首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CPI-17 is a phosphorylation-dependent inhibitor of myosin phosphatase. cDNA clones encoding CPI-17 were isolated from a human aorta library. Overlapping clones indicated two isoforms: CPI-17alpha was 147 residues and mass of 16.7 kDa; CPI-17beta (120 residues, mass 13.5 kDa) resulted from a deletion in the alpha-isoform of 27 residues, sequence 68-94. N-terminal 67 residues of all CPI-17 isoforms (human, porcine, rat and mouse) were highly conserved (for the human and porcine isoforms the identity was 91%). The presence of the two human isoforms was detected from cDNA sequences amplified by RT-PCR and by Western blots on human aorta. The cloned human CPI-17 gene indicated 4 coding exons and CPI-17beta was an alternative splice variant due to deletion of the second exon. FISH analysis located the human CPI-17 gene on chromosome 19q13.1.  相似文献   

2.
CPI-17 is a phosphorylation-dependent inhibitory protein for smooth muscle myosin phosphate. Phosphorylation at Thr(38), in vitro, by protein kinase C or Rho-kinase enhances the inhibitory potency toward myosin phosphatase. Phosphorylation of CPI-17 by protein kinase N (PKN), a fatty acid- and Rho-activated serine/threonine kinase, and its effect on smooth muscle myosin phosphatase activity were investigated. CPI-17 was phosphorylated by GST-PKN-CAT, a constitutively active GST-fusion fragment of PKN, to 1.46 mol of P/mol of CPI-17, in vitro. The K(m) value of CPI-17 for PKN was 0.96 microM. Phosphorylation of PKN dramatically increased the inhibitory effect of CPI-17 on myosin phosphatase activity. The major and inhibitory phosphorylation site was identified as Thr(38) using a point mutant of CPI-17 and a phosphorylation-state specific antibody. Thus, CPI-17 is a substrate of PKN and might be involved in the Ca(2+) sensitization of smooth muscle contraction as a downstream effector of Rho and/or arachidonic acid.  相似文献   

3.
Myosin light chain phosphatase (MLCP) plays a pivotal role in smooth muscle contraction by regulating Ca(2+) sensitivity of myosin light chain phosphorylation. A smooth muscle phosphoprotein called CPI-17 specifically and potently inhibits MLCP in vitro and in situ and is activated when phosphorylated at Thr-38, which increases its inhibitory potency 1000-fold. We produced a phosphospecific antibody for this site in CPI-17 and used it to study in situ phosphorylation of endogenous CPI-17 in arterial smooth muscle in response to agonist stimulation. In the intact femoral artery, CPI-17 phosphorylation was negligible at the resting state and was not increased during contraction induced by K(+) depolarization. The Ca(2+)-sensitizing agonists histamine and phenylephrine induced nearly equivalent contractions, but histamine generated significantly higher levels of CPI-17 phosphorylation. In alpha-toxin-permeabilized strips at pCa 6.7, contractile force and CPI-17 phosphorylation were proportional in response to histamine, guanosine 5'-O-(gamma-thiotriphosphate), and histamine plus guanyl-5'-yl thiophosphate, implying that histamine increased CPI-17 phosphorylation through activation of G proteins. Inhibitors of Rho-kinase (Y27632) and protein kinase C (PKC; GF109203X) reduced contraction and CPI-17 phosphorylation in parallel, suggesting that CPI-17 functions downstream of Rho kinases and PKC. The results show that agonists such as histamine signal through phosphorylation of CPI-17 to produce Ca(2+) sensitization of smooth muscle contraction.  相似文献   

4.
Phosphorylation of CPI-17 and PHI-1 by the MYPT1-associated kinase (M110 kinase) was investigated. M110 kinase is a recently identified serine/threonine kinase with a catalytic domain that is homologous to that of ZIP kinase (ZIPK. GST-rN-ZIPK, a constitutively active GST fusion fragment, phosphorylates CPI-17 (but not PHI-1) to a stoichiometry of 1.7 mol/mol. Phosphoamino acid analysis revealed phosphorylation of both Ser and Thr residues. Phosphorylation sites in CPI-17 were identified as Thr 38 and Ser 12 using Edman sequencing with (32)P release and a point mutant of Thr 38.  相似文献   

5.
Protein kinase C-potentiated phosphatase inhibitor of 17 kDa (CPI-17) mediates some agonist-induced smooth muscle contraction by suppressing the myosin phosphatase in a phosphorylation-dependent manner. The physiologically relevant kinases that phosphorylate CPI-17 remain to be identified. Several previous studies have shown that some agonist-induced CPI-17 phosphorylation in smooth muscle tissues was attenuated by the Rho kinase (ROCK) inhibitor Y-27632, suggesting that ROCK is involved in agonist-induced CPI-17 phosphorylation. However, Y-27632 has recently been found to inhibit protein kinase C (PKC)-, a well-recognized CPI-17 kinase. Thus the role of ROCK in agonist-induced CPI-17 phosphorylation remains uncertain. The present study was designed to address this important issue. We selectively activated the RhoA pathway using inducible adenovirus-mediated expression of a constitutively active mutant RhoA (V14RhoA) in primary cultured rabbit aortic vascular smooth muscle cells (VSMCs). V14RhoA caused expression level-dependent CPI-17 phosphorylation at Thr38 as well as myosin phosphatase phosphorylation at Thr853. Importantly, we have shown that V14RhoA-induced CPI-17 phosphorylation was not affected by the PKC inhibitor GF109203X but was abolished by Y-27632, suggesting that ROCK but not PKC was involved. Furthermore, we have shown that the contractile agonists thrombin and U-46619 induced CPI-17 phosphorylation in VSMCs. Similarly to V14RhoA-induced CPI-17 phosphorylation, thrombin-induced CPI-17 phosphorylation was not affected by inhibition of PKC with GF109203X, but it was blocked by inhibition of RhoA with adenovirus-mediated expression of exoenzyme C3 as well as by Y-27632. Taken together, our present data provide the first clear evidence indicating that ROCK is responsible for thrombin- and U-46619-induced CPI-17 phosphorylation in primary cultured VSMCs. protein kinase C; signal transduction; adenovirus  相似文献   

6.
Phosphatase holoenzyme inhibitor (PHI)-1 is one of the newest members of the family of protein phosphatase inhibitor proteins. In isolated enzyme systems, several kinases, including PKC and rho kinase (ROCK), have been shown to phosphorylate PHI-1. However, it is largely unknown whether PHI-1 is phosphorylated in response to agonist stimulation in intact cells. We investigated this question in primary cultured rat aortic vascular smooth muscle cells (VSMCs). Using two-dimensional polyacrylamide gel electrophoresis and immunoblot, we found that there are two major PHI-1 spots under resting conditions: a minor spot with an acidic isoelectric point (pI) and a major spot with a more alkaline pI. Interestingly, U-46619, a G protein-coupled receptor agonist, caused a significant increase in the acidic spot, suggesting that it may represent a phosphorylated form of PHI-1. This was confirmed by phosphatase treatment and by a specific phospho-PHI-1 antibody. Furthermore, we found that angiotensin II, thrombin, and U-46619 increased phosphorylated PHI-1 from 9% of total PHI-1 in resting cells to 18%, 18%, and 30%, respectively. We also found that inhibition of ROCK by Y-27632 or H-1152 selectively diminished U-46619-induced CPI-17 phosphorylation, whereas it did not affect PHI-1 phosphorylation. Activation of ROCK by expressing V14RhoA selectively induced CPI-17 phosphorylation without affecting PHI-1 phosphorylation. In contrast, inhibition of PKC by GF-109203X or by PKC downregulation selectively diminished U-46619-induced PHI-1 phosphorylation without significantly affecting U-46619-induced CPI-17 phosphorylation. Activating PKC by PMA induced PHI-1 phosphorylation. Together, our results show for the first time that agonist induces PHI-1 phosphorylation in VSMCs and divergent kinase signaling couples agonist stimulation to PHI-1 and CPI-17 phosphorylation. signal transduction; myosin phosphatase holoenzyme inhibitor 1; protein kinase C  相似文献   

7.
8.
Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, phosphorylates myosin-binding subunit (MBS) of myosin phosphatase and thereby inactivates the phosphatase activity in vitro. Rho-kinase is thought to regulate the phosphorylation state of the substrates including myosin light chain (MLC), ERM (ezrin/radixin/moesin) family proteins and adducin by their direct phosphorylation and by the inactivation of myosin phosphatase. Here we identified the sites of phosphorylation of MBS by Rho-kinase as Thr-697, Ser-854 and several residues, and prepared antibody that specifically recognized MBS phosphorylated at Ser-854. We found by use of this antibody that the stimulation of MDCK epithelial cells with tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF) induced the phosphorylation of MBS at Ser-854 under the conditions in which membrane ruffling and cell migration were induced. Pretreatment of the cells with Botulinum C3 ADP-ribosyltransferase (C3), which is thought to interfere with Rho functions, or Rho-kinase inhibitors inhibited the TPA- or HGF-induced MBS phosphorylation. The TPA stimulation enhanced the immunoreactivity of phosphorylated MBS in the cytoplasm and membrane ruffling area of MDCK cells. In migrating MDCK cells, phosphorylated MBS as well as phosphorylated MLC at Ser-19 were localized in the leading edge and posterior region. Phosphorylated MBS was localized on actin stress fibers in REF52 fibroblasts. The microinjection of C3 or dominant negative Rho-kinase disrupted stress fibers and weakened the accumulation of phosphorylated MBS in REF52 cells. During cytokinesis, phosphorylated MBS, MLC and ERM family proteins accumulated at the cleavage furrow, and the phosphorylation level of MBS at Ser-854 was increased. Taken together, these results indicate that MBS is phosphorylated by Rho-kinase downstream of Rho in vivo, and suggest that myosin phosphatase and Rho-kinase spatiotemporally regulate the phosphorylation state of Rho-kinase substrates including MLC and ERM family proteins in vivo in a cooperative manner.  相似文献   

9.
It has been demonstrated that CPI-17 provokes an inhibition of myosin light chain phosphatase to increase myosin light chain phosphorylaton and Ca(2+) sensitivity during contraction of vascular smooth muscle. However, expression and agonist-mediated regulation of CPI-17 in bronchial smooth muscle have not been documented. Thus, expression and phosphorylation of CPI-17 mediated by PKC and ROCK were investigated using rat bronchial preparations. Acetylcholine (ACh)-induced contraction and Ca(2+) sensitization were both attenuated by 10(-6) mol Y-27632 /L, a ROCK inhibitor, 10(-6) mol calphostin C/L, a PKC inhibitor, and their combination. A PKC activator, PDBu, induced a Ca(2+) sensitization in alpha-toxin-permeabilized bronchial smooth muscle. In this case, the Ca(2+) sensitizing effect was significantly inhibited by caphostin C but not by Y-27632. An immunoblot study demonstrated CPI-17 expression in the rat bronchial smooth muscle. Acetylcholine induced a phosphorylation of CPI-17 in a concentration-dependent manner, which was significantly inhibited by Y-27632 and calphostin C. In conclusion, these data suggest that both PKC and ROCK are involved in force development, Ca(2+) sensitization, and CPI-17 phosphorylation induced by ACh stimulation in rat bronchial smooth muscle. As such, RhoA/ROCK, PKC/CPI-17, and RhoA/ROCK/CPI pathways may play important roles in the ACh-induced Ca(2+) sensitization of bronchial smooth muscle contraction.  相似文献   

10.
Phosphorylation of endogenous inhibitor proteins for type-1 Ser/Thr phosphatase (PP1) provides a mechanism for reciprocal coordination of kinase and phosphatase activities. A myosin phosphatase inhibitor protein CPI-17 is phosphorylated at Thr38 through G-protein-mediated signals, resulting in a >1000-fold increase in inhibitory potency. We show here the solution NMR structure of phospho-T38-CPI-17 with rmsd of 0.36 +/- 0.06 A for the backbone secondary structure, which reveals how phosphorylation triggers a conformational change and exposes an inhibitory surface. This active conformation is stabilized by the formation of a hydrophobic core of intercalated side chains, which is not formed in a phospho-mimetic D38 form of CPI-17. Thus, the profound increase in potency of CPI-17 arises from phosphorylation, conformational change, and hydrophobic stabilization of a rigid structure that poses the phosphorylated residue on the protein surface and restricts its hydrolysis by myosin phosphatase. Our results provide structural insights into transduction of kinase signals by PP1 inhibitor proteins.  相似文献   

11.
A Sobieszek 《Biochemistry》1985,24(5):1266-1274
Phosphorylation of vertebrate smooth muscle myosin or its isolated 20 000-dalton light chains by myosin light-chain kinase (MLCK) was found to follow first-order kinetics not only at low ([M] much less than Km) but also at high ([M] greater than or equal to Km) substrate concentration. This observation can most simply be explained by a product inhibition for which the Michaelis constants (Km) of the enzyme for the substrate (dephosphorylated myosin) and for the product (phosphorylated myosin) are approximately the same. For such a case, integration of the kinetic velocity equation gives an exponential formula similar to that of a true first-order reaction, the only difference being that its rate constant (k) depends additionally on the initial substrate concentration ([M]0). The standard kinetic constants (k, Km, Vmax) have been calculated by using this pseudo-first-order relationship. Independent evidence for the validity of the derived kinetic relationship was obtained from binding studies with myosin and MLCK. These showed that MLCK binds to phosphorylated and dephosphorylated myosin with approximately equal affinity (Ks = 30 X 10(-9) M). The possible applicability of the same kinetic relationship to other enzyme systems is discussed.  相似文献   

12.
CPI-17 is a unique phosphoprotein that specifically inhibits myosin light chain phosphatase in smooth muscle and plays an essential role in agonist-induced contraction. To elucidate the in situ mechanism for G protein-mediated Ca2+-sensitization of CPI-17 phosphorylation, α-toxin-permeabilized arterial smooth muscle strips were used to monitor both force development and CPI-17 phosphorylation in response to GTPγS with varying Ca2+ concentrations. CPI-17 phosphorylation increased at unphysiologically high Ca2+ levels of pCa ? 6. GTPγS markedly enhanced the Ca2+ sensitivity of CPI-17 steady-state phosphorylation but had no enhancing effect under Ca2+-free conditions, while the potent PKC activator PDBu increased CPI-17 phosphorylation regardless of Ca2+ concentration. CPI-17 phosphorylation induced by pCa 4.5 alone was markedly inhibited by the presence of PKC inhibitor but not ROCK inhibitor. In the presence of calyculin A, a potent PP1/PP2A phosphatase inhibitor, CPI-17 phosphorylation increased with time even under Ca2+-free conditions. Furthermore, as Ca2+ concentration increased, so did CPI-17 phosphorylation rate. GTPγS markedly enhanced the rate of phosphorylation of CPI-17 at a given Ca2+. In the absence of calyculin A, either steady-state phosphorylation of CPI-17 under Ca2+-free conditions in the presence of GTPγS or at pCa 6.7 in the absence of GTPγS was negligible, suggesting a high intrinsic CPI-17 phosphatase activity. In conclusion, cooperative increases in Ca2+ and G protein activation are required for a significant activation of total kinases that phosphorylate CPI-17, which together overcome CPI-17 phosphatase activity and effectively increase the Ca2+ sensitivity of CPI-17 phosphorylation and smooth muscle contraction.  相似文献   

13.
The 20,000-dalton light chain of turkey gizzard myosin is phosphorylated at two sites. Dual phosphorylation is observed when both intact myosin and isolated light chains are used as substrates. Phosphorylation of the second site is not observed at higher ionic strength (e.g. 0.35 M KCl). The first phosphorylation site (serine 19) is phosphorylated preferentially to the second site. The latter is phosphorylated more slowly than the first site, and its phosphorylation requires relatively high concentrations of myosin light chain kinase. It is suggested that myosin light chain kinase catalyzes the phosphorylation of both sites on the light chain, and several reasons are cited that make it unlikely that a contaminant kinase is involved. The second phosphorylation site is a threonine residue. Based on the results of limited proteolysis of the light chain, it is concluded that the threonine residue is close to serine 19, and possible locations are threonines 9, 10, and 18. At all concentrations of MgCl2, phosphorylation of the second site markedly increases the actin-activated ATPase activity of myosin and accelerates the superprecipitation response of myosin plus actin.  相似文献   

14.
Myosin was purified from ovine uterine smooth muscle. The 20,000 dalton myosin light chain was phosphorylated to varying degrees by an endogenous Ca2+ dependent kinase. The kinase and endogenous phosphatases were then removed via column chromatography. In the absence of actin neither the size of the initial phosphate burst nor the steady state Mg2+-dependent ATPase activity were affected by phosphorylation. However, phosphorylation was required for actin to increase the Mg2+-dependent ATPase activity and for the myosin to superprecipitate with actin. Ca2+ did not affect the Mg2+-dependent ATPase activity in the presence or absence of action or the rate or extent of superprecipitation with actin once phosphorylation was obtained. These data indicate that: 1) phosphorylation of the 20,000 dalton myosin light chain controls the uterine smooth muscle actomyosin interaction, 2) in the absence of actin, phosphorylation does not affect either the ATPase of myosin or the size of the initial burst of phosphate and, 3) Ca2+ is important in controlling the light chain kinase but not the actomyosin interaction.  相似文献   

15.
Eto M  Bock R  Brautigan DL  Linden DJ 《Neuron》2002,36(6):1145-1158
Cerebellar LTD requires brief activation of PKC and is expressed as a functional downregulation of AMPA receptors. Modulation of vascular smooth-muscle contraction by G protein-coupled receptors (called Ca(2+) sensitization) also involves PKC phosphorylation and activation of a specific inhibitor of myosin/moesin phosphatase (MMP). This inhibitor, called CPI-17, is also expressed in brain. Here, we tested the hypothesis that LTD, like Ca(2+) sensitization, employs a PKC/CPI-17 cascade. Introduction of activated recombinant CPI-17 into cells produced a use-dependent attenuation of glutamate-evoked responses and occluded subsequent LTD. Moreover, the requirement for endogenous CPI-17 in LTD was demonstrated with neutralizing antibodies plus gene silencing by siRNA. These interventions had no effect on basal synaptic strength but blocked LTD induction. Thus, a biochemical circuit that involves PKC-mediated activation of CPI-17 modulates the distinct physiological processes of vascular contractility and cerebellar LTD.  相似文献   

16.
Caldesmon is known to bind to smooth muscle myosin. Ca2+/calmodulin-dependent phosphorylation of caldesmon completely blocks its interaction with myosin. Cleavage of caldesmon at its 2 cysteine residues by 2-nitro-5-thiocyanobenzoic acid (NTCB) occurs initially at one site to yield 108-kDa and 21.2-kDa peptides and subsequently at the second site within the 108-kDa peptide to yield 85-kDa and 23.5-kDa fragments. The 23.5-kDa peptide retains the ability to bind to myosin. The N-terminal (95 kDa) and C-terminal (42 kDa) chymotryptic peptides of caldesmon were isolated and digested with NTCB: the C-terminal actin- and calmodulin-binding peptide was not cleaved, indicating that it does not contain either of the cysteine residues, whereas the 95-kDa N-terminal peptide was cleaved at two sites to yield 56-kDa, 23.5-kDa, and 21.2-kDa fragments. The arrangement of NTCB fragments in caldesmon is, therefore: 21.2 kDa/23.5 kDa/85 kDa from N to C terminus. Digestion of phosphorylated caldesmon with NTCB suggested a single phosphorylation site in the 21.2-kDa peptide and three sites in the 23.5-kDa peptide. These results lead to the development of a model whereby caldesmon may cross-link actin to myosin and such cross-linking is blocked by phosphorylation of caldesmon. This mechanism may explain the formation of reversible "latch bridges" which permit force maintenance at low levels of myosin phosphorylation in intact smooth muscles.  相似文献   

17.
In vitro experiments showing the activation of the myosin phosphatase via heterophilic leucine zipper interactions between its targeting subunit (MYPT1) and cGMP-dependent protein kinase I suggested a pathway for smooth muscle relaxation (Surks, H. K., Mochizuki, N., Kasai, Y., Georgescu, S. P., Tang, K. M., Ito, M., Lincoln, T. M., and Mendelsohn, M. E. (1999) Science 286, 1583-1587). The relationship between MYPT1 isoform expression and smooth muscle responses to cGMP signaling in vivo has not been explored. MYPT1 isoforms that contain or lack a C-terminal leucine zipper are generated in birds and mammals by cassette-type alternative splicing of a 31-nucleotide exon. The avian and mammalian C-terminal isoforms are highly conserved and expressed in a tissue-specific fashion. In the mature chicken the tonic contracting aorta and phasic contracting gizzard exclusively express the leucine zipper positive and negative MYPT1 isoforms, respectively. Expression of the MYPT1 isoforms is also developmentally regulated in the gizzard, which switches from leucine zipper positive to negative isoforms around the time of hatching. This switch coincides with the development in the gizzard of a cGMP-resistant phenotype, i.e. inability to dephosphorylate myosin and relax in response to 8-bromo-cGMP after calcium activation. Furthermore, association of cGMP-dependent protein kinase I with MYPT1 is detected by immunoprecipitation only in the tissue that expresses the leucine zipper positive isoform of MYPT1. These results suggest that the regulated splicing of MYPT1 is an important determinant of smooth muscle phenotypic diversity and the variability in the response of smooth muscles to the calcium desensitizing effect of cGMP signaling.  相似文献   

18.
A myosin phosphatase has been purified to homogeneity from bovine aortic smooth muscle. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme eluted from nondenaturing gels revealed two subunits (Mr = 67,000 and 38,000). Densitometric scans of the subunits indicated a molar ratio of 1:1. Several phosphoproteins were substrates for the phosphatase including histone II-A, isolated 20,000-dalton smooth muscle myosin light chains, phosphorylase a, and smooth muscle myosin. In the presence of 0.25 M NaCl and a substrate concentration of 2 microM, myosin was preferentially dephosphorylated. The specific activity of the phosphatase for myosin at a concentration of 10 microM was found to be 5 mumol/mg/min. The phosphatase required Mn2+ or Co2+ ions for activity. Mg2+, Ca2+, or Mg-ATP would not substitute for Mn2+ or Co2+ at equimolar concentrations. This phosphatase may play an important role in regulating actin-myosin interaction in smooth muscle by serving to dephosphorylate myosin.  相似文献   

19.
The dephosphorylation of the myosin light chain kinase and protein kinase C sites on the 20 kDa myosin light chain by myosin phosphatase was investigated. The myosin phosphatase holoenzyme and catalytic subunit, dephosphorylated Ser-19, Thr-18 and Thr-9, but not Ser-1/Ser-2. The role of noncatalytic subunits in myosin phosphatase was to activate the phosphatase activity. For Ser-19 and Thr-18, this was due to a decrease in Km and an increase in k(cat) and for Thr-9 to a decrease in Km. Thus, the distinction between the various sites is a property of the catalytic subunit.  相似文献   

20.
A phosphatase that dephosphorylates myosin and the isolated light chain has been purified to near homogeneity from chicken gizzard smooth muscle. The molecular weight of the enzyme was estimated to be 100,000 and 35,000 under native and denatured conditions, respectively. It requires Mg2+ or Mn2+. The activity was measured quantitatively with a coupled enzyme system with the aid of myosin light chain kinase. The Vm and Km were determined to be 23.4 mumol/mg/min and 4.2 microM, respectively, with the isolated light chain as substrate under the optimal conditions (5 mM Mg2+ at pH 8.45). The specific activity with myosin as substrate at a concentration of 0.9 microM was found to be 1.25 mumol/mg/min, which was about one-fifth of the activity for the isolated light chain under the same conditions. The phosphatase seems to be specific to gizzard myosin. It may play an important role in the regulation of the myosin-actin interaction in smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号