首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The association of regulatory subunits (RII) of Type II cAMP-dependent protein kinase from bovine cerebral cortex (RII-B) and bovine cardiac and skeletal muscle (RII-H) with specific binding proteins in bovine brain cytosol and purified brain microtubules was demonstrated using a solid phase binding assay. RII-binding proteins present in bovine cerebral cortex were immobilized on nitrocellulose filters after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incubation of the filters with 32P-labeled regulatory subunits showed that both RII-B and RII-H interact with the 75,000-dalton calmodulin-binding protein (P75) and microtubule-associated protein 2 (MAP-2). However, significant differences in binding affinities and capacities were observed. RII-B displayed a higher affinity for P75 compared to RII-H while RII-H preferentially bound to MAP-2. Quantitation of radioactive RII bound to MAP-2 showed that MAP-2 bound 4-6 times more RII-H than RII-B. The differential binding affinities and capacities of RII-H and RII-B for MAP-2 were not affected by autophosphorylation since both phospho and dephospho forms of RII displayed the same binding characteristics. Competitive binding studies suggest that RII-H and RII-B bind to the same sites on MAP-2. The biochemical basis for the differential binding of RII-B and RII-H to the same sites of MAP-2 is unknown. However, other high affinity RII-binding proteins present in cerebral cortex (i.e. P75) might affect the affinity of RII-B for MAP-2. 32P-RI did not bind to P75 nor MAP-2 under the conditions used.  相似文献   

2.
In mammalian brain, physiological signals carried by cAMP seem to be targeted to intraneuronal sites by the association of cAMP-dependent protein kinase II beta with anchoring proteins that bind the regulatory subunit (RII beta) of the enzyme. Previously, an RII beta-binding domain was characterized in a large (Mr approximately 150,000) candidate anchor protein, rat brain P150 (Bregman, D. B., Bhattacharyya, N., and Rubin, C. S. (1989) J. Biol. Chem. 264, 4648-4656). RII beta-binding proteins with Mr values of 65,000-80,000 were detected in the brains of other species. Since little was known about the structural features of these lower Mr proteins, we undertook the characterization of bovine brain P75 as a prototype. A cDNA encoding 258 amino acid residues at the C terminus of P75 was cloned by probing a lambda gt11 expression library with 32P-RII beta. The cDNA insert was ligated into the pET-3b expression plasmid, and large amounts of the partial P75 polypeptide (designated P47) were produced in Escherichia coli. A purification scheme that yielded 9 mg of soluble P47 from a 1-liter bacterial culture was devised. Antibodies directed against the P47 polypeptide revealed that P75 is expressed almost exclusively in brain. The sequence of 117 amino acid residues at the C terminus of P75 contains the RII beta-binding site and is 80% identical to the corresponding region of P150. In contrast, a lower level of identity (36%) between P75 and P150 at a more N-terminal region indicates that the two RII beta-binding proteins are related, but distinct proteins. P75 is not homologous to microtubule-associated protein 2, an RII alpha-selective binding protein, or any other previously studied proteins. C-terminal truncation analysis disclosed that the final 26 residues in P75 are essential for binding RII beta.  相似文献   

3.
The regulatory subunit (RII-B) of bovine brain protein kinase II and the well-characterized regulatory subunit of heart protein kinase II (RII-H) exhibit similar physicochemical properties, but differ significantly in their peptide maps and antigenic determinants. As a starting point for studying structure/function relationships in RII-B and investigating the extent of homology and diversity between RII-B and RII-H, a peptide containing the autophosphorylation site of RII-B has been characterized. The phosphopeptide was rapidly (36 h) purified to homogeneity (yield = 40%) from a tryptic digest of RII-B using three consecutive reverse-phase high performance liquid chromatography steps. A combination of gas-phase microsequencing and solid-phase Edman degradation was used to determine the sequence and to identify the phosphorylated site: Arg-Ala-Ser(P)-Val-Cys-Ala-Glu-Ala-Tyr-Asn-Pro-Asp-Glu-Glu-Glu-Asp-Asp-A la-Glu. RII-B contains a classical phosphorylation site for the catalytic subunit, and the phosphopeptide sequence is homologous to the sequence surrounding the phosphorylation site of RII-H. Fourteen amino acids are identical in the two sequences, and the high net negative charge on the peptide is conserved. However, the peptide from RII-B is alanine-rich and more hydrophobic. Furthermore, five differences between the two functionally related sequences provide direct evidence for the idea that RII-B and RII-H are the products of related but distinct genes.  相似文献   

4.
The RII-B isoform of the regulatory subunit (R) of cAMP-dependent protein kinase II is abundantly and selectively expressed in cerebral cortex (Erlichman, J., Sarkar, D., Fleischer, N., and Rubin, C. S. (1980) J. Biol. Chem. 255, 8179-8184). In contrast to the cytosolic RII-H isoform from heart and other non-neural tissues, a substantial fraction of cerebral cortex RII-B is tightly associated with cell organelles. In order to study the cellular basis for the localization and abundance of RII-B in this complex and heterogeneous tissue, rat cerebral cortex was fractionated into highly purified populations of neurons, astrocytes, and oligodendrocytes. In neurons and astrocytes more than 80% of the total cAMP-binding activity is contributed by RII subunits, whereas the myelin-producing oligodendrocytes contain nearly equal proportions of RI (from protein kinase I) and RII. Approximately 70% of RII and RI subunits are associated with the particulate fraction in each of the three types of brain cells. The nature of the RII isoforms expressed in the cytosolic and particulate fractions of the purified brain cells was established by performing Western immunoblot and indirect immunoprecipitation analyses with selective and sensitive polyclonal antibodies directed against RII-B. Astrocytes and neurons exhibit high levels of RII-B, whereas oligodendrocytes contain the RII-H isoform. Thus, the expression of RII isoforms is not uniform among brain cells that are anatomically and developmentally related. Rather, it appears that RII-B and RII-H are expressed in a cell-specific fashion within cerebral cortex and this might reflect an RII-mediated adaptation of protein kinase II to the specialized metabolic and functional roles of neurons, astrocytes, and oligodendrocytes.  相似文献   

5.
Calcium/calmodulin-dependent multifunctional protein kinases, extensively purified from rat brain (with apparent molecular mass 640 kDa), rabbit liver (300 kDa) and rabbit skeletal muscle (700 kDa), were analysed for their structural, immunological, and enzymatic properties. The immunological cross-reactivity with affinity-purified polyclonal antibodies to the 50-kDa catalytic subunit of the brain calmodulin-dependent protein kinase confirmed the presence of common antigenic determinants in all subunits of the protein kinases. One-dimensional phosphopeptide patterns, obtained by digestion of the autophosphorylated protein kinases with S. aureus V8 protease, and two-dimensional fingerprints of the 125I-labelled proteins digested with a combination of trypsin and chymotrypsin, revealed a close similarity between the two subunits (51 kDa and 53 kDa) of the liver enzyme. Similar identity was observed between the 56-kDa and/or 58-kDa polypeptides of the skeletal muscle calmodulin-dependent protein kinase. The data suggest that the subunits of the liver and muscle protein kinases may be derived by partial proteolysis or by autophosphorylation. The peptide patterns for the 50-kDa and 60-kDa subunits of the brain enzyme confirmed that the two catalytic subunits represented distinct protein products. The comparison of the phosphopeptide maps and the two-dimensional peptide fingerprints, indicated considerable structural homology among the 50-kDa and 60-kDa subunits of the brain calmodulin-dependent protein kinase and the liver and muscle polypeptides. However, a significant number of unique peptides in the liver 51-kDa subunit, skeletal muscle 56-kDa, and the brain 50-kDa and 60-kDa polypeptides were observed and suggest the existence of isoenzyme forms. All calmodulin-dependent protein kinases rapidly phosphorylated synapsin I with a stoichiometry of 3-5 mol phosphate/mol protein. The two-dimensional separation of phosphopeptides obtained by tryptic/chymotryptic digestion of 32P-labelled synapsin I indicated that the same peptides were phosphorylated by all the calmodulin-dependent protein kinases. Such data represent the first structural and immunological comparison of the liver calmodulin-dependent protein kinase with the enzymes isolated from brain and skeletal muscle. The findings indicate the presence of a family of highly conserved calmodulin-dependent multifunctional protein kinases, with similar structural, immunological and enzymatic properties. The individual catalytic subunits appear to represent the expression of distinct protein products or isoenzymes which are selectively expressed in mammalian tissues.  相似文献   

6.
We found a novel 81-kDa acidic protein (ACAMP-81) in the bovine brain membrane fraction, which bound to calmodulin in a Ca(2+)-dependent manner. The present study reveals physicochemical properties and phosphorylation of this protein with various protein kinases in vitro. The Stokes radius and sedimentation coefficient were calculated to be 52 A and 2.05 S, respectively, suggesting that the structure of ACAMP-81 is highly elongated. Purified Ca2+/phospholipid-dependent protein kinase (protein kinase C), cAMP-dependent protein kinase, and Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) catalyzed the incorporation of 1.46, 0.72, and 0.44 mol of phosphate/mol of ACAMP-81, respectively. The amino acid residues of ACAMP-81 phosphorylated by either protein kinase C or cAMP-dependent protein kinase were almost exclusively on serine. Sequential phosphorylation of ACAMP-81 by cAMP-dependent protein kinase and protein kinase C resulted in the additional incorporation of 1.15 mol of [32P]phosphate into ACAMP-81. Comparison of phosphopeptide maps of ACAMP-81 phosphorylated by each kinase revealed that there are two classes of phosphorylatable polypeptide, one is phosphorylatable by both protein kinases which contained two polypeptides and the others are specific sites for protein kinase C.  相似文献   

7.
Two GTP-binding proteins which can be ADP-ribosylated by islet-activating protein, pertussis toxin, were purified from the cholate extract of bovine lung membranes. Both proteins had the same heterotrimeric structure (alpha beta gamma), but the alpha subunits were dissociated from the beta gamma when they were purified in the presence of AlCl3, MgCl2 and NaF. The molecular mass of the alpha subunit of the major protein (designated GLu, with beta gamma) was 40 kDa and that of the minor one was 41 kDa. The results of peptide mapping analysis of alpha subunits with a limited proteolysis indicated that GLu alpha was entirely different from the alpha of brain Gi or Go, while the 41-kDa polypeptide was identical with the alpha of bovine brain Gi. The kinetics of guanosine 5'-[3-O-thio]triphosphate (GTP[gamma S]) binding to GLu was similar to that to lung Gi but quite different from that to brain Go. On the other hand, incubation of GLu alpha at 30 degrees C caused a rapid decrease of GTP[gamma S] binding, the inactivation curve being similar to that of Go alpha but different from that of Gi alpha. The alpha subunits of lung Gi and GLu did not react with the antibodies against the alpha subunit of bovine brain Go. The antibodies were raised in rabbits against GLu alpha and were purified with a GLu alpha-Sepharose column. The purified antibodies reacted not only with GLu alpha but also with the 41-kDa protein and purified brain Gi alpha. However, the antibodies adsorbed with brain Gi alpha reacted only with GLu alpha, indicating antisera raised with GLu alpha contained antibodies that recognize both Gi alpha and GLu alpha, and those specific to GLu alpha. These results further indicate that GLu is different from Gi or Go. Anti-GLu alpha antibodies reacted with the 40-kDa proteins in the membranes of bovine brain and human leukemic (HL-60) cells. The beta gamma subunits were also purified from bovine lung. The beta subunit was the doublet of 36-kDa and 35-kDa polypeptides. The lung beta gamma could elicit the ADP-ribosylation of GLu alpha by islet-activating protein, increase the GTP[gamma S] binding to GLu and protect the thermal denaturation of GLu alpha. The antibodies raised against brain beta gamma cross-reacted with lung beta but not with lung gamma.  相似文献   

8.
Gz, a guanine nucleotide-binding protein with unique biochemical properties   总被引:12,自引:0,他引:12  
Cloning of a complementary DNA (cDNA) for Gz alpha, a newly appreciated member of the family of guanine nucleotide-binding regulatory proteins (G proteins), has allowed preparation of specific antisera to identify the protein in tissues and to assay it during purification from bovine brain. Additionally, expression of the cDNA in Escherichia coli has resulted in the production and purification of the recombinant protein. Purification of Gz from bovine brain is tedious, and only small quantities of protein have been obtained. The protein copurifies with the beta gamma subunit complex common to other G proteins; another 26-kDa GTP-binding protein is also present in these preparations. The purified protein could not serve as a substrate for NAD-dependent ADP-ribosylation catalyzed by either pertussis toxin or cholera toxin. Purification of recombinant Gz alpha (rGz alpha) from E. coli is simple, and quantities of homogeneous protein sufficient for biochemical analysis are obtained. Purified rGz alpha has several properties that distinguish it from other G protein alpha subunit polypeptides. These include a very slow rate of guanine nucleotide exchange (k = 0.02 min-1), which is reduced greater than 20-fold in the presence of mM concentrations of Mg2+. In addition, the rate of the intrinsic GTPase activity of Gz alpha is extremely slow. The hydrolysis rate (kcat) for rGz alpha at 30 degrees C is 0.05 min-1, or 200-fold slower than that determined for other G protein alpha subunits. rGz alpha can interact with bovine brain beta gamma but does not serve as a substrate for ADP-ribosylation catalyzed by either pertussis toxin or cholera toxin. These studies suggest that Gz may play a role in signal transduction pathways that are mechanistically distinct from those controlled by the other members of the G protein family.  相似文献   

9.
Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein (or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.  相似文献   

10.
A calmodulin-dependent protein kinase has been purified from rat spleen. The enzyme showed a remarkably similar substrate specificity and kinetic parameters to those of rat brain calmodulin-dependent protein kinase II, and exhibited cross-reactivity to a monoclonal antibody against rat brain calmodulin-dependent protein kinase II, indicating that the enzyme might be a calmodulin-dependent protein kinase II isozyme. The sedimentation coefficient was 13.9S, the Stokes radius was 67 A, and the molecular weight was calculated to be 380,000. The purified enzyme gave five polypeptides bands, corresponding to molecular weights of 51,000, 50,000, 21,000, 20,000, and 18,000, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incubation of the purified enzyme with Ca2+, calmodulin, and ATP under phosphorylating conditions induced the phosphorylation of all five polypeptides. When the logarithm of the velocity of the phosphorylation was plotted against the logarithm of the enzyme concentration (van't Hoff plot), slopes of 0.89, 0.94, and 1.1 were obtained for the phosphorylation of the 50/51-kDa doublet, 20/21-kDa doublet, and 18-kDa polypeptide, respectively. These results indicate that the phosphorylation of the five polypeptides is an intramolecular process, and further indicate that all five polypeptides are subunits of this enzyme. Of the five polypeptides, only the 50- and 51-kDa polypeptides bound to [125I]calmodulin, the other polypeptides not binding to it. A number of isozymic forms of calmodulin-dependent protein kinase II so far demonstrated in various tissues are known to be composed of subunits with molecular weights of 50,000 to 60,000 which can bind to calmodulin. Thus a new type of calmodulin-dependent protein kinase II was demonstrated in the present study.  相似文献   

11.
Heterotrimeric Go bound to the membranes of bovine brain, but Go alpha remained bound to the membranes even after activation with GTP gamma S. Furthermore, Go alpha bound to a Triton X-100-insoluble fraction of the membranes in a saturable manner. However, the 37-kDa Go alpha eliminated by trypsin at the amino-terminus could not bind to the fraction. Using a blot overlay approach of the Triton-insoluble fraction, only a 20-kDa protein was identified that interacts with Go alpha. These results indicate that Go alpha binds to a 20-kDa Triton-insoluble protein in the bovine brain membranes.  相似文献   

12.
Doublecortin-like protein kinase (DCLK) is a protein Ser/Thr kinase expressed in brain and believed to play crucial roles in neuronal development. To investigate the biological significance of DCLK, we isolated cDNA clones for zebrafish DCLK (zDCLK) and found that there were five splice variants of the kinase. In this study, the catalytic properties of a major isoform of zDCLK, which we designated as zDCLK1, and of an N-terminal truncated mutant retaining the kinase domain were examined by expressing them in Escherichia coli. Mutational analysis of recombinant zDCLK suggested that the kinase was activated not only by phosphorylation at Thr-576 in the activation loop but also by autophosphorylation at the other site(s) in the catalytic domain. zDCLK significantly phosphorylated protein substrates such as myelin basic protein, histones, and synapsin I. Subcellular localization of zDCLK and its N-terminal deletion mutant implicated that microtubule-association of zDCLK is mediated through N-terminal doublecortin like domain of this enzyme. Western blotting analysis and whole mount in situ hybridization revealed that zDCLK was highly expressed in brain and eyes after 24-h post fertilization. Gene knockdown of zDCLK using morpholino-based antisense oligonucleotides induced significant increase of apoptotic cells in the central nervous systems and resulted in the increase of the morphologically abnormal embryos in a dose-dependent manner. These results suggest that zDCLK may play crucial roles in the central nervous systems during the early stage of embryogenesis.  相似文献   

13.
The A-Kinase Anchor Protein AKAP 75 (formerly designated bovine brain P75) is a particulate brain protein that avidly binds the regulatory subunit (RII beta) of cAMP-dependent protein kinase II beta (Bregman, D. B., Hirsch, A.H. and Rubin, C.S. (1991) J. Biol. Chem. 266, 7207-7213). The formation of stable AKAP 75.RII beta complexes provides a potential mechanism for targeting physiological signals carried by cAMP to specific effector sites within neurons and other brain cells. We have now cloned and characterized the AKAP 75 gene. Its coding sequence is novel and unexpectedly short (1284 base pairs) and contains no introns. When the AKAP 75 gene was transfected into HEK 293 cells, a new RII beta-binding protein with an apparent Mr of 75,000 accumulated. A high proportion (approximately 65%) of the AKAP 75 gene product was excluded from the cytoplasm and was recovered in the 40,000 x g pellet derived from disrupted transfected cells. In contrast, cells transfected with a construct encoding 249 amino acids from the central and C-terminal regions of AKAP 75 produced an RII beta-binding protein (apparent Mr = 45,000) that was exclusively cytosolic. AKAP 75 is a novel protein composed of only 428 amino acid residues (Mr = 47,878). A highly acidic C-terminal region mediates the binding of RII beta (and cAMP-dependent protein kinase II beta), whereas a positively charged N-terminal segment contains structural features that are essential for the association of AKAP 75 with the cytoskeleton and/or intracellular membranes.  相似文献   

14.
Using as a starting material either a detergent extract or a protein fraction eluted from membranes with ethylene glycol bis (beta-aminoethyl ether)-N,N'-tetraacetic acid, we have isolated from human placental membranes a major substrate for the epidermal growth factor (urogastrone) receptor kinase (EGF kinase). The substrate was isolated both in an intact form, having a molecular mass of approximately 38-kDa (p38), and in a 35-kDa form (p35) representing a proteolytic cleavage product of p38. Both p38 and p35 cross-reacted with antibodies directed against bovine retinal transducin, but did not cross-react with antibodies directed against the 35-kDa beta subunit of human placental G-protein. Antisera directed against the placental EGF kinase substrate failed to react with either bovine or human placental src kinase substrate, p36. Conversely, antisera directed against p36 reacted only poorly with placental p38 or p35. Although p38 had a blocked amino terminus that precluded sequence analysis, p35 yielded an N-terminal sequence that was identical with residues 13-36 of human lipocortin. Our data clearly distinguish p38 from the previously described intestinal calcium binding protein calpactin I or p36 that is also a tyrosine kinase substrate, and our work points to a close relationship (if not identity) between p35 and a 35-kDa EGF receptor kinase substrate previously characterized in A431 cells. We conclude that p38 and p35, which very likely represent human placental lipocortin, may share only limited epitope homology with transducin alpha subunit; however, the possibility that p38, along with intestinal p36 and with a family of related calcium binding proteins, may, like transducin, play a role in receptor-mediated transmembrane signaling is discussed.  相似文献   

15.
The ATP.Mg-dependent type-1 protein phosphatase and its activating factor (protein kinase FA) were identified to exist in brain synaptosome. The inactive protein phosphatase was found to exist in the synaptosomal cytosol whereas its activating factor (protein kinase FA) was present in the synaptosomal membrane, indicating that the inactive protein phosphatase and its activating factor FA are localized in two separate subcellular compartments. The membrane-bound FA was found to exist in two forms; approximately 75% of FA is inactive and trypsin-resistant, whereas 25% of FA is active and trypsin-labile. When membranes were incubated with exogenous phospholipase C, the inactive/trypsin-resistant FA could be activated and sequestered to become the active/trypsin-labile FA in a time- and dose-dependent manner. Taken together, the results provide initial evidence that the activation-sequestration of membrane-bound protein kinase FA may represent one mode of control modulating the activity of protein kinase FA and thereby to activate protein phosphatase in brain synaptosome, representing an efficient regulatory mechanism for regulating neurotransmission in the central nervous system.  相似文献   

16.
The rotavirus nonstructural protein NSP5, a product of the smallest genomic RNA segment, is a phosphoprotein containing O-linked N-acetylglucosamine. We investigated the phosphorylation of NSP5 in monkey MA104 cells infected with simian rotavirus SA11. Immunoprecipitated NSP5 was analyzed with respect to phosphorylation and protein kinase activity. After metabolic labeling of NSP5 with 32Pi, only serine residues were phosphorylated. Separation of tryptic peptides revealed four to six strongly labeled products and several weakly labeled products. Phosphorylation at multiple sites was also shown by two-dimensional polyacrylamide gel electrophoresis (PAGE), where several isoforms of NSP5 with different pIs were identified. Analysis by PAGE of protein reacting with an NSP5-specific antiserum showed major forms at 26 to 28 and 35 kDa. Moreover, there were polypeptides migrating between 28 and 35 kDa. Treatment of the immunoprecipitated material with protein phosphatase 2A shifted the mobilities of the 28- to 35-kDa polypeptides to the 26-kDa position, suggesting that the slower electrophoretic mobility was caused by phosphorylation. Radioactive labeling showed that the 26-kDa form contained additional phosphate groups that were not removed by protein phosphatase 2A. The immunoprecipitated NSP5 possessed protein kinase activity. Incubation with [gamma-32P]ATP resulted in 32P labeling of 28- to 35-kDa NSP5. The distribution of 32P radioactivity between the components of the complex was similar to the phosphorylation in vivo. Assays of the protein kinase activity of a glutathione S-transferase-NSP5 fusion polypeptide expressed in Escherichia coli demonstrated autophosphorylation, suggesting that NSP5 was the active component in the material isolated from infected cells.  相似文献   

17.
1. On Western blot analysis, serum IgG from a healthy human subject reacted with a stress-induced protein, having an apparent molecular mass of 70 kDa, from PC12 cells. 2. This serum IgG also reacted with hsp70 (70-kDa heat-shock protein) purified from the bovine brain. 3. In 5 out of 34 healthy human subjects, IgG antibodies against hsp70 were detected. 4. These antibodies were directed against the stress-inducible 72-kDa protein, but did not cross-react with the constitutive 73-kDa protein.  相似文献   

18.
To clarify the intracellular signalling mechanisms of atrial natriuretic factor (ANF), we studied its effect on protein phosphorylation in plasma membranes of bovine adrenal cortical cells. ANF (1×10–7 M) inhibited phosphorylation of the 78-kDa protein kinase C (PKC) and a 240-kDa protein in specific manner. In parallel experiments, cGMP (0.5 mM) inhibited phosphorylation of only the 78-kDa PKC but it did not affect phosphorylation of the 240-kDa protein. Phosphorylation of the 78-kDa PKC was enhanced in a Ca2+-/phospholipid-dependent manner. However, after prolonged preincubation of plasma membranes with Ca2+ (0.5 mM), the incorporation of32P-radioactivity rapidly decreased in the 78-kDa PKC and subsequently increased in the 45- and 48-kDa protein bands due to Ca2+-dependent proteolytic degradation of 78-kDa PKC. Polyclonal antibodies against brain PCK were used to immunoblot and immunoprecipitate the 78-kDa PKC. Preincubation of plasma membranes with Ca2+ for varying times, followed by immunoblotting revealed a gradual loss of the immunoreactive 78-kDa PKC band in a time-dependent manner. Immunoprecipitation of phosphorylated 78-kDa PKC in plasma membranes showed that its phosphorylation was significantly inhibited in the presence of ANF as compared to control membranes, phosphorylated in the absence of ANF. The results in this present study document a new signal transduction mechanism of ANF at molecular level which possibly involves dephosphorylation of the 78-kDa PKC and a 240-kDa protein in a cGMP-dependent and-independent manner in bovine adrenal glomerulosa cell membranes. (Mol Cell Biochem141: 103–111, 1994)  相似文献   

19.
Heterotrimeric G proteins are believed to play important roles as signal transducing components in various mammalian sperm functions. To assess the distribution of G proteins in bovine sperm tails, we purified membranes by hypoosmotic swelling of bovine spermatozoa followed by disruption of plasma membranes in a homogenizer and various centrifugation steps. Electron microscopy revealed highly purified membranes of bovine sperm tails. Subsequently, antisera against synthetic peptides were used to identify G proteins in immunoblots. An antiserum directed against the C-terminal decapeptide of Gi3 and detecting all known pertussis toxin-sensitive alpha-subunits, reacted specifically with a 40-kDa protein. In contrast, various other specific peptide antisera against alpha-subunits did not detect any G protein in enriched tail membranes. An antiserum recognizing the beta 2-subunit of G proteins and an antiserum reacting with both beta 1- and beta 2-subunits identified a 35-kDa protein in sperm tail membranes. In contrast, antisera against the 36-kDa beta 1-subunit did not detect any relevant proteins in the membrane fraction. Neither G protein alpha-subunits nor G protein beta-subunits were found in the cytosol. Our results suggest that G proteins in membranes of tails of bovine spermatozoa most likely belong to a novel subtype of G protein alpha-subunits, whereas the putative beta-subunit could be identified as a beta 2-subunit.  相似文献   

20.
Tyrosine protein kinase present in the membrane fraction of bovine cerebral cortex were extracted and chromatographically fractionated. The activity associated with tyrosine protein kinases was fully extracted from the membranes by 1% sodium cholate and eluted in two peaks (I and II) during chromatography of protein extracts on DEAE-Toyopearl in the presence of sodium cholate. The predominant in cerebral cortex membrane tyrosine protein kinase of peak I (about 75% of the total activity) was purified 1930-fold by gel filtration on Sephacryl S-300, chromatography on hexyl- and phenyl-Sepharose and by rechromatography on DEAE-Toyopearl. The amount of the enzyme prepared from 250 g of bovine brain was 20 micrograms, the enzyme yield and specific activity being 3.8% and 3.9 nmol/mg protein/min, respectively. The purified protein kinase of peak I represents a protein with Mr of 62-63,000 (p62) capable of being autophosphorylated in the presence of [gamma-32P]. Protein kinase p62 phosphorylates enolase, tubulin and calpactin I as well as model substrates in the series: histone H5 greater than poly(G, T)n greater than or equal to histone H2A greater than poly(G, A, T)n, histone H4 greater than caseins, histones H1 and H2B, poly(G, A, L, T)n. The enzyme is specific for Mn2+ at the optimal concentration about 1 mM. The KmMn-ATP is 0.3 microM; Km for histone H5 and poly(G, T)n are 0.45 mg/ml and 0.06 mg/ml, respectively. The protein kinase p62 activity is inhibited by NaCl (IC50 approximately 75-100 mM) as well as by quercetin, adriamycin and lasalocid (IC50 approximately 14-34, 23 and 90 microM, respectively). It is concluded that protein kinase p62 is analogous to the c-src gene protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号