首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
A novel photoactivatable analog of antisauvagine-30 (aSvg-30), a specific antagonist for corticotropin-releasing factor (CRF) receptor, type 2 (CRF2), has been synthesized and characterized. The N-terminal amino-acid d-Phe in aSvg-30 [d-Phe11,His12]Svg(11-40) was replaced by a phenyldiazirine, the 4-(1-azi-2,2,2-trifluoroethyl)benzoyl (ATB) residue. The photoactivatable aSvg-30 analog ATB-[His12]Svg was tested for its ability to displace [125I-Tyr0]oCRF or [125I-Tyr0]Svg from membrane homogenates of human embryonic kidney (HEK) 293 cells stably transfected with cDNA coding for rat CRF receptor, type 1 (rCRF1) or mouse CRF receptor, type 2beta (mCRF2beta). Furthermore, the ability of ATB-[His12]Svg(12-40) to inhibit oCRF- or Svg-stimulated cAMP production of transfected HEK 293 cells expressing either rCRF1 (HEK-rCRF1 cells) or mCRF2beta (HEK-mCRF2beta cells) was determined. Unlike astressin and photo astressin, ATB-[His12]Svg(12-40) showed high selective binding to mCRF2beta (Ki = 3.1 +/- 0.2 nm) but not the rCRF1 receptor (Ki = 142.5 +/- 22.3 nm) and decreased Svg-stimulated cAMP activity in mCRF2beta-expressing cells in a similar fashion as aSvg-30. A 66-kDa protein was identified by SDS/PAGE, when the radioactively iodinated analog of ATB-[His12]Svg(12-40) was covalently linked to mCRF2beta receptor. The specificity of the photoactivatable 125I-labeled CRF2beta antagonist was demonstrated with SDS/PAGE by the finding that this analog could be displaced from the receptor by antisauvagine-30, but not other unrelated peptides such as vasoactive intestinal peptide (VIP).  相似文献   

2.
The role of the N-terminal domains of corticotropin-releasing factor (CRF) and CRF-like peptides in receptor subtype selectivity, ligand affinity and biological potency was investigated. Therefore, human CRF(12-41), human URP(12-38) and antisauvagine-30 (aSvg) were N-terminally prolonged by consecutive addition of one or two amino acids. The peptides obtained were tested for their binding affinities to rat CRF1 and murine CRF(2beta) receptor, and their capability to stimulate cAMP-release by HEK cells producing either receptor.It was observed that human CRF N-terminally truncated by eight residues was bound with high affinity to CRF2 receptor (Ki=5.4nM), whereas affinity for CRF1 receptor was decreased (Ki=250 nM). A similar shift of affinity was found with sauvagine (Svg) analogs. Truncation of human URP analogs did not affect their preference for CRF(2beta) receptor, but reduced their affinity. Changes in affinity were positively correlated with changes in potency. These results indicated that CRF1 receptor was more stringent in its structural requirements for ligands to exhibit high affinity binding than CRF(2beta) receptor.  相似文献   

3.
Corticotropin releasing factor 2 receptor selective analogs of the amphibian peptide sauvagine, a member of the corticotropin releasing factor (CRF) peptide family, have therapeutic potential for the treatment of skeletal muscle atrophy. Previously, we demonstrated that [P11X12X13]Svg peptides have improved CRF2R selectivity, although not to the level of CRF2R selective hormones such as urocortin 2 and urocortin 3. Since we also demonstrated a potential for improvement in selectivity of sauvagine by modifications of residues 35 and 39, we investigated substitutions of these amino acids in selected [P11X12X13]Svg peptides. We have observed that substitution of Arg35 in sauvagine to Ala35 (the amino acid found in all CRF2R selective agonists), increased the selectivity of [P11, X12, X13]Svg analogs. In contrast, substitution of Asp39 in sauvagine to Ala39 (also the amino acid found in all CRF2R selective agonists) did not further increase the selectivity of [P11, X12, X13, A35]Svg analogs. Thus, the residues 35 along with 11, 12, and 13 in sauvagine represent important sites for improving CRF2R selectivity.  相似文献   

4.
Abstract : The aim of the present study was to identify the N-terminal regions of human corticotropin-releasing factor (CRF) receptor type 1 (hCRF-R1) that are crucial for ligand binding. Mutant receptors were constructed by replacing specific residues in hCRF-R1 with amino acids from the corresponding position in the N-terminal region of the human vasoactive intestinal peptide receptor type 2 (hVIP-R2). In cyclic AMP stimulation and CRF binding assays, it was established that two regions within the N-terminal domain were crucial for the binding of CRF receptor agonists and antagonists : one region mapping to amino acids 43-50 and a second amino acid sequence extending from position 76 to 84 of hCRF-R1. Recently, it was found that the latter sequence plays a very important role in determining the high ligand selectivity of the Xenopus CRF-R1 (xCRF-R1). Replacement of amino acids 76-84 of hCRF-R1 with residues from the same segment of the hVIP-R2 N terminus markedly reduced the binding affinity of CRF ligands. Mutation of Arg76 or Asn81 but not Gly83 of hCRF-R1 to the corresponding amino acids of xCRF-R1 or hVIP-R2 resulted in 100-1,000-fold lower affinities for human/rat CRF, rat urocortin, and astressin. These data underline the importance of the N-terminal domain of CRF-R1 in high-affinity ligand binding.  相似文献   

5.
Recently, we demonstrated that the corticotropin releasing factor 2 receptor agonist, urocortin 2, demonstrated anti-atrophy effects in rodent skeletal muscle atrophy models. Compared to other CRF2R agonists however, the in vivo pharmacological potency of urocortin 2 is poor when it is administered by continuous subcutaneous infusion. Therefore, we attempted to modify the structure of urocortin 2 to improve in vivo efficacy when administered by subcutaneous infusion. By substituting amino acid residues in the linker region of urocortin 2 (residues 22-32), we have demonstrated improved in vivo potency without altering selectivity, probably through reduced CRFBP binding. In addition, attempts to shorten urocortin 2 generally resulted in inactive peptides, demonstrating that the 38 amino acid urocortin 2 peptide is the minimal pharmacophore.  相似文献   

6.
Rat corticotropin-releasing factor receptor 1 (rCRFR1) was produced either in transfected HEK 293 cells as a complex glycosylated protein or in the presence of the mannosidase I inhibitor kifunensine as a high mannose glycosylated protein. The altered glycosylation did not influence the biological function of rCRFR1 as demonstrated by competitive binding of rat urocortin (rUcn) or human/rat corticotropin-releasing factor (h/rCRF) and agonist-induced cAMP accumulation. The low production rate of the N-terminal domain of rCRFR1 (rCRFR1-NT) by transfected HEK 293 cells, was increased by a factor of 100 in the presence of kifunensine. The product, rCRFR1-NT-Kif, bound rUcn specifically (K(D) = 27 nM) and astressin (K(I) = 60 nM). This affinity was 10-fold lower than the affinity of full length rCRFR1. However, it was sufficiently high for rCRFR1-NT-Kif to serve as a model for the N-terminal domain of rCRFR1. With protein fragmentation, Edman degradation, and mass spectrometric analysis, evidence was found for the signal peptide cleavage site C-terminally to Thr(23) and three disulfide bridges between precursor residues 30 and 54, 44 and 87, and 68 and 102. Of all putative N-glycosylation sites in positions 32, 38, 45, 78, 90, and 98, all Asn residues except for Asn(32) were glycosylated to a significant extent. No O-glycosylation was observed.  相似文献   

7.
Abstract: Two cDNA clones encoding distinct members of the corticotropin-releasing factor (CRF) receptor family have been isolated from Xenopus laevis with PCR-based approaches. The first full-length cDNA amplified from Xenopus brain encoded a 415-amino acid protein with ∼80% identity to mammalian CRF receptor type 1 (CRF-R1). The second full-length cDNA isolated from Xenopus brain and heart encoded a 413-amino acid protein with ∼81% identity to the α-variant of mammalian CRF receptor, type 2 (CRF-R2). No evidence could be obtained that the β-variant of CRF-R2 existed in Xenopus laevis . Binding studies using human embryonic kidney 293 (HEK 293) cells stably transfected with xenopus CRF-R2 showed that the CRF analogues urotensin I, urocortin, and sauvagine were bound with higher affinities than human/rat CRF, xenopus CRF, and ovine CRF. In contrast to human CRF-R1, xenopus CRF-R1 (xCRF-R1) was very selective for different CRF ligands. Urotensin I, urocortin, human/rat CRF, and xenopus CRF were bound with significantly (10–22-fold) higher affinities than ovine CRF ( K D = 31.7 n M ) and sauvagine ( K D = 51.4 n M ). In agreement with these binding data, EC50 values of 39.7 and 1.1 n M were found for sauvagine and for human/rat CRF or xenopus CRF, respectively, when the cyclic AMP production in HEK 293 cells stably transfected with xCRF-R1 was determined.  相似文献   

8.
Novel photoactivatable antagonists of human/rat corticotropin-releasing factor (h/rCRF) have been synthesized and characterized. The N-terminal amino acid D-phenylalanine in astressin ?cyclo(30-33) [D-Phe12, Nle21,38, Glu30, Lys33]h/rCRF-(12-41)?, a potent CRF peptide antagonist, was replaced by a phenyldiazirine, the 4-(1-azi-2,2,2-trifluoroethyl)benzoyl (ATB) residue. Additionally, His32 of astressin was substituted by either alanine or tyrosine for specific radioactive labeling with 125I at either His13 or Tyr32, respectively. The photoactivatable CRF antagonists were tested for their ability to displace 125I-labeled Tyr0 ovine CRF ([125I-labeled Tyr0]oCRF) in binding experiments and to inhibit oCRF-stimulated adenylate cyclase activity in human embryonic kidney (HEK) 293 cells, permanently transfected with cDNA coding for rat CRF receptor, type 1 (rCRFR1) or human Y-79 retinoblastoma cells known to carry endogenous functional human CRFR1 (hCRFR1). ATB-cyclo(30-33)[Nle21,38, Glu30, Ala32, Lys33]h/rCRF-(13-41) (compound 1) was found to bind with higher affinity to rat or human CRFR1 when compared with ATB-cyclo(30-33)[Nle21,38, Glu30, Tyr32, Lys33]h/rCRF-(13-41) (compound 2) and exhibited higher inhibition of oCRF-stimulated cAMP accumulation in HEK 293 cells stably transfected with cDNA coding for rCRFR1 (HEK-rCRFR1 cells) or Y-79 cells. A highly glycosylated, 66-kDa protein was identified with SDS/PAGE, when the radioactively iodinated compounds 1 or 2 were covalently linked to rCRFR1. The specificity of the photoactivatable 125I-labeled CRF antagonists was demonstrated with SDS/PAGE by the finding that these analogs could be displaced from the receptor by their corresponding nonlabeled form, but not other unrelated peptides such as vasoactive intestinal peptide. The observed molecular size of the receptor was in agreement with the size of CRFR1 found in rat pituitary (66 kDa), but was significantly larger than the size of CRFR1 found in rat cerebellum and olfactory bulb (53 kDa).  相似文献   

9.
Corticotropin releasing factor-binding protein (CRF-BP) binds CRF and urocortin 1 (Ucn 1) with high affinity, thus preventing CRF receptor (CRFR) activation. Despite recent progress on the molecular details that govern interactions between CRF family neuropeptides and their cognate receptors, little is known concerning the mechanisms that allow CRF-BP to bind CRF and Ucn 1 with picomolar affinity. We conducted a comprehensive alanine scan of 76 evolutionarily conserved residues of CRF-BP and identified several residues that differentially affected the affinity for CRF over Ucn 1. We determined that both neuropeptides derive their similarly high affinity from distinct binding surfaces on CRF-BP. Alanine substitutions of arginine 56 (R56A) and aspartic acid 62 (D62A) reduce the affinity for CRF by approximately 100-fold, while only marginally affecting the affinity for Ucn 1. The selective reduction in affinity for CRF depends on glutamic acid 25 in the CRF peptide, as substitution of Glu(25) reduces the affinity for CRF-BP by approximately 2 orders of magnitude, but only in the presence of both Arg(56) and Asp(62) in human CRF-BP. We show that CRF-BP(R56A) and CRF-BP(D62A) have lost the ability to inhibit CRFR1-mediated responses to CRF that activate luciferase induction in HEK293T cells and ACTH release from cultured rat anterior pituitary cells. In contrast, both CRF-BP mutants retain the ability to inhibit Ucn 1-induced CRFR1 activation. Collectively our findings demonstrate that CRF-BP has distinct and separable binding surfaces for CRF and Ucn 1, opening new avenues for the design of ligand-specific antagonists based on CRF-BP.  相似文献   

10.
The ligand binding subunits of the corticotropin-releasing factor (CRF) receptors in brain and anterior pituitary of a number of species have been identified by chemical affinity cross-linking using the homobifunctional cross-linking agent disuccinimidyl suberate and 125I-Tyr0-oCRF (ovine CRF). In homogenates of rat, monkey, and human cerebral cortex, 125I-Tyr0-oCRF was covalently incorporated into a protein of Mr = 58,000. Under identical conditions in the anterior pituitary of rat, monkey, cow, and pig, 125I-Tyr0-oCRF was incorporated into a protein of apparent Mr = 75,000. The specificity of the labeling was typical of the CRF binding site since both the cerebral cortex- and pituitary-labeled proteins exhibited the appropriate pharmacological rank order profile characteristic of the CRF receptor (Nle21,Tyr32-oCRF approximately equal to rat/human CRF approximately equal to ovine CRF approximately equal to alpha-helical CRF(6-41) greater than alpha-helical oCRF(9-41) greater than or equal to oCRF(7-41) greater than rat/human CRF(1-20) approximately equal to vasoactive intestinal peptide). In addition to the major labeled proteins, 125I-Tyr0-oCRF was incorporated into higher molecular weight peptides which may represent precursors and into lower molecular weight components which may represent fragments of the major labeled proteins or altered forms of the CRF binding subunit. In summary, these data indicate a heterogeneity between brain and pituitary CRF receptors with the ligand binding subunit of the brain CRF receptor residing on a Mr = 58,000 protein, while in the anterior pituitary, the identical binding subunit resides on a protein of apparent Mr = 75,000.  相似文献   

11.
CRF receptors were characterized using radioligand binding and chemical affinity cross-linking techniques and localized using autoradiographic techniques in porcine, bovine and rat pituitaries. The binding of 125I-[Tyr0]-ovine CRF (125I-oCRF) to porcine anterior and neurointermediate lobe membranes was saturable and of high affinity with comparable KD values (200-600 pM) and receptor densities (100-200 fmoles/mg protein). The pharmacological rank order of potencies for various analogs and fragments of CRF in inhibiting 125I-oCRF binding in neurointermediate lobe was characteristic of the well-established CRF receptor in anterior pituitary. Furthermore, the binding of 125I-oCRF to both anterior and neurointermediate lobes of the pituitary was guanine nucleotide-sensitive. Affinity cross-linking studies revealed that the molecular weight of the CRF binding protein in rat intermediate lobe was identical to that in rat anterior lobe (Mr = 75,000). While the CRF binding protein in the anterior lobes of porcine and bovine pituitaries had identical molecular weights to CRF receptors in rat pituitary (Mr = 75,000), the molecular weight of the CRF binding protein in porcine and bovine intermediate lobe was slightly higher (Mr = 78,000). Pituitary autoradiograms from the three species showed specific binding sites for 125I-oCRF in anterior and intermediate lobes, with none being apparent in the posterior pituitary. The identification of CRF receptors in the intermediate lobe with comparable characteristics to those previously identified in the anterior pituitary substantiate further the physiological role of CRF in regulating intermediate lobe hormone secretion.  相似文献   

12.
Rühmann A  Bonk I  Köpke AK 《Peptides》1999,20(11):1311-1319
The structure-activity relationship (SAR) between the recently identified neuropeptide urocortin (Ucn) and corticotropin-releasing factor (CRF) receptor, type 1 (CRFR1), has been investigated. To this end, rat Ucn (rUcn), ovine CRF (oCRF) and chimeric peptides of rUcn and oCRF were synthesized and tested for their binding affinity and potency to stimulate cAMP production in human embryonic kidney (HEK) 293 cells stably transfected with cDNA encoding rat CRFR1 (rCRFR1). In binding studies with [125I-TyrO]oCRF or [3H-Leu9]rUcn as radioligand, it was observed that rUcn but not oCRF bound in a similar fashion as the CRF antagonist astressin with high affinity to rCRFR1 coupled to G protein or uncoupled from G protein by guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). Consequently, rUcn was found to exert a significantly lower potency than oCRF to stimulate cAMP accumulation in transfected cells. CD spectroscopic investigations and reverse-phase HPLC (RPHPLC) retention behavior of the peptides suggested a more pronounced amphipatic alpha-helical character of rUcn when compared to oCRF and the chimeric peptides.  相似文献   

13.
Radioligand binding studies have previously identified a high affinity, magnesium-dependent, guanine nucleotide-sensitive binding site for corticotropin-releasing factor (CRF) in mouse spleen. In order to determine the functional nature of these CRF binding sites, we examined the effects of CRF on adenylate cyclase activity in mouse spleen homogenates. The stimulation of adenylate cyclase activity was dependent on time, tissue protein concentration, and guanine nucleotides. CRF-stimulated adenylate cyclase activity was evident in the presence of guanosine-5'-triphosphate (GTP) and its precursor guanosine-5'-diphosphate (GDP) but was not detected in the presence of the hydrolysis-resistant GTP analogs, guanyl-5'-imidodiphosphate [Gpp(NH)p] and guanosine-5'-gamma-thiotriphosphate (GTP-gamma-S). The rank order of potency for CRF analogs and fragments in stimulating adenylate cyclase activity was comparable to their affinities for CRF binding sites in mouse spleen homogenates. The putative receptor antagonist, alpha helical ovine CRF(9-41), did not stimulate adenylate cyclase activity but did attenuate the stimulation by various concentrations of rat/human CRF. In summary, these data demonstrate the functional nature of CRF receptors in mouse spleen as evidenced by CRF stimulation of cAMP production and suggest that this peptide may play a physiological role in regulating immune function.  相似文献   

14.
Urocortin is a newly identified member of the CRF neuropeptide family. Urocortin has been found to bind with high affinity to CRF receptors. The present study investigated urocortin and CRF receptor expression in human colonic mucosa. Non-pathologic sections of adult colorectal tissues were obtained from patients with colorectal cancer at surgery. Urocortin expression was examined using immunohistochemistry and messenger (m) RNA in situ hybridization. Isolated lamina propria mononuclear cells (LPMC) and epithelial cells were also analyzed by flow cytometry for the characterization of urocortin-positive cells, and by RT-PCR for detection of urocortin, CRF, and CRF receptor mRNA. Urocortin peptide distribution at various stages of human development (n = 35, from 11 weeks of gestation to 6 years of age) was examined by immunohistochemistry using surgical and autopsy specimens. Immunoreactive urocortin and urocortin mRNA were predominantly detected in lamina propria macrophages. Urocortin peptide expression was detected from as early as three months of age, but not before birth or in neonates. Urocortin, CRF receptor type 1 and type 2 mRNA were detected in LPMC. CRF receptor type 2β mRNA, a minor isoform in human tissues, was also detected in LPMC, but at lower levels. Urocortin is locally synthesized in lamina propria macrophages and may act on lamina propria inflammatory cells as an autocrine/paracrine regulator of the mucosal immune system. The appearance of urocortin after birth indicates that the exposure to dietary intake and/or luminal bacteria after birth may contribute to the initiation of urocortin expression in human gastrointestinal tract mucosa.  相似文献   

15.
The CRF2 receptor is involved in stress responses, cardiovascular function and gastric motility. Endogenous agonists (urocortin (UCN) 2, UCN 3) and synthetic antagonists (astressin2-B, antisauvagine-30) are selective for CRF2 over the CRF1 receptor. Peptide ligand binding properties of the CRF2 receptor require further investigation, including ligand affinity for endogenously expressed receptors, the effect of receptor-G-protein coupling on ligand affinity, and the molecular basis of ligand selectivity. Ligand affinity for rat CRF(2a) in olfactory bulb and CRF(2b) in A7r5 cells was similar to that for the cloned human CRF(2a) receptor (within three-fold), except for oCRF (9.4- and 5.4-fold higher affinity in olfactory bulb and A7r5 cells, respectively). Receptor-G-protein uncoupling reduced agonist affinity only 1.2- to 6.5-fold (compared with 92-1300-fold for the CRF1 receptor). Ligand selectivity mechanisms were investigated using chimeric CRF2/CRF1 receptors. The juxtamembrane receptor domain determined selectivity of antisauvagine-30, the N-terminal-extracellular domain contributed to selectivity of UCN 3, and both domains contributed to selectivity of UCN 2 and astressin2-B. Therefore ligands differ in the contribution of receptor domains to their selectivity, and CRF2-selective antagonists bind the juxtamembrane domain. These findings will be important for identifying the CRF2 receptor in tissues and for developing ligands targeting the receptor, both of which will be useful in identifying the emerging physiological functions of the CRF2 receptor.  相似文献   

16.
The heptahelical receptors for corticotropin-releasing factor (CRF), CRFR1 and CRFR2, display different specificities for CRF family ligands: CRF and urocortin I bind to CRFR1 with high affinity, whereas urocortin II and III bind to this receptor with very low affinities. In contrast, all the urocortins bind with high affinities, and CRF binds with lower affinity to CRFR2. The first extracellular domain (ECD1) of CRFR1 is important for ligand recognition. Here, we characterize a bacterially expressed soluble protein, ECD1-CRFR2beta, corresponding to the ECD1 of mouse CRFR2beta. The K(i) values for binding to ECD1-CRFR2beta are: astressin = 10.7 (5.4-21.1) nm, urocortin I = 6.4 (4.7-8.7) nm, urocortin II = 6.9 (5.8-8.3) nm, CRF = 97 (22-430) nm, urocortin III = sauvagine >200 nm. These affinities are similar to those for binding to a chimeric receptor in which the ECD1 of CRFR2beta replaces the ECD of the type 1B activin receptor (ALK4). The ECD1-CRFR2beta possesses a disulfide arrangement identical to that of the ECD1 of CRFR1, namely Cys(45)-Cys(70), Cys(60)-Cys(103), and Cys(84)-Cys(118). As determined by circular dichroism, ECD1-CRFR2beta undergoes conformational changes upon binding astressin. These data reinforce the importance of the ECD1 of CRF receptors for ligand recognition and raise the interesting possibility that different ligands having similar affinity for the full-length receptor may, nevertheless, have different affinities for microdomains of the receptor.  相似文献   

17.
Corticotropin-releasing factor (CRF) mediates various aspects of the stress response. To differentiate between the roles of CRF(1) and CRF(2) receptor subtypes in monoaminergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity and behaviour we compared the effects of CRF and urocortin 1 with those of the selective CRF(2) receptor ligands urocortin 2 and urocortin 3. In vivo microdialysis in the rat hippocampus was used to assess free corticosterone, extracellular levels of serotonin (5-HT) and noradrenaline (NA), and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG), respectively. Intracerebroventricular (i.c.v.) injection of CRF and urocortin 1, 2 and 3 (1.0 microg) increased hippocampal levels of 5-HT and 5-HIAA. CRF and urocortin 1 increased NA and MHPG, whereas urocortin 2 and urocortin 3 elevated MHPG, but not NA levels. CRF and the urocortins induced an immediate increase in behavioural activity. CRF and urocortin 1 mainly caused grooming and exploratory behaviour. In contrast, urocortin 2 and urocortin 3 both induced exploratory behaviour, but not grooming, and increased time spent eating food pellets. All urocortins, but not CRF, suppressed food intake 4-6 h after injection. Hippocampal free corticosterone levels were elevated by CRF, urocortin 1 and 3, but not by urocortin 2. The time courses of the CRF- and urocortin 1-induced responses were significantly prolonged as compared to those of the CRF(2) receptor ligands. The stimulatory changes evoked by CRF and urocortin 1 were present up to 4-6 h after injection, whereas the effects of urocortin 2 and urocortin 3 returned to baseline within 2.5 h after injection. Pre-treatment with the selective antagonist antisauvagine-30 (5.0 microg, i.c.v.) confirmed that the effects of urocortin 3 were CRF(2) receptor-mediated. The differential time course of the monoaminergic, neuroendocrine and behavioural effects of CRF and urocortin 1, as compared to urocortin 2 and urocortin 3, and the specific behavioural pattern induced by the CRF(2) receptor ligands, suggest a distinct role for CRF(2) receptors in the stress response.  相似文献   

18.
Novel analogs of antisauvagine-30 (aSvg-30), a specific antagonist for corticotropin-releasing factor (CRF) receptor, type 2 (CRF(2)), have been synthesized and characterized in vitro and in vivo. The N-terminal amino acid D-phenylalanine in aSvg-30 was replaced by a D-tyrosine residue for specific radioactive labeling with 123I. Additionally, Met(17) of aSvg-30 was substituted by norleucine and the N-terminus of the peptide was acetylated to increase in vivo metabolic stability. The aSvg-30 analogs were tested for their ability to displace [125I-Tyr(0)]Svg in binding experiments and to inhibit Svg-stimulated adenylate cyclase activity in human embryonic kidney (HEK) 293 cells, permanently transfected with cDNA coding for the human CRF(1) (hCRF(1)), hCRF(2alpha) and hCRF(2beta) receptor. Ac-[D-Tyr(11), His(12), Nle(17)Svg(11-40), named K31440, showed high specific binding to hCRF(2alpha) (K(i) = 1.48 +/- 0.34 nM) and hCRF(2beta) (K(i) = 2.05 +/- 0.61 nM) but not the hCRF(1) receptor (K(i) = 288 +/- 13 nM) and decreased Svg-stimulated cAMP activity in hCRF(2)-expressing cells in a similar fashion as aSvg-30. In biodistribution studies specific uptake of 123I-K31440 was detected after 1 h in small intestine of BALB/c nude mice. These data demonstrate that 123I-K31440 may serve as a useful tool to detect native CRF(2) receptors and elucidate their role in gastrointestinal disorders and diseases such as irritable bowel syndrome or cancer.  相似文献   

19.
To develop a mathematical model of the distribution and metabolism of rat corticotropin-releasing factor (rCRF), the time course of 125I-labelled rCRF in plasma was measured in male Sprague-Dawley rats (i) following a rapid injection of 24 ng rCRF/100 g body weight (BW), or (ii) following a rapid injection of 424 ng rCRF/100 g BW, or (iii) during an infusion at a rate ranging from 0.28 to 0.73 ng rCRF X min-1 X 100 g BW-1. The comparison of the one-, two-, and three-compartment models shows that the two-pool structure fits better to the dynamics of CRF in plasma as measured in each rat. Following a rapid injection the decay curve occurs in a biphasic manner; the early phase of disappearance is 25 times faster than the late one. There is no significant difference between the estimates of the metabolic clearance rate following both amplitudes of injection (0.40 +/- 0.06 and 0.48 +/- 0.05 mL X min-1 X 100 g BW-1). The volume of the first pool, 16.8 +/- 1.1 mL/100 g BW, is four times larger than the plasma volume. It would thus appear that CRF is rapidly distributed from plasma into several tissues which are represented in the first pool of the model. The mean residence time of every CRF molecule in the second compartment, from the moment of secretion to its elimination, is from three to four times longer than in the first one. It stays, on average, between 140 min and 3 h in the system before an irreversible exit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Two non-peptide substance P antagonists exhibit opposite rank orders of potency for the human and rat neurokinin-1 receptors. CP-96,345 shows selectivity for the human receptor, whereas RP67580 shows selectivity for the rat receptor. Amino acid sequence comparison of the two receptors reveals 22 divergent residues. To elucidate the molecular basis for the species selectivity of these antagonists, divergent residues in the human neurokinin-1 receptor were substituted by the rat homologs. Analysis of mutant receptors revealed that substitution of 2 residues (V116L and I290S) in the transmembrane domain of the human neurokinin-1 receptor is both necessary and sufficient to reproduce the antagonist binding affinities of the rat receptor. The nature of these substitutions and the magnitude of the changes in binding affinity suggest that residues 116 and 290 do not interact directly with the antagonist molecules. The present results support a model in which phylogenetically conserved residues interact directly with the antagonists, while phylogenetically divergent residues affect the local helical packing of the receptor. Such a change in local structure would lead to increased binding affinity for one class of antagonists and decreased affinity for another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号