首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work from our laboratory has focused on mitochondrial DNA (mtDNA) repair and cellular viability. However, other events occur prior to the initiation of apoptosis in cells. Because of the importance of mtDNA in ATP production and of ATP in fuel cell cycle progression, we asked whether mtDNA damage was an upstream signal leading to cell cycle arrest. Using quantitative alkaline Southern blot technology, we found that exposure to menadione produced detectable mtDNA damage in HeLa cells that correlated with an S phase cell cycle arrest. To determine whether mtDNA damage was causatively linked to the observed cell cycle arrest, experiments were performed utilizing a MTS-hOGG1-Tat fusion protein to target the hOGG1 repair enzyme to mitochondria and enhance mtDNA repair. The results revealed that the transduction of MTS-hOGG1-Tat into HeLa cells alleviated the cell cycle block following an oxidative insult. Furthermore, mechanistic studies showed that Chk2 phosphorylation was enhanced following menadione exposure. Treatment of the HeLa cells with the hOGG1 fusion protein prior to menadione exposure resulted in an increase in the rate of Chk2 dephosphorylation. These results strongly support a direct link between mtDNA damage and cell cycle arrest.  相似文献   

2.
3.
The amounts of superoxide and hydrogen peroxide generated by mitochondria under physiological conditions can be enhanced by cellular stress. This study tested the hypothesis that the response to hemin-induced stress, which includes heme oxygenase-1 (HO-1) induction, predisposes to oxidative damage of mitochondrial DNA (mtDNA). Hepatic mitochondria from control, hemin-, and CO-exposed rats were incubated with tert-butyl hydroperoxide (tert-BH) or the NO donor 1,2,3,4-oxatriazolium, 5-amino-3- (3,4-dichlorophenyl)-chloride (GEA 3162). Mitochondrial total and oxidized glutathione (GSH and GSSG), total and free iron, and 8-oxo-7, 8-dihydro-2' deoxyguanosine (8-OHdG) were determined with and without oxidants. As expected, oxidation by tert-BH induced significant GSH depletion and increased amounts of free iron and 8-OhdG. Oxidant exposure rapidly produced a large mtDNA deletion involving the coding regions for cytochrome c oxidase (COX 1) and NADH dehydrogenase (ND1 and ND2). Hemin and CO greatly exacerbated susceptibility to the deletion of mtDNA by tert-BH, and this was attenuated by preincubation with GSH methyl ester. Analysis of mitochondria-associated proteins Bax and Bcl-xl in hemin- and CO-exposed rats showed significant responses, revealing interactions with apoptotic pathways. Thus, hemin-induced mitochondrial events sensitize a specific region of the mitochondrial genome to deletion, which is related to depletion of GSH and is not explained by effects of CO. This mtDNA damage is associated with altered expression of mitochondrial cell death proteins, thereby suggesting a novel mechanism for systemic or environmental pro-oxidants to influence apoptosis.  相似文献   

4.
The Norris Farms No. 36 cemetery in central Illinois has been the subject of considerable archaeological and genetic research. Both mitochondrial DNA (mtDNA) and nuclear DNA have been examined in this 700-year-old population. DNA preservation at the site was good, with about 70% of the samples producing mtDNA results and approximately 15% yielding nuclear DNA data. All four of the major Amerindian mtDNA haplogroups were found, in addition to a fifth haplogroup. Sequences of the first hypervariable region of the mtDNA control region revealed a high level of diversity in the Norris Farms population and confirmed that the fifth haplogroup associates with Mongolian sequences and hence is probably authentic. Other than a possible reduction in the number of rare mtDNA lineages in many populations, it does not appear as if European contact significantly altered patterns of Amerindian mtDNA variation, despite the large decrease in population size that occurred. For nuclear DNA analysis, a novel method for DNA-based sex identification that uses nucleotide differences between the X and Y copies of the amelogenin gene was developed and applied successfully in approximately 20 individuals. Despite the well-known problems of poor DNA preservation and the ever-present possibility of contamination with modern DNA, genetic analysis of the Norris Farms No. 36 population demonstrates that ancient DNA can be a fruitful source of new insights into prehistoric populations.  相似文献   

5.
The spider genus Hypochilus is currently restricted to cool, moist microhabitats in three widely separated montane regions of North America, providing an opportunity to study both deep (i.e., continental level) and shallow (within montane region) biogeographic history. Members of the genus also retain many plesiomorphic morphological characteristics, inviting the study of comparative rates of morphological evolution. In this paper, Hypochilus phylogeny and associated evolutionary problems are addressed using both new molecular (28S nDNA and CO1 mtDNA) and previously published (K. M. Catley, 1994, Am. Mus. Nov. 3088, 1-27) morphological data. Although the molecular data provide limited resolution of root placement within Hypochilus, most analyses are at least consistent with morphology-supported montane relationships of (Rockies (California, Appalachian)). The monophyly of Hypochilus species distributed in the California mountains is ambiguous, with several analyses indicating that this fauna may be paraphyletic with respect to a monophyletic Appalachian lineage. The montane regions differ in consistent ways in depths of both mitochondrial and nuclear phylogenetic divergence. Molecular clock analyses, in combination with arthropod-based mtDNA rate calibrations, suggest that the regional faunas are of different ages and that speciation in all faunas likely occurred prior to the Pleistocene. Limited intraspecific sampling reveals extraordinarily high levels of mtDNA cytochrome oxidase sequence divergence. These extreme divergences are most consistent with morphological stasis at the species level, despite preliminary evidence that Hypochilus taxa are characterized by fragmented population structures.  相似文献   

6.
Ling F  Shibata T 《The EMBO journal》2002,21(17):4730-4740
Yeast mhr1-1 was isolated as a defective mutation in mitochondrial DNA (mtDNA) recombination. About half of mhr1-1 cells lose mtDNA during growth at a higher temperature. Here, we show that mhr1-1 exhibits a defect in the partitioning of nascent mtDNA into buds and is a base-substitution mutation in MHR1 encoding a mitochondrial matrix protein. We found that the Mhr1 protein (Mhr1p) has activity to pair single-stranded DNA and homologous double-stranded DNA to form heteroduplex joints in vitro, and that mhr1-1 causes the loss of this activity, indicating its role in homologous mtDNA recombination. While the majority of the mtDNA in the mother cells consists of head-to-tail concatemers, more than half of the mtDNA in the buds exists as genome-sized monomers. The mhr1-1 deltacce1 double mutant cells do not maintain any mtDNA, indicating the strict dependence of mtDNA maintenance on recombination functions. These results suggest a mechanism for mtDNA inheritance similar to that operating in the replication and packaging of phage DNA.  相似文献   

7.
Navajo neurohepatopathy (NNH) is an autosomal recessive disease that is prevalent among Navajo children in the southwestern United States. The major clinical features are hepatopathy, peripheral neuropathy, corneal anesthesia and scarring, acral mutilation, cerebral leukoencephalopathy, failure to thrive, and recurrent metabolic acidosis with intercurrent infections. Infantile, childhood, and classic forms of NNH have been described. Mitochondrial DNA (mtDNA) depletion was detected in the livers of two patients, suggesting a primary defect in mtDNA maintenance. Homozygosity mapping of two families with NNH suggested linkage to chromosome 2p24. This locus includes the MPV17 gene, which, when mutated, causes a hepatocerebral form of mtDNA depletion. Sequencing of the MPV17 gene in six patients with NNH from five families revealed the homozygous R50Q mutation described elsewhere. Identification of a single missense mutation in patients with NNH confirms that the disease is probably due to a founder effect and extends the phenotypic spectrum associated with MPV17 mutations.  相似文献   

8.
Studies on the genetic diversity and relatedness of zoo populations are crucial for implementing successful breeding programmes. The European wildcat, Felis s. silvestris, is subject to intensive conservation measures, including captive breeding and reintroduction. We here present the first systematic genetic analysis of the captive population of Felis s. silvestris in comparison with a natural wild population. We used microsatellites and mtDNA sequencing to assess genetic diversity, structure and integrity of the ex situ population. Our results show that the ex situ population of the European wildcat is highly structured and that it has a higher genetic diversity than the studied wild population. Some genetic clusters matched the breeding lines of certain zoos or groups of zoos that often exchanged individuals. Two mitochondrial haplotype groups were detected in the in situ populations, one of which was closely related to the most common haplotype found in domestic cats, suggesting past introgression in the wild. Although native haplotypes were also found in the captive population, the majority (68%) of captive individuals shared a common mtDNA haplotype with the domestic cat (Felis s. catus). Only six captive individuals (7.7%) were assigned as wildcats in the STRUCTURE analysis (at K = 2), two of which had domestic cat mtDNA haplotypes and only two captive individuals were assigned as purebred wildcats by NewHybrids. These results suggest that the high genetic diversity of the captive population has been caused by admixture with domestic cats. Therefore, the captive population cannot be recommended for further breeding and reintroduction.  相似文献   

9.
In the paper, restriction-fragment length polymorphisms in mitochondrial DNA (mtDNA) were studied to test the hypothesis that sympatric populations of lake whitefish in the Allegash basin have recently diverged through sympatric speciation. Thirteen restriction enzymes were used to analyze mtDNA of 156 specimens representing 13 populations from eastern Canada and northern Maine where normal and dwarf phenotypes of whitefish exist in sympatry and allopatry. Two monophyletic assemblages of populations that exhibit different geographic distributions were identified. One showed an eastern distribution that expands from Cape Breton to the Allegash basin and the other exhibits a more western distribution. The Allegash basin was the only area of overlap. The western assemblage exhibited the normal size phenotype in all cases, whereas the eastern assemblage exhibited the normal size phenotype in allopatric conditions and the dwarf size phenotype in sympatry. The existence of sympatric pairs in the Allegash basin result from the secondary contact of two monophyletic groups of whitefish that evolved allopatrically in separate refugia during the last glaciation events. The weak mtDNA difference of sympatric pairs suggests that speciation of lake whitefish in eastern North America was accompanied by only minor alterations of the ancestral gene pool.  相似文献   

10.
In cultures of the mit- mutant strain Mb12 of Saccharomyces cerevisiae (carrying a mutation in the oli2 gene), 70% of the cells are petite mutants. More than 80% of the petites from Mb12 contain a particular mtDNA segment, denoted BB5, that is 880 bp long and carries a single MboI site. Thus, in cultures of Mb12, about 56% of the cells are petites containing the defective BB5 mtDNA genome, and only 30% are mit- cells containing parental Mb12 mtDNA. The BB5 mtDNA segment is also found in petites arising from the wild-type strain J69-1B (from which Mb12 was derived), but in this case mtDNA from only five out of 24 petites produced an 880 bp band after MboI digestion. Since J69-1B cultures carry a petite frequency of about 5%, approximately 1% of cells in J69-1B cultures contain the BB5 mtDNA segment. The difference between Mb12 and J69-1B cultures is reflected in the MboI digestion patterns of the respective mtDNAs. While Mb12 mtDNA contains a grossly superstoicheiometric 880 bp MboI fragment, the corresponding fragment in J69-1B mtDNA cannot be seen on stained gels, but can be readily visualized in Southern blots hybridized to a 32P-labelled DNA probe obtained from the 880 bp MboI fragment. The BB5 mtDNA segment was shown to contain the ori1 sequence (one of several very similar sequences in wild-type mtDNA thought to act as origins of replication of mtDNA) which confers the genetic property of very high suppressiveness on petites carrying this mtDNA. The efficient replication of BB5 mtDNA may contribute to its abundance in Mb12 cultures. Nevertheless, other factors must operate to influence the abundance of the BB5 mtDNA segment in cultures of different strains, the most important of which is likely to be the rate of excision of this mtDNA segment from the parental mtDNA genome.  相似文献   

11.
The mitochondrial DNA (mtDNA) molecule, carrying genes encoding for respiratory chain enzymes, is a primary candidate for demonstrating associations between genotype and athletic performance in mammalian species. In humans, variation at seven protein encoding mitochondrial loci has been implicated in influencing fitness and performance characteristics. Although thoroughbred horses are selected for racing ability, there have not been any previous reported associations between genotypes and racecourse performance. The multi-factorial nature of the inheritance of racing ability is an obvious complicating factor. However, mitochondrial gene variation may represent a measurable component contributing to performance variability. Previous population studies of thoroughbreds have shown the existence of D-loop variation. Importantly, we have observed that there is also independent and extensive functional mitochondrial gene variation in the current thoroughbred racehorse population and that significant associations exist between mtDNA haplotype, as defined by functional genes, and aspects of racing performance.  相似文献   

12.
13.
The data on sequence variation in the first hypervariable segment (HVSI) of human mitochondrial DNA (mtDNA) representing Caucasoid mtDNA lineages in the gene pools of Altaians and Khakassians are presented. Identification of the subgroups of Caucasoid mtDNA lineages found in the gene pools of the ethnic populations of the Altai-Sayan region and the adjacent territories, Altaians, Khakassians, Tuvinians, Buryats, and Yakuts was carried out. All Caucasoid mtDNA lineages belonged to groups H, HV1, J*, J1, J1b1, T1, T4, U1a, U2, U3, U4, U5a1, I, X and N1a. Taking into consideration possible contribution of southern Caucasoid and eastern European components to the formation of the anthropological type of Altai-Sayan ethnic populations, distribution of the revealed Caucasoid mtDNA lineages among the ethnic populations of the Central Asia, Western Asia, Caucasus, and Eastern Europe was examined. The applied approach permitted identification of 60% of mtDNA types the majority of which had southern Caucasoid origin. Less than 10% of mtDNA types were of eastern European origin. The gene pools of Altaians and Khakassians displayed the presence of autochthonous components represented by mtDNA types from subgroups U2 and U4.  相似文献   

14.
The data on sequence variation in the first hypervariable segment (HVSI) of human mitochondrial DNA (mtDNA) representing Caucasoid mtDNA lineages in the gene pools of Altaians and Khakassians are presented. Identification of the subgroups of Caucasoid mtDNA lineages found in the gene pools of the ethnic groups of the Altai–Sayan region and the adjacent territories, Altaians, Khakassians, Tuvinians, Buryats, and Yakuts was carried out. All Caucasoid mtDNA lineages belonged to groups H, HV1, J*, J1, J1b1, T1, T4, U1a, U2, U3, U4, U5a1, I, X and N1a. Taking into consideration possible contribution of southern Caucasoid and eastern European components to the formation of the anthropological type of Altai–Sayan ethnic groups, distribution of the revealed Caucasoid mtDNA lineages among the ethnic groups of the Central Asia, Western Asia, Caucasus, and Eastern Europe was examined. The applied approach permitted identification of 60% of mtDNA types the majority of which had southern Caucasoid origin. Less than 10% of mtDNA types were of eastern European origin. The gene pools of Altaians and Khakassians displayed the presence of autochthonous components represented by mtDNA types from subgroups U2 and U4.  相似文献   

15.
In mtDNA mutator mice, mtDNA mutations accumulate leading to a rapidly aging phenotype. However, there is little evidence of oxidative damage to tissues, and when analyzed ex vivo, no change in production of the reactive oxygen species (ROS) superoxide and hydrogen peroxide by mitochondria has been reported, undermining the mitochondrial oxidative damage theory of aging. Paradoxically, interventions that decrease mitochondrial ROS levels in vivo delay onset of aging. To reconcile these findings, we used the mitochondria‐targeted mass spectrometry probe MitoB to measure hydrogen peroxide within mitochondria of living mice. Mitochondrial hydrogen peroxide was the same in young mutator and control mice, but as the mutator mice aged, hydrogen peroxide increased. This suggests that the prolonged presence of mtDNA mutations in vivo increases hydrogen peroxide that contributes to an accelerated aging phenotype, perhaps through the activation of pro‐apoptotic and pro‐inflammatory redox signaling pathways.  相似文献   

16.
Hypersuppressiveness, as observed in Saccharomyces cerevisiae, is an extremely biased inheritance of a small mitochondrial DNA (mtDNA) fragment that contains a replication origin (HS [rho(-)] mtDNA). Our previous studies showed that concatemers (linear head-to-tail multimers) are obligatory intermediates for mtDNA partitioning and are primarily formed by rolling-circle replication mediated by Mhr1, a protein required for homologous mtDNA recombination. In this study, we found that Mhr1 is required for the hypersuppressiveness of HS [ori5] [rho(-)] mtDNA harboring ori5, one of the replication origins of normal ([rho(+)]) mtDNA. In addition, we detected an Ntg1-stimulated double-strand break at the ori5 locus. Purified Ntg1, a base excision repair enzyme, introduced a double-stranded break by itself into HS [ori5] [rho(-)] mtDNA at ori5 isolated from yeast cells. Both hypersuppressiveness and concatemer formation of HS [ori5] [rho(-)] mtDNA are simultaneously suppressed by the ntg1 null mutation. These results support a model in which, like homologous recombination, rolling-circle HS [ori5] [rho(-)] mtDNA replication is initiated by double-stranded breakage in ori5, followed by Mhr1-mediated homologous pairing of the processed nascent DNA ends with circular mtDNA. The hypersuppressiveness of HS [ori5] [rho(-)] mtDNA depends on a replication advantage furnished by the higher density of ori5 sequences and on a segregation advantage furnished by the higher genome copy number on transmitted concatemers.  相似文献   

17.
The transmission profiles of sperm mtDNA introduced into fertilized eggs were examined in detail in F1 hybrids of mouse interspecific crosses by addressing three aspects. The first is whether the leaked paternal mtDNA in fertilized eggs produced by interspecific crosses was distributed stably to all tissues after the eggs'' development to adults. The second is whether the leaked paternal mtDNA was transmitted to the subsequent generations. The third is whether paternal mtDNA continuously leaks in subsequent backcrosses. For identification of the leaked paternal mtDNA, we prepared total DNA samples directly from tissues or embryos and used PCR techniques that can detect a few molecules of paternal mtDNA even in the presence of 10(8)-fold excess of maternal mtDNA. The results showed that the leaked paternal mtDNA was not distributed to all tissues in the F1 hybrids or transmitted to the following generations through the female germ line. Moreover, the paternal mtDNA leakage was limited to the first generation of an interspecific cross and did not occur in progeny from subsequent backcrosses. These observations suggest that species-specific exclusion of sperm mtDNA in mammalian fertilized eggs is extremely stringent, ensuring strictly maternal inheritance of mtDNA.  相似文献   

18.
Individual yeast strains belonging to the Saccharomyces sensu stricto complex were isolated from Amarone wine produced in four cellars of the Valpolicella area (Italy) and characterized by conventional physiological tests and by RAPD-PCR and mtDNA restriction assays. Thirteen out of 20 strains were classified as Saccharomyces cerevisiae (ex S. cerevisiae p.r. cerevisiae and p.r. bayanus) and the remaining as Saccharomyces bayanus (ex S. cerevisiae p.r. uvarum). RAPD-PCR method proved to be a fast and reliable tool for identification of Saccharomyces sensu stricto strains and also gave intraspecific differentiation. Restriction analysis of mtDNA permitted to distinguish S. cerevisiae and S. bayanus species and to discern polymorphism among S. cerevisiae isolates. The assessment of the phenotypic diversity within the isolates by gas-chromatographic analysis of secondary fermentation products was explored. Small quantities of isobutanol were produced by most of the strains and higher amounts by some S. cerevisiae strains with phenotypes Gal- and Mel-; all S. bayanus strains produced low amounts of amilyc alcohols. From this study it appears that each winery owns particular strains, with different genetic and biochemical characteristics, selected by specific environmental pressures during the Amarone winemaking process carried out at low temperature in presence of high sugar content.  相似文献   

19.
In cultures of the mit? mutant strain Mb12 of Saccharomyces cerevisiae (carrying a mutation in the oli2 gene), 70% of the cells are petite mutants. More than 80% of the petites from Mb12 contain a particular mtDNA segment, denoted BB5, that is 880 bp long and carries a single MboI site. Thus, in cultures of Mb12, about 56% of the cells are petites containing the defective BB5 mtDNA genome, and only 30% are mit? cells containing parental Mb12 mtDNA. The BB5 mtDNA segment is also found in petites arising from the wild-type strain J69-1B (from which Mb12 was derived), but in this case mtDNA from only five out of 24 petites produced an 880 bp band after MboI digestion. Since J69-1B cultures carry a petite frequency of about 5%, approximately 1% of cells in J69-1B cultures contain the BB5 mtDNA segment. The difference between Mb12 and J69-1B cultures is reflected in the MboI digestion patterns of the respective mtDNAs. While Mb12 mtDNA contains a grossly superstoicheiometric 880 bp MboI fragment, the corresponding fragment in J69-1B mtDNA cannot be seen on stained gels, but can be readily visualized in Southern blots hybridized to a 32P-labelled DNA probe obtained from the 880 bp MboI fragment. The BB5 mtDNA segment was shown to contain the oril sequence (one of several very similar sequences in wild-type mtDNA thought to act as origins of replication of mtDNA) which confers the genetic property of very high suppressiveness on petites carrying this mtDNA. The efficient replication of BB5 mtDNA may contribute to its abundance in Mb12 cultures. Nevertheless, other factors must operate to influence the abundance of the BB5 mtDNA segment in cultures of different strains, the most important of which is likely to be the rate of excision of this mtDNA segment from the parental mtDNA genome.  相似文献   

20.
Faithful DNA replication is one of the most essential processes in almost all living organisms. However, the proteins responsible for organellar DNA replication are still largely unknown in plants. Here, we show that the two mitochondrion-targeted single-stranded DNA-binding (SSB) proteins SSB1 and SSB2 directly interact with each other and act as key factors for mitochondrial DNA (mtDNA) maintenance, as their single or double loss-of-function mutants exhibit severe germination delay and growth retardation. The mtDNA levels in mutants lacking SSB1 and/or SSB2 function were two- to four-fold higher than in the wild-type (WT), revealing a negative role for SSB1/2 in regulating mtDNA replication. Genetic analysis indicated that SSB1 functions upstream of mitochondrial DNA POLYMERASE IA (POLIA) or POLIB in mtDNA replication, as mutation in either gene restored the high mtDNA copy number of the ssb1-1 mutant back to WT levels. In addition, SSB1 and SSB2 also participate in mitochondrial genome maintenance by influencing mtDNA homologous recombination (HR). Additional genetic analysis suggested that SSB1 functions upstream of ORGANELLAR SINGLE-STRANDED DNA-BINDING PROTEIN1 (OSB1) during mtDNA replication, while SSB1 may act downstream of OSB1 and MUTS HOMOLOG1 for mtDNA HR. Overall, our results yield new insights into the roles of the plant mitochondrion-targeted SSB proteins and OSB1 in maintaining mtDNA stability via affecting DNA replication and DNA HR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号