unique feature distinguishing the ATP-dependent functionality of the ABC transporters of fungi from those found in bacteria and other eukaryotes.  相似文献   

11.
In order to ascertain the molecular basis of ATP-mediated drug extrusion by Cdr1p, a multidrug transporter of Candida albicans, we recently have reported that the Walker A motif of the N-terminal nucleotide biding domain (NBD) of this protein contains an uncommon cysteine residue (C193; GXXGXGCS/T) which is indispensable for ATP hydrolysis. This residue is exceptionally conserved in N-terminal NBDs of fungal ABC transporters and hence makes these transporters an evolutionarily divergent group. However, the presence of a conventional lysine residue at a similar position in the Walker A motif of the C-terminal NBD warrants the individual contribution of both the NBDs in the ATP-driven efflux function of such transporters. In this study we have investigated the contribution of this divergent Walker A motif in the context of the full Cdr1p protein under in vivo conditions by swapping these two crucial amino acids (C193K in Walker A motif of N-terminal NBD and K901C in Walker A motif of C-terminal NBD) between the two NBDs. Both the native and the mutant variants of Cdr1p were integrated at the PDR5 locus as GFP-tagged fusion proteins and were hyper-expressed. Our study shows that both C193K- and K901C-expressing cells elicit a severe impairment of Cdr1p's ATPase function. However, both these mutations have distinct phenotypes with respect to other functional parameters such as substrate efflux and drug resistance profiles. In contrast to C193K, K901C mutant cells were substantially hypersensitive to the tested drugs (fluconazole, ansiomycin, miconazole and cycloheximide) and were unable to expel rhodamine 6G. Our results for the first time show that both NBDs influence the Cdr1p function asymmetrically, and that the positioning of the cysteine and lysine residues within the respective Walker A motifs is functionally not interchangeable.  相似文献   

12.
Rush JS  Waechter CJ 《Biochemistry》2004,43(23):7643-7652
Mannosylphosphoryldolichol (Man-P-Dol) is synthesized on the cytosolic leaflet of the rough endoplasmic reticulum (ER), and functions as a mannosyl donor in the biosynthesis of Glc(3)Man(9)GlcNAc(2)-P-P-Dol after being translocated to the lumenal leaflet. An assay, based on the transport of Man-P-citronellol (Man-P-Dol(10)), a water-soluble analogue of Man-P-Dol(95), into sealed microsomal vesicles, has been devised to identify protein(s) (flippases) that could mediate the thermodynamically unfavorable movement of Man-P-Dol between the two leaflets of the ER. To develop a defined system for the systematic investigation of the properties of the Man-P-Dol(10) transporter, and as an initial step toward purification of the protein(s) involved in the transport of Man-P-Dol(10), the activity has been solubilized from rat liver microsomes with n-octyl-beta-D-glucoside and reconstituted into proteoliposomes (approximately 0.1 microm in diameter). The properties of the reconstituted Man-P-Dol(10) transport system are similar to the Man-P-Dol(10) uptake activity in microsomal vesicles from rat liver. Man-P-Dol(10) transport into reconstituted proteoliposomes is time-dependent, reversible, saturable, and stereoselective. The direct role of ER proteins in the functionally reconstituted transport system is supported by the inhibitory effects of trypsin treatment, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), or diethylpyrocarbonate (DEPC). Solubilization and functional reconstitution are shown to provide an experimental approach to the partial purification of the protein(s) mediating the transport process.  相似文献   

13.
Candida drug resistance protein (Cdr1p) is a major drug efflux protein, which plays a key role in commonly encountered clinical azole resistance in Candida albicans. We have analyzed its sequence in several azole resistant clinical isolates to evaluate the allelic variation within CDR1 gene and to relate it to its functional activity. The sequence analysis revealed 53 single nucleotide polymorphisms (SNPs), out of which six were non-synonymous single nucleotide polymorphisms (NS-SNPs) implying a change in amino acid and were found in two or more than two allelic combinations in different sensitive or resistant isolates. We have identified three new NS-SNPs namely, E948P, T950S, and F1399Y, in isolates wherein F1399Y appeared to be unique and was present in one of the naturally occurring azole resistant isolates obtained from Indian diabetic patients. However, site-directed mutagenesis showed that the residue F1399 in between TMS 11 and TMS 12 does not affect the functionality of Cdr1p. Taken together, our SNPs analyses reveal that unlike human P-gp, the naturally acquired allelic variations are mostly present in non-conserved regions of the protein which do not allow Cdr1p to genetically evolve in a manner, that would allow a change in its functionality to affect substrate recognition, specificity, and drug efflux activity of C. albicans cells.  相似文献   

14.
《FEMS yeast research》2005,5(1):63-72
In order to ascertain the molecular basis of ATP-mediated drug extrusion by Cdr1p, a multidrug transporter of Candida albicans, we recently have reported that the Walker A motif of the N-terminal nucleotide biding domain (NBD) of this protein contains an uncommon cysteine residue (C193; GXXGXGCS/T) which is indispensable for ATP hydrolysis. This residue is exceptionally conserved in N-terminal NBDs of fungal ABC transporters and hence makes these transporters an evolutionarily divergent group. However, the presence of a conventional lysine residue at a similar position in the Walker A motif of the C-terminal NBD warrants the individual contribution of both the NBDs in the ATP-driven efflux function of such transporters. In this study we have investigated the contribution of this divergent Walker A motif in the context of the full Cdr1p protein under in vivo conditions by swapping these two crucial amino acids (C193K in Walker A motif of N-terminal NBD and K901C in Walker A motif of C-terminal NBD) between the two NBDs. Both the native and the mutant variants of Cdr1p were integrated at the PDR5 locus as GFP-tagged fusion proteins and were hyper-expressed. Our study shows that both C193K- and K901C-expressing cells elicit a severe impairment of Cdr1p’s ATPase function. However, both these mutations have distinct phenotypes with respect to other functional parameters such as substrate efflux and drug resistance profiles. In contrast to C193K, K901C mutant cells were substantially hypersensitive to the tested drugs (fluconazole, ansiomycin, miconazole and cycloheximide) and were unable to expel rhodamine 6G. Our results for the first time show that both NBDs influence the Cdr1p function asymmetrically, and that the positioning of the cysteine and lysine residues within the respective Walker A motifs is functionally not interchangeable.  相似文献   

15.
The vanadate-sensitive ATPase of Streptococcus faecalis, purified to homogeneity, was reconstituted into soybean phospholipid vesicles in a functional state. Freeze-fracture electron micrographs revealed a relatively uniform population of unilamellar liposomes of 50-100 nm in diameter, with particles protruding from both fracture faces. Transport studies with 42K+ and with a K+-selective electrode showed that the ATP-ase catalyzes electrogenic potassium extrusion in proteoliposomes. The following parameters for potassium transport in the reconstituted system were determined: K+/ATP stoichiometry = 1, Km for potassium = 1.4 mM, Vmax = 0.1 mumol/min/mg. The ATPase could be activated by an electrical membrane potential, vesicle interior positive. This ATPase thus appears to function as a potential regulated, ATP-driven pump that serves in electrogenic potassium accumulation by the bacterial cell.  相似文献   

16.
CaMDR1 encodes a major facilitator superfamily (MFS) protein inCandida albicans whose expression has been linked to azole resistance and which is frequently encountered in this human pathogenic yeast. In this report we have overexpressed CaMdr1p inSf9 insect cells and demonstrated for the first time that it can mediate methotrexate (MTX) and fluconazole (FLC) transport. MTX appeared to be a better substrate for CaMdr1p among these two tested drugs. Due to severe toxicity of these drugs to insect cells, further characterization of CaMdr1p as a drug transporter could not be done with this system. Therefore, as an alternative, CaMdr1p and Cdr1p, which is an ABC protein (ATP binding cassette) also involved in azole resistance inC. albicans, were independently expressed in a common hypersensitive host JG436 ofSaccharomyces cerevisiae. This allowed a better comparison between the functionality of the two export pumps. We observed that while both FLC and MTX are effluxed by CaMdr1p, MTX appeared to be a poor substrate for Cdr1p. JG436 cells expressing Cdr1p thus conferred resistance to other antifungal drugs but remained hypersensitive to MTX. Since MTX is preferentially transported by CaMdr1p, it can be used for studying the function of this MFS protein.  相似文献   

17.
Multidrug resistance may pose a serious problem to antifungal therapy. The Candida albicans Cdr2p is one of two ATP-binding cassette (ABC) transporters mediating antifungal resistance in vivo through increased drug efflux. Echinocandins such as caspofungin represent the newest class of antifungals that target cell wall synthesis. We show here by agar plate resistance assays that cross-resistant clinical isolates of C. albicans display high minimal inhibitory concentrations (MICs) to caspofungin when compared with a sensitive ATCC reference strain. Northern analysis and immunoblotting indicate that these isolates also show high levels of CDR1 and CDR2 expression. To determine a possible contribution of Cdr1p or Cdr2p to caspofungin resistance, we have functionally expressed Cdr1p and Cdr2p in appropriate recipient strains of the yeast Saccharomyces cerevisiae. Yeast cells expressing Cdr1p or Cdr2p exhibit cross-resistance to established antifungal drugs such as azoles and terbinafine. However, Cdr2p and, to a much lesser extent, Cdr1p confer caspofungin hyper-resistance when expressed in yeast. Likewise, Cdr2p confers caspofungin resistance when constitutively overexpressed in a drug-sensitive C. albicans strain. We therefore propose that Cdr2p may contribute to clinical candin resistance. Finally, our data suggest that cross-resistance phenotypes of clinical isolates are the consequence of distinct mechanisms that may operate simultaneously.  相似文献   

18.
The Ca pump was reconstituted from the purified sarcoplasmic reticulum ATPase and excess soybean phospholipids by the freeze-thaw sonication procedure in the presence of cholate. In the absence of Ca precipitating agents, the reconstituted proteoliposomes accumulated Ca2+ at an initial rate of up to 0.7 mumol/mg per min at 25 degrees C, and a value of 1.54 was obtained for the coupling ratio between Ca uptake and Ca2+-dependent ATPase activities. The proteoliposomes were mainly unilamellar vesicles but were heterogeneous with respect to their size. When reconstituted at a lipid/protein ratio of 40, proteoliposomes had a buoyant density of about 1.04 and their average internal volume was 1.4-1.6 microliters/mg of phospholipids. More than 95% of the ATPase was incorporated randomly into these proteoliposomes and the fraction of proteoliposomes that represented about 50% of the total intravesicular isotope space contained right-side-out oriented enzyme. 86Rb efflux from the 86Rb-loaded proteoliposomes was found to be slow even at 25 degrees C. Therefore, the proteoliposomes prepared by the present simple method should be useful for the study of the side-specific interaction of ions such as alkali metal cations with the sarcoplasmic reticulum Ca pump.  相似文献   

19.
Overexpression of NorA, an endogenous efflux transporter of Staphylococcus aureus, confers resistance to certain fluoroquinolone antimicrobials and diverse other substrates. The norA gene was amplified by PCR and cloned in the expression vector pTrcHis2. Histidine-tagged NorA (NorA-His) was overexpressed in Escherichia coli cells to prepare two experimental systems, everted membrane vesicles enriched with NorA-His and proteoliposomes reconstituted with purified NorA-His. In membrane vesicles, NorA-His actively transported Hoechst 33342, a dye that is strongly fluorescent in the membrane but has low fluorescence in an aqueous environment. Transport was activated by the addition of ATP or lactate and reversed by the addition of nigericin, with the addition of K(+)-valinomycin having little effect. Transport of Hoechst 33342 was inhibited competitively by verapamil, a known inhibitor of NorA, and by other NorA substrates, including tetraphenyl phosphonium and the fluoroquinolones norfloxacin and ciprofloxacin. In contrast, sparfloxacin, a fluoroquinolone whose antimicrobial activity is not affected by NorA expression, exhibited noncompetitive inhibition. NorA induction and overexpression yielded 0.5 to 1 mg of a largely homogeneous 40- to 43-kDa protein per liter of culture. NorA-His incorporated into proteoliposomes retained the ability to transport Hoechst 33342 in response to an artificial proton gradient, and transport was blocked by nigericin and verapamil. These data provide the first experimental evidence of NorA functioning as a self-sufficient multidrug transporter.  相似文献   

20.
The fluorescent anion indicator 6-methoxy-N-(3-sulfopropyl)quinolinium was trapped in proteoliposomes reconstituted with purified 32-kDa uncoupling protein and used to detect GDP-sensitive uniports of Cl-, Br-, and I-. Transport of these halide anions was rapid and potential-dependent. F- and nitrate were found to inhibit Cl- uptake competitively, suggesting that these anions are also substrates for transport. This preparation also exhibited H+(OH-) transport, showing that the reconstituted uncoupling protein possesses both halide and H+ transport functions, as is observed in intact brown adipose tissue mitochondria. Cl- transport was inhibited to the residual level observed in liposomes without protein when GDP was present on both sides of the membrane. Cl- transport was inhibited by about 50% when GDP was present only on one side of the membrane. We infer that uncoupling protein reconstitutes into proteoliposomes with a 1:1 ratio of sidedness orientation. The Km values for Cl- uniport were 100 and 65 mM, respectively, in GDP-loaded and non-GDP-loaded vesicles. Participation of the inner membrane anion channel in the observed transport is rendered unlikely by the fact that this carrier is insensitive to GDP. A variety of additional experiments probing for inner membrane anion channel yielded uniformly negative results, confirming the absence of contamination by this protein. Our results therefore demonstrate that the uncoupling protein mediates anion translocation, a function previously reported as lacking in the reconstituted system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号