首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
By applying a double-immunolabeling technique to preembedded tissue preparations, we demonstrated the existence of serotoninergic innervation to neurons containing vasoactive intestinal polypeptide (VIP) in the rat suprachiasmatic nucleus (SCN). Immunoreactivity for serotonin and VIP was revealed by the presence of diaminobenzidine (DAB) reaction products and silver-intensified DAB reaction products, respectively; in a further stage, the silver grains were substituted with gold particles. DAB reaction products were precipitated on the surface of vesicular structures, while gold particles were scattered diffusely throughout the neuroplasma at various densities. Serotoninergic axons were numerous and closely packed together, occasionally forming synaptic junctions with gold-labeled VIP-containing neurons. At these synaptic junctions, small vesicular structures accumulated to form a coat under the presynaptic membrane, and the postsynaptic membrane was lined with a homogeneous accumulation of fine deposits. This postsynaptic apparatus varied in appearance; some parts were flat and thin, while others were of irregular thickness. Serotoninergic fibers also formed synaptic junctions with unidentified neurons, in which postsynaptic membrane specialization was also observable. As VIP-containing neurons are known to be synapsed by somatostatin (SRIH)-containing neurons, their regulation must involve both serotonin and SRIH at least.  相似文献   

2.
Synaptic connections between neurons immunoreactive for arginine vasopressin (AVP) and axon terminals immunoreactive for neuropeptide Y (NPY) were found in the magnocellular part of the paraventricular nucleus (PVN) in the rat hypothalamus. In pre-embedding double immunolabeling, NPY axon terminals labeled with diaminobenzidine (DAB) reaction product established synaptic junctions on the perikarya and neuronal processes of AVP neurons labeled with silver-gold particles. Ultrastructural morphology of the neurons was more suitably preserved by a combination of pre- and post-embedding procedures. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles, and DAB chromogen (immunoreaction product) was located on the surface of the vesicular profiles and on the core. The postsynaptic AVP neurons possessed many large secretory granules labeled with gold particles. At the synaptic junctions, small clear vesicles were accumulated at the presynaptic membrane, and the postsynaptic membrane was coated with a dense accumulation of fine electron dense particles. The perikarya also received synapses made by immuno-negative axon terminals containing many small clear vesicles and a few cored vesicles. These terminals were found more frequently than those containing NPY.  相似文献   

3.
Summary Synaptic connections between neurons immunoreactive for arginine vasopressin (AVP) and axon terminals immunoreactive for neuropeptide Y (NPY) were found in the magnocellular part of the paraventricular nucleus (PVN) in the rat hypothalamus. In pre-embedding double immunolabeling, NPY axon terminals labeled with diamin-obenzidine (DAB) reaction product established synaptic junctions on the perikarya and neuronal processes of AVP neurons labeled with silver-gold particles. Ultrastructural morphology of the neurons was more suitably preserved by a combination of pre- and post-embedding procedures. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles, and DAB chromogen (immunoreaction product) was located on the surface of the vesicular profiles and on the core. The postsynaptic AVP neurons possessed many large secretory granules labeled with gold particles. At the synaptic junctions, small clear vesicles were accumulated at the presynaptic membrane, and the postsynaptic membrane was coated with a dense accumulation of fine electron dense particles. The perikarya also received synapses made by immuno-negative axon terminals containing many small clear vesicles and a few cored vesicles. These terminals were found more frequently than those containing NPY.  相似文献   

4.
Summary Synaptic regulation of arginine vasopressin (AVP)-containing neurons by neuropeptide Y (NPY)-containing monoaminergic neurons was demonstrated in the paraventricular nucleus of the rat hypothalamus. NPY and AVP were immunolabeled in the pre- and the post-embedding procedures, respectively, and monoaminergic fibers were marked by incorporating 5-hydroxydopamine (5-OHDA), a false neurotransmitter. The immunoreaction for NPY was expressed by diaminobenzidine (DAB) chromogen, and that for AVP by gold particles. The DAB chromogen was localized on the surface of the membrane structures, such as vesicles or mitochondria, and on the core of large cored vesicles. Gold particles were located on the core of the secretory granules within the AVP cell bodies and processes. The incorporated 5-OHDA was found as dense cores within small or large vesicular structures. From these data, three types of nerve terminals were discernible: NPY-containing monoaminergic, NPY-containing non-aminergic, and monoaminergic fibers. The AVP cell bodies appeared to have synaptic junctions formed by these nerve terminals as well as by the unlabeled nerve terminals which have small clear vesicles and large cored vesicles. These different types of nerve terminals were frequently observed in a closely apposed position on the same AVP cell bodies. The functional relationships of these three types of neuronal terminals are discussed.  相似文献   

5.
We describe a simple and reliable method for differential immunolabeling of pre- and post-synaptic signal peptides at the ultrastructural level. Hypothalamic tissues of rats, including the suprachiasmatic nucleus, were cut on a Vibratome. Visualization of the immunolabeling of somatostatin (SRIH) and vasoactive intestinal polypeptide (VIP) was performed with avidin-biotin-peroxidase-diaminobenzidine (DAB). The end product of the DAB to VIP was further silver-intensified in a physical processing using silver nitrate, and the silver grains were finally substituted for gold. DAB-labeled SRIH fibers synapse on gold-labeled VIP perikarya and dendrites in the suprachiasmatic nucleus.  相似文献   

6.
Summary A method for demonstration of electron-dense particles within clear synaptic vesicles from various areas of the CNS as well as from neuromuscular junctions of rat is described. Electron-dense granules of 70–250 Å were visible in the center of the synaptic vesicles, or in some cases excentrically situated and bound to the vesicular membrane. Digestion with proteolytic enzymes lead to a negative reaction, whereas treatment with hyaluronidase and neuraminidase, as well as the lipid extraction had no effect. Based on the obtained data, it may be assumed that this method manifests the proteinaceous structures.  相似文献   

7.
A method for demonstration of electron-dense particles within clear synaptic vesicles from various areas of the CNS as well as from neuromuscular junctions of rat is described. Electron-dense granules of 70-250 A were visible in the center of the synaptic vesicles, or in some cases excentrically situated and bound to the vesicular membrane. Digestion with proteolytic enzymes lead to a negative reaction, whereas treatment with hyaluronidase and neuraminidase, as well as the lipid extraction had no effect. Based on the obtained data, it may be assumed that this method manifests the proteinaceous structures.  相似文献   

8.
A longstanding hypothesis is that ion channels are present in the membranes of synaptic vesicles and might affect neurotransmitter release. Here we demonstrate that TRPM7, a member of the transient receptor potential (TRP) ion channel family, resides in the membrane of synaptic vesicles of sympathetic neurons, forms molecular complexes with the synaptic vesicle proteins synapsin I and synaptotagmin I, and directly interacts with synaptic vesicular snapin. In sympathetic neurons, changes in TRPM7 levels and channel activity alter acetylcholine release, as measured by EPSP amplitudes and decay times in postsynaptic neurons. TRPM7 affects EPSP quantal size, an intrinsic property of synaptic vesicle release. Targeted peptide interference of TRPM7's interaction with snapin affects the amplitudes and kinetics of postsynaptic EPSPs. Thus, vesicular TRPM7 channel activity is critical to neurotransmitter release in sympathetic neurons.  相似文献   

9.
The fraction of giant synaptosomes from the r. inferior of the rabbit hippocampus was studied using impregnation with zinc iodide-osmium tetroxide (XIO) reagent and electron microscopy. In this fraction, light and dark synaptosomes were observed. The reaction product was found in the clear-centered synaptic vesicles (200-400 A) as electron-dense structures of different forms and small osmiophilic particles on the vesicular membranes. Dense-cored vesicles and postsynaptic structures were not revealed with ZIO-reagent. The structures revealed with ZIO-reagent in the giant synaptosomes of the hippocampus are supposedly related to stroage of the neurotransmitter-glutamate.  相似文献   

10.
Summary The localization of synapsin I in the rat adrenal medulla was studied using the light- and electronmicroscopic immunohistochemistry. By light microscopy, many dot-like reaction products for synapsin I were recognized to be distributed throughout the medullary tissue. The immunoelectron microscopy clearly revealed that gold particles for synapsin I accumulated in abundance in the nerve terminals forming synapses with the chromaffin cell, while the particles were not localized in the chromaffin cells at all. In the nerve terminal, the gold particles were localized exclusively in the region occupied by synaptic vesicles except for the region just beneath the presynaptic plasma membrane. The synaptic vesicles were frequently linked with the adjacent ones by filamentous structures implicated in synapsin I. It is concluded morphologically that synapsin I is a highly-specific protein for the genuine neuron, and is not detected even in the chromaffin cell which originates from the neural crest.  相似文献   

11.
The localization of synapsin I in the rat adrenal medulla was studied using the light- and electronmicroscopic immunohistochemistry. By light microscopy, many dot-like reaction products for synapsin I were recognized to be distributed throughout the medullary tissue. The immunoelectron microscopy clearly revealed that gold particles for synapsin I accumulated in abundance in the nerve terminals forming synapses with the chromaffin cell, while the particles were not localized in the chromaffin cells at all. In the nerve terminal, the gold particles were localized exclusively in the region occupied by synaptic vesicles except for the region just beneath the presynaptic plasma membrane. The synaptic vesicles were frequently linked with the adjacent ones by filamentous structures implicated in synapsin I. It is concluded morphologically that synapsin I is a highly-specific protein for the genuine neuron, and is not detected even in the chromaffin cell which originates from the neural crest.  相似文献   

12.
Using the electron-microscope technique of Lewis and Shute, we studied the localization of the acetylcholinesterase (AChE) activity in the hypoglossal, facial and spinal-cord motor nuclei of rats. The technique used selectively detects synapses with subsynaptic cisterns (type C synapses) as well as heavy deposits of reaction products in the rough endoplasmic reticulum, in fragments of the nuclear envelope, in some Golgi zones and on parts of the pericaryal plasma membrane, the axolemma and the dendritic membrane. In C synapses, AChE activity was located in the synaptic cleft and on the membrane of presynaptic boutons. Some C synapses exhibited distinct synaptic specialization in the form of multiple 'active zones'. These zones were characterized by dense presynaptic projections, short dilations of the synaptic cleft, and postsynaptic densities localized between the postsynaptic membrane and the outer membrane of the subsynaptic cistern. Within the postsynaptic densities, rows of rod- or channel-like structures were observed. The subsynaptic cisterns were continuous with the positive rough endoplasmic reticulum. The results are discussed in terms of the possible role of C synapses in the regulation of AChE synthesis in postsynaptic cholinergic neurons and/or in the regulation of AChE release into the extracellular space as well as in the establishment of new synaptic contacts.  相似文献   

13.
Summary Using the electron-microscope technique of Lewis and Shute, we studied the localization of the acetylcholinesterase (AChE) activity in the hypoglossal, facial and spinal-cord motor nuclei of rats. The technique used selectively detects synapses with subsynaptic cisterns (type C synapses) as well as heavy deposits of reaction products in the rough endoplasmic reticulum, in fragments of the nuclear envelope, in some Golgi zones and on parts of the pericaryal plasma membrane, the axolemma and the dendritic membrane. In C synapses, AChE activity was located in the synaptie cleft and on the membrane of presynaptic boutons. Some C synapses exhibited distinct synaptic specialization in the form of multiple active zones. These zones were characterized by dense presynaptic projections, short dilations of the synaptic cleft, and postsynaptic densities localized between the postsynaptic membrane and the outer membrane of the subsynaptic cistern. Within the postsynaptic densities, rows of rod- or channel-like structures were observed. The subsynaptic cisterns were continuous with the positive rough endoplasmic reticulum. The results are discussed in terms of the possible role of C synapses in the regulation of AChE synthesis in postsynaptic cholinergic neurons and/or in the regulation of AChE release into the extracellular space as well as in the establishment of new synaptic contacts.In honour of Prof. P. van Duijn  相似文献   

14.
Synapses are highly specialized structures designed to guarantee precise and efficient communication between neurons and their target cells. Molecules of the extracellular matrix have an instructive role in the formation of the neuromuscular junction, the best-characterized synapse. In this review, the molecular mechanisms underlying these instructive signals will be discussed with particular emphasis on the receptors involved. Additionally, recent evidence for the involvement of specific adhesion complexes in the formation and modulation of synapses in the central nervous system will be reviewed. Synapses are specialized junctions between neurons and their target cells where information is transferred from the pre- to the postsynaptic cell. At most vertebrate synapses, this transfer is accomplished by the release of a specific neurotransmitter from the presynaptic nerve terminal. The release of neurotransmitter is initiated by the action potential and the subsequent influx of Ca(2+) into the presynaptic nerve terminal. This results in the rapid fusion of vesicles with the nerve membrane and the release of the neurotransmitter into the synaptic cleft. The neurotransmitter then diffuses across the cleft and binds to specific postsynaptic receptors, resulting in a change in the membrane potential of the postsynaptic cell. This can result in the generation of an action potential. The high precision of synaptic transmission requires that pre- and postsynaptic structures are both highly organized and in juxtaposition to each other. In addition, alterations in synaptic transmission are the basis of learning and memory and are likely to be accompanied by the remodeling of synaptic structures (Toni et al., 1999). Thus, the study of how synapses are formed during development is also of relevance for the understanding of the cellular and molecular processes involved in learning and memory. This review focuses on the molecular mechanisms involved in the formation and the function of synapses.  相似文献   

15.
An improved gold-substituted silver intensification procedure for the peroxidase-diaminobenzidine (DAB) reaction product was developed. The method was applied in the rat medial preoptic area to label tyrosine hydroxylase (TH)-immunoreactive profiles. Following the gold toning, the same sections were immunostained for glutamic acid decarboxylase (GAD) immunoreactivity with non-intensified peroxidase-DAB. Single DAB-labeled GAD axons were found in symmetric synaptic connection with unlabeled dendrites as well as with gold-toned immunoperoxidase-containing TH neurons.  相似文献   

16.
The afferent synapse of cochlear hair cells   总被引:8,自引:0,他引:8  
Mechanosensory hair cells of the cochlea must serve as both transducers and presynaptic terminals, precisely releasing neurotransmitter to encode acoustic signals for the postsynaptic afferent neuron. Remarkably, each inner hair cell serves as the sole input for 10-30 individual afferent neurons, which requires extraordinary precision and reliability from the synaptic ribbons that marshal vesicular release onto each afferent. Recent studies of hair cell membrane capacitance and postsynaptic currents suggest that the synaptic ribbon may operate by simultaneous multi-vesicular release. This mechanism could serve to ensure the accurate timing of transmission, and further challenges our understanding of this synaptic nano-machine.  相似文献   

17.
Chemical synapses are specialist points of contact between two neurons, where information transfer takes place. Communication occurs through the release of neurotransmitter substances from small synaptic vesicles in the presynaptic terminal, which fuse with the presynaptic plasma membrane in response to neuronal stimulation. However, as neurons in the central nervous system typically only possess ~200 vesicles, high levels of release would quickly lead to a depletion in the number of vesicles, as well as leading to an increase in the area of the presynaptic plasma membrane (and possible misalignment with postsynaptic structures). Hence, synaptic vesicle fusion is tightly coupled to a local recycling of synaptic vesicles. For a long time, however, the exact molecular mechanisms coupling fusion and subsequent recycling remained unclear. Recent work now indicates a unique role for the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)), acting together with the vesicular protein synaptotagmin, in coupling these two processes. In this work, we review the evidence for such a mechanism and discuss both the possible advantages and disadvantages for vesicle recycling (and hence signal transduction) in the nervous system. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

18.
Chemical synapses are specialist points of contact between two neurons, where information transfer takes place. Communication occurs through the release of neurotransmitter substances from small synaptic vesicles in the presynaptic terminal, which fuse with the presynaptic plasma membrane in response to neuronal stimulation. However, as neurons in the central nervous system typically only possess ~ 200 vesicles, high levels of release would quickly lead to a depletion in the number of vesicles, as well as leading to an increase in the area of the presynaptic plasma membrane (and possible misalignment with postsynaptic structures). Hence, synaptic vesicle fusion is tightly coupled to a local recycling of synaptic vesicles. For a long time, however, the exact molecular mechanisms coupling fusion and subsequent recycling remained unclear. Recent work now indicates a unique role for the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2), acting together with the vesicular protein synaptotagmin, in coupling these two processes. In this work, we review the evidence for such a mechanism and discuss both the possible advantages and disadvantages for vesicle recycling (and hence signal transduction) in the nervous system. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

19.
Chemical synapses are asymmetric cell junctions that mediate communication between neurons. Multidomain scaffolding proteins of the Shank family act as major organizing elements of the "postsynaptic density"--that is, the cytoskeletal protein matrix associated with the postsynaptic membrane. A recent study has shown that the C-terminal sterile alpha-motif or "SAM domain" of Shank3 (also known as ProSAP2) can form two-dimensional sheets of helical fibers. Assembly and packaging of these fibers are markedly enhanced by the presence of Zn2+ ions. Zn2+ can be released together with glutamate from synaptic vesicles and can enter the postsynaptic cell through specific ionotropic receptors. Based on these observations, we propose a new model of synaptic plasticity in which Zn2+ influx directly and instantly modulates the structure and function of the postsynaptic density.  相似文献   

20.
Regulation of gap junction coupling in the developing neocortex   总被引:4,自引:0,他引:4  
In the developing mammalian, neocortex gap junctions represent a transient, metabolic, and electrical communication system. These gap junctions may play a crucial role during the formation and refinement of neocortical synaptic circuitries. This article focuses on two major points. First, the influence of gap junctions on electrotonic cell properties will be considered. Both the time-course and the amplitude of synaptic potentials depend,inter alia, on the integration capabilities of the postsynaptic neurons. These capabilities are, to a considerable extent, determined by the electrotonic characteristics of the postsynaptic cell. As a consequence, the efficacy of chemical synaptic inputs may be crucially affected by the presence of gap junctions. The second major topic is the regulation of gap junctional communication by neurotransmitters via second messenger pathways. The monoaminergic neuromodulators dopamine, nordrenaline, and serotonin reduce gap junction coupling via activation of two different intracellular signaling cascades—the cAMP/protein kinase A pathway and the IP3/Ca2+/protein kinase C pathway, 013 respectively. In addition, gap junctional communication seems to be modulated by the nitric oxide (NO)/cGMP system. Since NO production can be stimulated by glutamate-induced calcium influx, the NO/cGMP-dependent modulation of gap junctions might represent a functional link between developing glutamatergic synaptic transmission and the gap junctional network. Thus, it might be of particular importance in view of a role of gap junctions during the process of circuit formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号