首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New base-type-edited transverse-relaxation optimized CT-HCN(C) experiments are presented that yield intra-base and sugar-to-base correlations for 13C−15N labeled RNA. High spectral resolution in the 13C and 15N dimensions is achieved by constant time (CT) frequency editing. A spectral editing filter applied during the CT 15N labeling period separates the correlation peaks arising from G/U and A/C nucleotide bases. This provides the increased spectral resolution required to unambiguously connect the 1H and 13C resonances in sugar and base moieties of RNA nucleotides. In addition, the experiment allows base type identification for each residue, and therefore presents an attractive spectroscopic alternative to nucleotide-specific isotope labeling. Application to a 33-nucleotide RNA aptamer demonstrates the performance of the new pulse scheme. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

2.
Large RNAs (>30 nucleotides) suffer from extensive resonance overlap that can seriously hamper unambiguous structural characterization. Here we present a set of 3D multinuclear NMR experiments with improved and optimized resolution and sensitivity for aiding with the assignment of RNA molecules. In all these experiments strong base and ribose carbon–carbon couplings are eliminated by homonuclear band-selective decoupling, leading to improved signal to noise and resolution of the C5, C6, and C1′ carbon resonances. This decoupling scheme is applied to base-type selective 13C-edited NOESY, 13C-edited TOCSY (HCCH, CCH), HCCNH, and ribose H1C1C2 experiments. The 3D implementation of the HCCNH experiment with both carbon and nitrogen evolution enables direct correlation of 13C and 15N resonances at different proton resonant frequencies. The advantages of the new experiments are demonstrated on a 36 nucleotides hairpin RNA from domain 5 (D5) of the group II intron Pylaiella littoralis using an abbreviated assignment strategy. These four experiments provided additional separation for regions of the RNA that have overlapped chemical shift resonances, and enabled the assignment of critical D5 bulge nucleotides that could not be assigned using current experimental schemes.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-5093-6  相似文献   

3.
A three-dimensional MQ-TROSY-HCN pulse sequence is presented which provides intra-base and sugar-to-base correlations for 13C, 15N labeled nucleic acids (RNA, DNA). The experiment simultaneously exploits the favorable relaxation properties of 1H-13C multiple quantum coherence for sugar carbons and of 13C TROSY-type spin evolution for base carbons. MQ-TROSY-HCN thus combines the advantages of MQ-HCN for sugar-to-base and TROSY-HCN for intra-base correlations in a single experiment. In addition, two slightly different implementations of the MQ-TROSY-HCN experiment ensure optimal performance for small and larger oligonucleotides, respectively. The advantages of the MQ-TROSY-HCN experiment compared to the best previous implementations of HCN are demonstrated for a 33 nucleotide RNA aptamer.  相似文献   

4.
TROSY-type optimization of liquid-state NMR experiments is based on the preservation of unique coherence transfer pathways with distinct transverse relaxation properties. The broadband decoupling of the 1H spins interchanges the TROSY and anti-TROSY magnetization transfer pathways and thus is not used in TROSY-type triple resonance experiments or is replaced with narrowband selective decoupling. To achieve the full advantage of TROSY, the uniform deuteration of proteins is usually required. Here we propose a new and general method for 1H broadband decoupling in TROSY NMR, which does not compromise the relaxation optimization in the 15N–1H moieties, but uniformly and efficiently refocuses the 1 J CH scalar coupling evolution in the 13C–1H moieties. Combined with the conventional 2H decoupling, this method enables obtaining high sensitivity TROSY-type triple resonance spectra with partially deuterated or fully protonated 13C,15N labeled proteins.  相似文献   

5.
A new TROSY relayed HCCH-COSY pulse sequence is introduced for correlating adenine H2 and H8 resonances in 13C-labeled RNA molecules. The pulse scheme provides substantial improvements in signal-to-noise compared to previously suggested experiments, and therefore will be suitable for NMR studies of larger RNA molecules. The experiment provides 13C chemical shifts for all carbon nuclei in the adenine base. This is advantageous for resolving spectral overlap in larger RNA molecules and provides a starting point for measuring additional parameters for these carbons in the adenine spin system.  相似文献   

6.
Initiation of X-chromosome inactivation in female mammals depends on the non-coding RNA Xist. We have solved the NMR structure of a 14-nucleotide hairpin with a novel AUCG tetraloop fold from a Xist A-repeat that is essential for silencing. The 1H, 13C, 15N and 31P chemical shift assignments are reported.  相似文献   

7.
Summary The advent of methods for preparing 15N- and 13C-labeled RNA oligonucleotides holds promise for extending the size of RNA molecules that can be studies by NMR spectroscopy. A practical limitation is the expense of the 13C label. It may therefore sometimes be desirable to prepare a relatively inexpensive 15N-labeled sample only. Here we show that the two-bond 1H-15N HSQC experiment can be used on 15N-labeled RNA to correlate the intranucleotide H1 and H8,H6,H5 resonances indirectly through the shared glycosidic nitrogen. The nonrefocused version of a standard HSQC experiment for 2D proton-detected 1H-15N chemical-shift correlation is applied in order to minimize the sensitivity loss due to the relatively fast spin-spin relaxation of RNA oligonucleotides. The experiment is applied to the 30-nucleotide RNA RBE3 which contains the high-affinity binding site of the RRE (rev response element) for the Rev protein of HIV. The results indicate that this simple experiment allows a straightforward identification of the base proton resonances CH5, CH6, UH5, UH6, purine H8, and AH2 as well as the intranucleotide H1 and H8,H6,H5 connectivities. When combined with a NOESY experiment, complete sequential assignments can be obtained.  相似文献   

8.
Summary A three-dimensional 1H,13C,31P triple resonance experiment, HCP-CCH-TOCSY, is presented which provides unambiguous through-bond correlation of all 1H ribose protons on the 5′ and 3′ sides of the intervening phosphorus along the backbone bonding network in 13C-labeled RNA oligonucleotides. The correlation of the complete ribose spin system to the intervening phosphorus is obtained by adding a C,C-TOCSY coherence transfer step to the triple resonance HCP experiment. The C,C-TOCSY transfer step, which utilizes the large and relatively uniform 1J(C,C) coupling constant (∼40 Hz for ribose carbons), efficiently correlates the phosphorus-coupled carbons observed in the HCP correlation experiment (i.e., C4′ and C5′ in the 5′ direction and C4′ and C3′ in the 3′ direction) to all other carbons in the ribose spin system. Of the additional correlations observed in the HCP-CCH-TOCSY, that to the relatively well-resolved anomeric H1′, C1′ resonance pairs provides the greatest gain in terms of facilitating assignment. The gain in spectral resolution afforded by chemical shift labeling with the anomeric resonances should provide a more robust pathway for sequential assignment over the intervening phosphorus in larger RNA oligonucleotides. The HCP-CCH-TOCSY experiment is demonstrated on a uniformly 13C,15N-labeled 19-nucleotide RNA stem-loop, derived from the antisense RNA I molecule found in the ColE1 plasmid replication control system.  相似文献   

9.
A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify 1H/13C sugar spin systems in 13C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of 13C?C1H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1??- and 3??-CH signal dispersion for complete spin system identification including 5??-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3??-untranslated region of the pre-mRNA of human U1A protein.  相似文献   

10.
The power of heteronuclear NMR spectroscopy to study macromoleculesand their complexes has been amply demonstrated over the last decade. Theobstacle to routinely applying these techniques to the study of DNA has beenthe synthesis of 13C,15N-labeled DNA. Here wepresent a simple and efficient method to generate isotope-labeled DNA forNMR studies that is as easy as that for isotope labeling of RNA. The methodwas used to synthesize a uniformly13 C,15N-labeled 32-nucleotide DNA that binds tohuman basic fibroblast growth factor with high affinity and specificity.Isotope-edited experiments were applied to the13 C,15N-labeled DNA bound to unlabeled protein,and the 13 C,15N-labeled DNA was also examined incomplex with 15N-labeled protein. The NMR experiments showthat the DNA adopts a well-defined stable structure when bound to theprotein, and illustrate the potential of13 C,15N-labeled DNA for structural studies ofDNA–protein complexes.  相似文献   

11.
《Phytochemistry》1986,25(6):1411-1413
A diterpene lactone was isolated from the cold petrol (60−80°) extract of rhizomes of Euphorbia acaulis, a plant material used by a tribe of central India for curing various inflammatory disorder. The diterpene, which was observed to be identical to caudicifolin on the basis of its physical constants, was subjected to high resolution NMR spectroscopy and X-ray crystallography examination. This paper reports the salient features of the 2D 1H NMR, 13C NMR and X-ray crystallography data of the compound. 13C NMR assignments were made by the use of proton noise decoupling, SFORD, APT and automatic spectral editing techniques. 1H NMR assignments were made with the aid of a COSY experiment for long range couplings and NOE correlated 2D-experiments. The 1H and 13C NMR spectral assignments have been further corroborated by H/C correlation experimental results.  相似文献   

12.
NMR spectroscopy has great potential to provide us with information on structure and dynamics at atomic resolution of glycoproteins in solution. In larger glycoproteins, however, the detrimental fast 1H transverse relaxation renders the conventional 1H-detected NMR experiments difficult. 13C direct detection potentially offers a valuable alternative to 1H detection to overcome the fast T2 relaxation. Here, we applied 13C-detected NMR methods to observe the NMR signals of 13C-labeled glycans attached to the Fc fragment of immunoglobulin G with a molecular mass of 56 kDa. Spectral analysis revealed that a 13C-detected 13C-13C NOESY experiment is highly useful for spectral assignments of the glycans of large glycoproteins. This approach would be, in part, complementary to 13C-13C TOCSY and 1H-detection experiments.  相似文献   

13.
The ongoing NMR method development effort strives for high quality multidimensional data with reduced collection time. Here, we apply ‘SOFAST-HMQC’ to frequency editing in 3D NOESY experiments and demonstrate the sensitivity benefits using highly deuterated and 15N, methyl labeled samples in H2O. The experiments benefit from a combination of selective T 1 relaxation (or L-optimized effect), from Ernst angle optimization and, in certain types of experiments, from using the mixing time for both NOE buildup and magnetization recovery. This effect enhances sensitivity by up to 2.4× at fast pulsing versus reference HMQC sequences of same overall length and water suppression characteristics. Representative experiments designed to address interesting protein NMR challenges are detailed. Editing capabilities are exploited with heteronuclear 15N,13C-edited, or with diagonal-free 13C aromatic/methyl-resolved 3D-SOFAST-HMQC–NOESY–HMQC. The latter experiment is used here to elucidate the methyl-aromatic NOE network in the hydrophobic core of the 19 kDa FliT-FliJ flagellar protein complex. Incorporation of fast pulsing to reference experiments such as 3D-NOESY–HMQC boosts digital resolution, simplifies the process of NOE assignment and helps to automate protein structure determination.  相似文献   

14.
While the use of 1H–13C methyl correlated NMR spectroscopy at natural isotopic abundance has been demonstrated as feasible on protein therapeutics as large as monoclonal antibodies, spectral interference from aliphatic excipients remains a significant obstacle to its widespread application. These signals can cause large baseline artifacts, obscure protein resonances, and cause dynamic range suppression of weak peaks in non-uniform sampling applications, thus hampering both traditional peak-based spectral analyses as well as emerging chemometric methods of analysis. Here we detail modifications to the 2D 1H–13C gradient-selected HSQC experiment that make use of selective pulsing techniques for targeted removal of interfering excipient signals in spectra of the NISTmAb prepared in several different formulations. This approach is demonstrated to selectively reduce interfering excipient signals while still yielding 2D spectra with only modest losses in protein signal. Furthermore, it is shown that spectral modeling based on the SMILE algorithm can be used to simulate and subtract any residual excipient signals and their attendant artifacts from the resulting 2D NMR spectra.  相似文献   

15.
This report describes a novel NMR approach for mapping the interaction surface between an unlabeled ligand and a 13C,15N-labeled protein. The method relies on the spin inversion properties of the dipolar relaxation pathways and records the differential relaxation of two spin modes, where ligand and protein 1H magnetizations are aligned either in a parallel or anti-parallel manner. Selective inversion of protein protons is achieved in a straightforward manner by exploiting the one-bond heteronuclear scalar couplings (1JCH, 1JNH). Suppression of indirect relaxation pathways mediated by bulk water or rapidly exchanging protons is achieved by selective inversion of the water signal in the middle of the NOESY mixing period. The method does not require deuteration of the protein or well separated spectral regions for the protein and the ligand, respectively. Additionally, in contrast to previous methods, the new experiment identifies side-chain enzyme ligand interactions along the intermolecular binding interface. The method is demonstrated with an application to the B12-binding subunit of glutamate mutase from Clostridium tetanomorphum for which NMR chemical shift changes upon B12-nucleotide loop binding and a high-resolution solution structure are available.  相似文献   

16.
Magic-angle-spinning solid-state 13C NMR spectroscopy is useful for structural analysis of non-crystalline proteins. However, the signal assignments and structural analysis are often hampered by the signal overlaps primarily due to minor structural heterogeneities, especially for uniformly-13C,15N labeled samples. To overcome this problem, we present a method for assigning 13C chemical shifts and secondary structures from unresolved two-dimensional 13C–13C MAS NMR spectra by spectral fitting, named reconstruction of spectra using protein local structures (RESPLS). The spectral fitting was conducted using databases of protein fragmented structures related to 13Cα, 13Cβ, and 13C′ chemical shifts and cross-peak intensities. The experimental 13C–13C inter- and intra-residue correlation spectra of uniformly isotope-labeled ubiquitin in the lyophilized state had a few broad peaks. The fitting analysis for these spectra provided sequence-specific Cα, Cβ, and C′ chemical shifts with an accuracy of about 1.5 ppm, which enabled the assignment of the secondary structures with an accuracy of 79 %. The structural heterogeneity of the lyophilized ubiquitin is revealed from the results. Test of RESPLS analysis for simulated spectra of five different types of proteins indicated that the method allowed the secondary structure determination with accuracy of about 80 % for the 50–200 residue proteins. These results demonstrate that the RESPLS approach expands the applicability of the NMR to non-crystalline proteins exhibiting unresolved 13C NMR spectra, such as lyophilized proteins, amyloids, membrane proteins and proteins in living cells.  相似文献   

17.
Spectra obtained by application of multidimensional Fourier Transformation (MFT) to sparsely sampled nD NMR signals are usually corrupted due to missing data. In the present paper this phenomenon is investigated on simulations and experiments. An effective iterative algorithm for artifact suppression for sparse on-grid NMR data sets is discussed in detail. It includes automated peak recognition based on statistical methods. The results enable one to study NMR spectra of high dynamic range of peak intensities preserving benefits of random sampling, namely the superior resolution in indirectly measured dimensions. Experimental examples include 3D 15N- and 13C-edited NOESY-HSQC spectra of human ubiquitin.  相似文献   

18.
A novel NMR pulse sequence has been developed that correlates the H2 resonances with the C2 and the N1 (N3) resonances in adenine nucleobases of 13C, 15N labeled oligonucleotides. The pulse scheme of the new 3D-HNHC experiment is composed of a 2J-15N-HSQC and a 1J-13C-HSQC and utilizes large 2J(H2, N1(N3)) and 1J(H2, C2) couplings. The experiment was applied to a medium-size 13C, 15N-labeled 36mer RNA. It is useful to resolve assignment ambiguities occurring especially in larger RNA molecules due to resonance overlap in the 1H-dimension. Therefore, the missing link in correlating the imino H3 resonances of the uracils across the AU base pair to the H8 resonances of the adenines via the novel pulse sequence and the TROSY relayed HCCH-COSY (Simon et al. in J Biomol NMR 20:173–176 2001) is provided. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The NMR spectra of the complex between the DNA-binding domain of the Dead ringer protein (DRI-DBD, Gly262-Gly398) and its DNA binding site (DRI-DBD:DNA, 26 kDa) have been optimized by biochemical and spectroscopic means. First, we demonstrate the utility of a modified 2D [F1,F2] 13C-filtered NOESY experiment that employs a 1JHC versus chemical shift optimized adiabatic 13C inversion pulse [Zwahlen, C. et al. (1997) J. Am. Chem. Soc., 119, 6711–6721]. The new sequence is shown to be more sensitive than previously published pulse schemes (up to 40% in favorable cases) and its utility is demonstrated using two protein–DNA complexes. Second, we demonstrate that the targeted replacement of an interfacial aromatic residue in the DRI-DBD:DNA complex substantially reduces line broadening within its NMR spectra. The spectral changes are dramatic, salvaging a protein–DNA complex that was originally ill suited for structural analysis by NMR. This biochemical approach is not a general method, but may prove useful in the spectral optimization of other protein complexes that suffer from interfacial line broadening caused by dynamic changes in proximal aromatic rings.  相似文献   

20.
The 13C NMR chemical shifts of 130 naturally occurring steroidal sapogenins and saponin derivatives published up to 1983 are listed and a number of methods for signal assignment are explained. The utility of 13C NMR spectral analysis for the structure elucidation of these compounds is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号