首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exons of the self-splicing pre-ribosomal RNA of Tetrahymena thermophila are joined accurately in vitro, even when only 33 nucleotides of the natural 5' exon and 38 nucleotides of the natural 3' exon remain. RNA fingerprint analysis was used to identify the unique ribonuclease T1 oligonucleotide generated by exon ligation. Secondary digests of the ligation junction oligonucleotide with ribonuclease A confirmed the identity of the fragment and demonstrated that the phosphate group that forms the phosphodiester bond at the ligation junction is derived from the 5' position of a uridine nucleotide in the RNA. This observation supports the prediction that the splice junction phosphate is derived from the 3' splice site. These results emphasize the mechanistic similarities of RNA splicing reactions of the group I introns, group II introns and nuclear pre-mRNA introns.  相似文献   

2.
Foot and mouth disease virus RNA has been treated with RNase H in the presence of oligo (dG) specifically to digest the poly(C) tract which lies near the 5' end of the molecule (10). The short (S) fragment containing the 5' end of the RNA was separated from the remainder of the RNA (L fragment) by gel electrophoresis. RNA ligase mediated labelling of the 3' end of S fragment showed that the RNase H digestion gave rise to molecules that differed only in the number of cytidylic acid residues remaining at their 3' ends and did not leave the unique 3' end necessary for fast sequence analysis. As the 5' end of S fragment prepared form virus RNA is blocked by VPg, S fragment was prepared from virus specific messenger RNA which does not contain this protein. This RNA was labelled at the 5' end using polynucleotide kinase and the sequence of 70 nucleotides at the 5' end determined by partial enzyme digestion sequencing on polyacrylamide gels. Some of this sequence was confirmed from an analysis of the oligonucleotides derived by RNase T1 digestion of S fragment. The sequence obtained indicates that there is a stable hairpin loop at the 5' terminus of the RNA before an initiation codon 33 nucleotides from the 5' end. In addition, the RNase T1 analysis suggests that there are short repeated sequences in S fragment and that an eleven nucleotide inverted complementary repeat of a sequence near the 3' end of the RNA is present at the junction of S fragment and the poly(C) tract.  相似文献   

3.
A T particle of vesicular stomatitis virus, containing most of the L-gene region, has been isolated. In vitro, these T particles synthesize exclusively a small adenine-rich RNA that is complementary to the T-particle genome. Partial sequence analysis of this small RNA indicates that it is an RNA of unique sequence with a length of approximately 45 nucleotides.  相似文献   

4.
5.
Thirty-eight bacterial isolates from raw milk samples in Queensland, Australia were identified as members of the genus Yersinia on the basis of biochemical profile, ability to hybridize with a genus-specific DNA probe, comparative 16S rDNA sequence analysis, and the presence of characteristic 16S rDNA signature nucleotides which occur in all Yersinia spp. Twenty-five of these isolates reacted with typing sera (O:22 or O:58) of Y. enterocolitica; the remainder were non-typable. None of the isolates displayed any of the phenotypic or genetic virulence-associated characteristics of Y. enterocolitica. Comparative 16S rDNA sequence analysis revealed that members of this group appear to represent a new sub-line within the genus Yersinia, most closely related to Y. frederiksenii hybridization group 2 (unnamed genomospecies 2). This finding was confirmed by DNA hybridization studies which indicated that the strains belonged to the unnamed genomospecies, Yersinia frederiksenii genomospecies 2, which is biochemically indistinguishable from Y. frederiksenii (Y. frederiksenii genomospecies 1). A 23-nucleotide 16S rDNA signature stretch which characterised these strains was identified.  相似文献   

6.
The interaction of nucleotides with T4 DNA and RNA ligases has been characterized using ultraviolet visible (UV-VIS) absorbance and fluorescence spectroscopy. Both enzymes bind nucleotides with the K(d) between 0.1 and 20 microM. Nucleotide binding results in a decrease of absorbance at 260 nm due to pi-stacking with an aromatic residue, possibly phenylalanine, and causes red-shifting of the absorbance maximum due to hydrogen bonding with the exocyclic amino group. T4 DNA ligase is shown to have, besides the catalytic ATP binding site, another noncovalent nucleotide binding site. ATP bound there alters the pi-stacking of the nucleotide in the catalytic site, increasing its optical extinction. The K(d) for the noncovalent site is approximately 1000-fold higher than for the catalytic site. Nucleotides quench the protein fluorescence showing that a tryptophan residue is located in the active site of the ligase. The decrease of absorbance around 298 nm suggests that the hydrogen bonding interactions of this tryptophan residue are weakened in the ligase-nucleotide complex. The excitation/emission properties of T4 RNA ligase indicate that its ATP binding pocket is in contact with solvent, which is excluded upon binding of the nucleotide. Overall, the spectroscopic analysis reveals important similarities between T4 ligases and related nucleotidyltransferases, despite the low sequence similarity.  相似文献   

7.
The microbial community diversity and composition of meromictic Soap Lake were studied using culture-dependent and culture-independent approaches. The water column and sediments were sampled monthly for a year. Denaturing gradient gel electrophoresis of bacterial and archaeal 16S rRNA genes showed an increase in diversity with depth for both groups. Late-summer samples harbored the highest prokaryotic diversity, and the bacteria exhibited less seasonal variability than the archaea. Most-probable-number assays targeting anaerobic microbial guilds were performed to compare summer and fall samples. In both seasons, the anoxic samples appeared to be dominated by lactate-oxidizing sulfate-reducing prokaryotes. High numbers of lactate- and acetate-oxidizing iron-reducing bacteria, as well as fermentative microorganisms, were also found, whereas the numbers of methanogens were low or methanogens were undetectable. The bacterial community composition of summer and fall samples was also assessed by constructing 16S rRNA gene clone libraries. A total of 508 sequences represented an estimated >1,100 unique operational taxonomic units, most of which were from the monimolimnion, and the summer samples were more diverse than the fall samples (Chao1 = 530 and Chao1 = 295, respectively). For both seasons, the mixolimnion sequences were dominated by Gammaproteobacteria, and the chemocline and monimolimnion libraries were dominated by members of the low-G+C-content group, followed by the Cytophaga-Flexibacter-Bacteroides (CFB) group; the mixolimnion sediments contained sequences related to uncultured members of the Chloroflexi and the CFB group. Community overlap and phylogenetic analyses, however, not only demonstrated that there was a high degree of spatial turnover but also suggested that there was a degree of temporal variability due to differences in the members and structures of the communities.  相似文献   

8.
It is well established that when E. coli 30S ribosomal subunits are irradiated with ultraviolet light under mild conditions a specific cross-link is formed between protein S7 and the 16S RNA. Methodology is presented for the analysis of the single nucleotide residue concerned in this cross-link. Firstly, the identity of the ribonuclease T1 octanucleotide attached to S7 is confirmed by a new method, which involves isolation and analysis of S7-polynucleotide complexes containing 30 -- 40 nucleotides. Secondly, the isolated S7-octanucleotide complex is digested successively with ribonuclease A, proteinase K and ribonuclease T2, and the nucleotides liberated are identified. The results show unambiguously that uridine residue number 1239 in the 16S RNA sequence is cross-linked to protein S7.  相似文献   

9.
The mitochondrion of Trypanosoma brucei lacks tRNA genes. Organellar translation therefore depends on import of cytosolic, nucleus-encoded tRNAs. Except for the cytosol-specific initiator tRNA(Met), all trypanosomal tRNAs function in both the cytosol and the mitochondrion. The initiator tRNA(Met) is closely related to the imported elongator tRNA(Met). Thus, the distinct localization of the two tRNAs(Met) must be specified by the 26 nucleotides, which differ between the two molecules. Using transgenic T. brucei cell lines and subsequent cell fractionation, we show that the T-stem is both required and sufficient to specify the localization of the tRNAs(Met). Furthermore, it was shown that the tRNA(Met) T-stem localization determinants are also functional in the context of two other tRNAs. In vivo analysis of the modified nucleotides found in the initiator tRNA(Met) indicates that the T-stem localization determinants do not require modified nucleotides. In contrast, import of native tRNAs(Met) into isolated mitochondria suggests that nucleotide modifications might be involved in regulating the extent of import of elongator tRNA(Met).  相似文献   

10.
5' tRNA editing has been demonstrated to occur in the mitochondria of the distantly related rhizopod amoeba Acanthamoeba castellanii and the chytridiomycete fungus Spizellomyces punctatus. In these organisms, canonical tRNA structures are restored by removing mismatched nucleotides at the first three 5' positions and replacing them with nucleotides capable of forming Watson-Crick base pairs with their 3' counterparts. This form of editing seems likely to occur in members of Amoebozoa other than A. castellanii, as well as in members of Heterolobosea. Evidence for 5' tRNA editing has not been found to date, however, in any other fungus including the deeply branching chytridiomycete Allomyces macrogynus. We predicted that a similar form of tRNA editing would occur in members of the chytridiomycete order Monoblepharidales based on the analysis of complete mitochondrial tRNA complements. This prediction was confirmed by analysis of tRNA sequences using a tRNA circularization/RT-PCR-based approach. The presence of partially and completely unedited tRNAs in members of the Monoblepharidales suggests the involvement of a 5'-to-3' exonuclease rather than an endonuclease in removing the three 5' nucleotides from a tRNA substrate. Surprisingly, analysis of the mtDNA of the chytridiomycete Rhizophydium brooksianum, which branches as a sister group to S. punctatus in molecular phylogenies, did not suggest the presence of editing. This prediction was also confirmed experimentally. The absence of tRNA editing in R. brooksianum raises the possibility that 5' tRNA editing may have evolved twice independently within Chytridiomycota, once in the lineage leading to S. punctatus and once in the lineage leading to the Monoblepharidales.  相似文献   

11.
12.
To understand the effect of air-drying pre-treatment, refrigeration, and freezing storages on microbial biomass and community structure in paddy soils, we measured total phospholipid fatty acid (PLFA) and PLFA profile after five treatments, including flooded (F), flooded-freezing (FF), flooded-air-drying (FAD), flooded-air-drying-freezing (FADF), and flooded-air-drying-refrigeration (FADR). FF and FADF treatments were followed by freeze-drying before analyzing the total PLFA and PLFA profile. The results showed that FF and FADF treatments increased the content of polyunsaturated fatty acids, but decreased that of branched chain saturated fatty acids. FAD treatment increased the concentrations of bacterial, aerobic bacterial, stress, Type I methanotrophs, and Gram-negative bacterial biomarkers, while it decreased the concentration of hydroxy fatty acid group and the ratios of cyclopropyl saturated fatty acids to their monoenoic precursors. FADR significantly decreased the concentration of total PLFA and all PLFA groups except for the mono-unsaturated fatty acid group. Statistical analysis with correspondence analysis showed that air-drying and storage changed the microbial community structure, but the effect of air-drying on soil microbial community structure was more pronounced than that of freezing. These results indicated that deep freezing followed by freeze-drying may be the most recommendable procedure before soil biochemical analysis in flooded paddy soils.  相似文献   

13.
Virtually all pre-mRNA introns begin with the sequence /GU and end with AG/ (where / indicates a border between an exon and an intron). We have previously shown that the G residues at the first and last positions of the yeast actin intron interact during the second step of splicing. In this work, we ask if other highly conserved intron nucleotides also take part in this /G-G/ interaction. Of special interest is the penultimate intron nucleotide (AG/), which is important for the second step of splicing and is in proximity to other conserved intron nucleotides. Therefore, we tested interactions of the penultimate intron nucleotide with the second intron nucleotide (/GU) and with the branch site nucleotide. We also tested two models that predict interactions between sets of three conserved intron nucleotides. In addition, we used random mutagenesis and genetic selection to search for interactions between nucleotides in the pre-mRNA. We find no evidence for other interactions between intron nucleotides besides the interaction between the first and last intron nucleotides.  相似文献   

14.
Chemical proteomics or activity based proteomics is a functional proteomics technology where molecular probes are used to target a selective group of functionally related proteins. Its emergence has enabled specific targeting of subproteomes, overcoming the limitations in dynamic range of traditional large‐scale proteomics experiments. Using a chemical proteomics strategy, we attempt to differentially profile the nucleotide‐binding proteome of active and resting platelets. We apply an affinity chromatography protocol using immobilized adenosine triphosphate, cyclic adenosine monophosphate, and cyclic guanosine monophosphate. The specificity of the immobilized nucleotides was demonstrated by competitive assays and by immunoblotting. LC coupled MS/MS was applied to identify the proteins recovered by our chemical proteomics strategy. When compared to a standard set of platelet lysate proteins, we confirmed that enrichment for nucleotide‐binding proteins was indeed taking place. Finally, by employing label‐free MS‐based comparative quantification, we found a small number of platelet proteins that show statistically significant difference between the active and resting nucleotide‐binding proteome.  相似文献   

15.
Solanum nodiflorum mottle virus (SNMV) RNA2 is a single-stranded, covalently closed circular molecule. RNase T2 or nuclease P1 digests of this RNA contain a minor nucleotide of unusual chromatographic and electrophoretic mobility. This nucleotide is resistant to further digestion by T2 or P1 ribonucleases, or by alkali, but is sensitive to venom phosphodiesterase digestion. Alkaline phosphatase digestion yields a product which is RNase T2 and P1 sensitive. The products of these various digests show that the minor nucleotide is a ribonuclease-resistant dinucleotide carrying a 2' phosphomonoester group with the core structure C2'p3'p5'A. This dinucleotide is found in a unique RNase T1 product of SNMV RNA2, thus establishing a unique location in the sequence for the 2' phosphomonoester group at residue 49. Identical results have been obtained with a second related virus. The phosphomonoester group probably results from the RNA ligation event by which the molecules were circularised.  相似文献   

16.
17.
The 49 nucleotides fragment derived from the 3' end of 16S rRNA by cloacin DF13, is not cleaved by ribonuclease T1 at a guanosine residue tha is present at 27 nucleotides from the 3' terminus (position 115 in 16S rRNA). Analysis of the isolated nucleotide indicates that it is a modified G residue. In vivo labeling with (3H)methionine shows that this G is methylated and co-chromatography with markers reveals that it is N2-methylguanosine.  相似文献   

18.
Bacteria of the Cytophaga-Flavobacterium-Bacteroides phylum (CFB-phylum) are numerically important members of many microbial communities. A suite of five 16S rRNA-targeted oligonucleotide probes for members of this group is described which was designed to dominantly target bacteria of the CFB-phylum that are found in particular habitats. For this we initially performed a literature survey-for the sources and sites of isolation of hitherto described members of the CFB-phylum. Probe CFB286 is mostly complementary to the 16S rRNA of species originally isolated from freshwater habitats, however, detects some marine and soil isolates and is the only probe which includes some food isolates. Probe CFB563 detects marine as well as animal-associated isolates. Probe CFB719, which also detects some environmental isolates, and probe CFB972 are mostly targeting animal-associated isolates. All probes are complementary to a variety of human-associated species within the CFB-phylum which, in the data set investigated (October 1998), made up 46% of all 16S rRNA sequences from the CFB-phylum. We conclude that it is difficult to find habitat-specific probes for members of the CFB-phylum and that the design of probes for monophyletic groups should remain the standard approach. Applicability of the probes for fluorescence in situ hybridization and specificity for single cell detection were evaluated for the four mentioned probes whereas the fifth, probe CFB1082, which almost exclusively targets human-associated species, was not further characterized. The new probes are of limited determinative value and should be used together with the already established probes for the CFB-phylum. It is the hybridization pattern observed for a given cell or culture with the enlarged probe set that is suggestive for its affiliation with a defined group within the CFB-phylum.  相似文献   

19.
Cleavage of the N-glycosidic bond that connects the nucleobase to the backbone in DNA leads to abasic sites, the most frequent lesion under physiological conditions. Several DNA polymerases preferentially incorporate an A opposite this lesion, a phenomenon termed "A-rule." Accordingly, KlenTaq, the large fragment of Thermus aquaticus DNA polymerase I, incorporates a nucleotide opposite an abasic site with efficiencies of A > G > T > C. Here we provide structural insights into constraints of the active site during nucleotide selection opposite an abasic site. It appears that these confines govern the nucleotide selection mainly by interaction of the incoming nucleotide with Tyr-671. Depending on the nucleobase, the nucleotides are differently positioned opposite Tyr-671 resulting in different alignments of the functional groups that are required for bond formation. The distances between the α-phosphate and the 3'-primer terminus increases in the order A < G < T, which follows the order of incorporation efficiency. Additionally, a binary KlenTaq structure bound to DNA containing an abasic site indicates that binding of the nucleotide triggers a remarkable rearrangement of enzyme and DNA template. The ability to resolve the stacking arrangement might be dependent on the intrinsic properties of the respective nucleotide contributing to nucleotide selection. Furthermore, we studied the incorporation of a non-natural nucleotide opposite an abasic site. The nucleotide was often used in studying stacking effects in DNA polymerization. Here, no interaction with Tyr-761 as found for the natural nucleotides is observed, indicating a different reaction path for this non-natural nucleotide.  相似文献   

20.
Galletto R  Bujalowski W 《Biochemistry》2002,41(28):8921-8934
The nature of the intermediates in the binding of MANT-ATP and MANT-ADP to the E. coli replicative factor DnaC protein (accompanying paper) has been examined using the fluorescence intensity, anisotropy, and transient dynamic quenching stopped-flow techniques. Using molar fluorescence intensities of individual intermediates of the reaction, we derived the Stern-Volmer equation that provides a direct method to quantitatively address the quenching of the fluorescence of a transient intermediate by an external, neutral quencher. The data indicate that in the first intermediate, (C)(1), the solvent has full access to the MANT group. Thus, the nucleotide-binding site is located on the surface of the protein, fully open to the solvent. Moreover, formation of the first intermediate does not affect the structure of the binding site. On the other hand, in the second intermediate, (C)(2), the entire binding site changes its conformation, resulting in diminished access of the solvent to the bound nucleotide. The time course of the fluorescence anisotropy in the reaction provides direct, unique insight into the mobility of bound nucleotides in each intermediate. The analysis is facilitated by the fact that the anisotropy can be expressed as a function of the relative molar intensities and steady-state anisotropies of the individual intermediates. The major decrease of the nucleotide mobility occurs in the formation of the first intermediate and reflects the fact that the MANT group is immobilized to a similar extent as the ribose region of the bound nucleotides. Transition to the second intermediate and closing of the binding site leads to only a moderate, additional decrease of nucleotide mobility. The temperature effect on the studied interactions indicates that the formation of individual intermediates is accompanied by very different enthalpy and entropy changes predominantly generated from the structural changes of the protein. Analysis of the salt effect indicates that the net release of a single ion, observed in equilibrium studies, occurs in the formation of the first intermediate. The lack of any salt effect on the (C)(1) <--> (C)(2) transition indicates that the closing of the binding site does not include a net ion release or uptake. Moreover, prior to the nucleotide binding, the conformational transition of the DnaC protein is exclusively controlled by the nucleotide binding and release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号