首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel Enterococcus faecalis-Escherichia coli shuttle vectors that utilize the promoter and ribosome binding site of bacA on the E. faecalis plasmid pPD1 were constructed. The vectors were named pMGS100 and pMGS101. pMGS100 was designed to overexpress cloned genes in E. coli and E. faecalis and encodes the bacA promoter followed by a cloning site and stop codon. pMGS101 was designed for the overexpression and purification of a cloned protein fused to a Strep-tag consisting of 9 amino acids at the carboxyl terminus. The Strep-tag provides the cloned protein with an affinity to immobilized streptavidin that facilitates protein purification. We cloned a promoterless β-galactosidase gene from E. coli and cloned the traA gene of the E. faecalis plasmid pAD1 into the vectors to test gene expression and protein purification, respectively. β-Galactosidase was expressed in E. coli and E. faecalis at levels of 103 and 10 Miller units, respectively. By cloning the pAD1 traA into pMGS101, the protein could be purified directly from a crude lysate of E. faecalis or E. coli with an immobilized streptavidin matrix by one-step affinity chromatography. The ability of TraA to bind DNA was demonstrated by the DNA-associated protein tag affinity chromatography method using lysates prepared from both E. coli and E. faecalis that overexpress TraA. The results demonstrated the usefulness of the vectors for the overexpression and cis/trans analysis of regulatory genes, purification and copurification of proteins from E. faecalis, DNA binding analysis, determination of translation initiation site, and other applications that require proteins purified from E. faecalis.  相似文献   

2.
Covalently immobilized biotin was used as a biospecific adsorbant to investigate the application of streptavidin as an affinity domain for simultaneous purification and immobilization of recombinant proteins. A streptavidin-beta-galactosidase fusion protein was constructed and tested as a model system. The gene for streptavidin from Streptomyces avidinii was modified by polymerase chain reaction to mutate the stop codon and to facilitate cloning into an Escherichia coli expression vector yielding a versatile plasmid with 37 unique restriction enzyme sites at the 3' end. E. coli beta-galactosidase was cloned in-frame to the streptavidin gene. Analysis of lysates of induced recombinant E. coli cells by SDS-PAGE and Western blots indicated that the 133.6-kDa fusion protein was expressed. Sulfosuccinimidyl-6-(biotinamido) hexanoate was covalently immobilized on 3-aminopropyl-controled-pore glass beads. Exposure of recombinant cell lysates to this support indicated that streptavidin-beta-galactosidase was bioselectively adsorbed. The resulting biocatalyst contained 300 mg protein per gram of beads and exhibited a specific activity of 306 betamol/min per milligram protein with o-nitrophenyl-beta-D-galactopyranoside as substrate corresponding to approximately 50% of that observed for commercially pure E. coli beta-galactosidase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

3.
4.
5.
6.
7.
The Strep-tag constitutes a nine amino acid-peptide that binds specifically to streptavidin and occupies the same pocket where biotin is normally complexed. Since the Strep-tag participates in a reversible interaction it can be applied for the efficient purification of corresponding fusion proteins on affinity columns with immobilized streptavidin. Elution of the bound recombinant protein can be effected under mild buffer conditions by competition with biotin or a suitable derivative. In addition, Strep-tag fusion proteins can be easily detected in immunochemical assays, like Western blots or ELISAs, by means of commercially available streptavidin-enzyme conjugates. The Strep-tag/streptavidin system has been systematically optimized over the past years, including the engineering of streptavidin itself. Structural insight into the molecular mimicry between the peptide and biotin was furthermore gained from X-ray crystallographic analysis. As a result the system provides a reliable and versatile tool in recombinant protein chemistry. Exemplary applications of the Strep-tag are discussed in this review.  相似文献   

8.
9.
The conjugative transposon Tn916 (15 kilobases), originally identified in Streptococcus faecalis DS16, has been cloned as an intact element on the pBR322-derived vector pGL101 in Escherichia coli. The EcoRI F' (EcoRI F::Tn916) fragment of pAM211 (pAD1::Tn916) was cloned into the single EcoRI site of pGL101 to form the chimera, pAM120, by selecting for the expression of Tn916-encoded tetracycline resistance (Tcr). Interestingly, in the absence of continued selection for Tcr, Tn916 excised from pAM120 at high frequency. This excision event resulted in a plasmid species consisting of the pGL101 vector and a 2.7-kilobase restriction fragment comigrating with the EcoRI F fragment of pAD1 during agarose gel electrophoresis. Filter blot hybridization experiments showed the 2.7-kilobase fragment generated as a result of Tn916 excision to be homologous with the EcoRI F fragment of pAD1. Analogous results were obtained with another chimera, pAM170, generated by ligating the EcoRI D' (EcoRI D::Tn916) fragment of pAM210 (pAD1::Tn916) to EcoRI-digested pGL101. Comparison of the AluI and RsaI cleavage patterns of the EcoRI F fragment isolated after Tn916 excision with those from an EcoRI F fragment derived from pAD1 failed to detect any difference in the two fragments: data in support of a precise Tn916 excision event in E. coli. Subcloning experiments showed that an intact transposon was required for Tn916 excision and located the Tcr determinant near the single HindIII site on Tn916. Although excision occurred with high frequency in E. coli, Tn916 insertion into the E. coli chromosome was a much rarer event. Tcr transformants were not obtained when pAM120 DNA was used to transform a polA1 strain, E. coli C2368.  相似文献   

10.
11.
The Strep-tag II is an eight-residue minimal peptide sequence (Trp-Ser-His-Pro-Gln-Phe-Glu-Lys) that exhibits intrinsic affinity toward streptavidin and can be fused to recombinant proteins in various fashions. We describe a protocol that enables quick and mild purification of corresponding Strep-tag II fusion proteins--including their complexes with interacting partners--both from bacterial and eukaryotic cell lysates using affinity chromatography on a matrix carrying an engineered streptavidin (Strep-Tactin), which can be accomplished within 1 h. A high-affinity monoclonal antibody (StrepMAB-Immo) permits stable immobilization of Strep-tag II fusion proteins to solid surfaces, for example, for surface plasmon resonance analysis. Selective and sensitive detection on western blots is achieved with Strep-Tactin/enzyme conjugates or another monoclonal antibody (StrepMAB-Classic). Thus, the Strep-tag II, which is short, biologically inert, proteolytically stable and does not interfere with membrane translocation or protein folding, offers a versatile tool both for the rapid isolation of a functional gene product and for its detection or molecular interaction analysis.  相似文献   

12.
Expression vectors for streptavidin-containing chimeric proteins   总被引:8,自引:0,他引:8  
We have constructed expression vectors for streptavidin-containing chimeric proteins. These vectors carry the DNA sequence corresponding to the core region of the streptavidin molecule, and have several unique cloning sites which facilitate construction of gene fusions of streptavidin with a target protein. A chimeric protein of streptavidin and the target protein should be expressible in Escherichia coli by using the T7 expression system. Because of the strong and specific biotin-binding affinity of the streptavidin moiety, such streptavidin-containing chimeric proteins should extensively expand the applications of the streptavidin-biotin system, and offer a variety of applications as new biological tools.  相似文献   

13.
With demand increasing for the production of many different proteins for biophysical or biochemical analyses, rapid methods are needed for the cloning, expression and purification of native recombinant proteins. In particular, generic methods are required that are independent of the target gene sequence. To address this challenge we have constructed four Escherichia coli expression vectors that can be used for ligation independent cloning (LIC) of an amplified target gene sequence. These vectors represent the combinatorial pairing of two different parent vector backbones with two different affinity tags. The target gene is cloned downstream of the sequence coding for an affinity-tagged small ubiquitin related modifier (SUMO). Using enhanced green fluorescent protein (eGFP) as an example we demonstrate that the LIC procedure works with high efficiency for all four of the vectors. We also show that the resultant recombinant SUMO fusion proteins can be overexpressed in E. coli and readily isolated by standard affinity purification techniques. Importantly, the purified fusion product can be treated with recombinant SUMO hydrolase to yield a mature target protein with any residue except proline at the amino terminus. We demonstrate an application of this by generating recombinant eGFP containing a non-native amino terminal cysteine residue and using it as a substrate for expressed protein ligation (EPL). The reagents and techniques described here represent a generic method for the rapid cloning and production of a target protein, and would be appropriate for a high throughput genomic scale expression project.  相似文献   

14.
A family of restriction enzyme- and ligation-independent cloning vectors has been developed for producing recombinant His-tagged fusion proteins in Escherichia coli. These are based on pURI2 and pURI3 expression vectors which have been previously used for the successful production of recombinant proteins at the milligram scale. The newly designed vectors combines two different promoters (lpp(p)-5 and T7 RNA polymerase ?10), two different endoprotease recognition sites for the His?-tag removal (enterokinase and tobacco etch virus), different antibiotic selectable markers (ampicillin and erythromycin resistance), and different placements of the His?-tag (N- and C-terminus). A single gene can be cloned and further expressed in the eight pURI vectors by using six nucleotide primers, avoiding the restriction enzyme and ligation steps. A unique NotI site was introduced to facilitate the selection of the recombinant plasmid. As a case study, the new vectors have been used to clone the gene coding for the phenolic acid decarboxylase from Lactobacillus plantarum. Interestingly, the obtained results revealed markedly different production levels of the target protein, emphasizing the relevance of the cloning strategy on soluble protein production yield. Efficient purification and tag removal steps showed that the affinity tag and the protease cleavage sites functioned properly. The novel family of pURI vectors designed for parallel cloning is a useful and versatile tool for the production and purification of a protein of interest.  相似文献   

15.
Construction and application of new Corynebacterium glutamicum vectors   总被引:1,自引:0,他引:1  
The construction of new Corynebacterium glutamicum/Escherichia coli shuttle vectors with improved cloning properties and an increased chloramphenicol resistance (50 g ml–1 MIC) is described. A modified glnB gene encoding a Strep-tag II domain modified PII protein was expressed in C. glutamicum and streptavidin affinity chromatography was used to purify this protein.  相似文献   

16.
We have for the first time found and cloned the cDNA (AoglsA) of Aspergillus oryzae RIB40, which encodes a 49.9-kDa protein sharing 40% homology with the salt-tolerant glutaminase of Micrococcus luteus K-3 (Micrococcus glutaminase). AoglsA was subcloned into a series of expression vectors and expressed in Saccharomyces cerevisiae and Escherichia coli. The gene product, which we named AoGls, showed glutaminase activity and was produced in a cell wall fraction of S. cerevisiae and a soluble protein in E. coli. The highest expression level of 186 U/mg was obtained when the AoglsA was inserted into six bases downstream of the Shine-Dalgarno (SD) sequence of pKK223-3 and expressed in E. coli Rosetta (DE3). AoGls was purified by SuperQ-TOYOPEARL, glutamine affinity chromatography, and Butyl-TOYOPEARL. This is the first report on the overexpression and purification of a M. luteus K-3-type glutaminase cloned from an eucaryote.  相似文献   

17.
Pheromone-induced conjugal transfer of the hemolysin-bacteriocin plasmid pAD1 of Enterococcus faecalis is regulated by a cluster of determinants designated traA, traB, and regions C and E. The E region is believed to include a positive regulator that controls many structural genes related to conjugation. The pheromone-inducible Tn917-lac fusion NR5, located in the E region, is regulated by the products of traA, traB, and the C region. To more closely examine the effects of these genes on the induction of E region products, inserts in each of these genes were combined with the NR5 fusion in a novel approach involving triparental matings with a pAD1 miniplasmid and recombinational mutagenesis. Results indicate that (i) the traA gene product is a key repressor of the pheromone response; (ii) the traB gene product, in cooperation with a gene within or regulated by the E region, controls pheromone shutdown; (iii) a primary function of the C region gene product is in pheromone sensing, with secondary functions in pheromone shutdown and negative regulation; and (iv) the host in which the plasmid resides has a dramatic effect on the regulation of the NR5 fusion in traB and C region mutants. Numerous parallels were observed between the regulation of the NR5 fusion and the regulation of the aggregation and transfer response. These parallels aided in further defining the functions of particular regulatory determinants as well as further establishing the link between the regulation of the E region and the regulation of the aggregation and transfer response.  相似文献   

18.
19.
【目的】构建串联亲和纯化原核表达载体,用于研究细菌中(生理状态或接近生理条件下的)蛋白-蛋白相互作用。【方法】设计并合成两条串联亲和标签序列,分别可以在靶蛋白N端和C端融合Protein G和链亲和素结合肽(Streptavidin binding peptide,SBP)标签;以pUC18载体为骨架,去除原有的阻遏蛋白基因,构建组成型表达载体pNTAP和pCTAP。【结果】成功构建N端和C端标签表达载体pNTAP和pCTAP,它们在大肠杆菌(Escherichia coli)BL21(DE3)、肠出血性大肠杆菌O157:H7和痢疾杆菌福氏5型M90T菌株中都可以实现表达。【结论】本实验构建的两个串联亲和纯化表达载体可以在部分革兰氏阴性细菌中表达,为研究细菌内蛋白-蛋白相互作用及致病菌毒力蛋白的作用机制奠定了基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号