首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Alport syndrome is a mainly X-linked hereditary disease of basement membranes that is characterized by progressive renal failure, deafness, and ocular lesions. It is associated with mutations of the COL4A5 gene located at Xq22 and encoding the alpha5 chain of type IV collagen. We have screened 48 of the 51 exons of the COL4A5 gene by SSCP analysis and have identified 64 mutations and 10 sequence variants among 131 unrelated Alport syndrome patients. This represents a mutation-detection rate of 50%. There were no hot-spot mutations and no recurrent mutations in our population. The identified mutations were 6 nonsense mutations, 12 frameshift mutations, 17 splice-site mutations, and 29 missense mutations, 27 of the latter being glycine substitutions in the collagenous domain. Two of these occurred on the same allele in one patient and segregated with the disease in the family. We showed that some of the glycine substitutions could be associated with the lack of immunological expression of the alpha3(IV)-alpha5(IV) collagen chains in the glomerular basement membrane.  相似文献   

3.
4.
5.
Mutations in the basement membrane collagen gene COL4A5 cause the progressive renal glomerular nephropathy and typical hearing loss that occur in X-linked Alport syndrome. Nearly all cases involve distinct mutations, as expected for an X-linked disease that significantly reduces the fitness of affected males. A few exceptional COL4A5 mutations appear to be associated with a reduced disease severity and may account for a significant proportion of late-onset Alport syndrome in populations where a founder effect has occurred. The novel mutation reported here, COL4A5 arg1677gln, has been detected in three independently ascertained Ashkenazi-American families, causes a relatively mild form of nephritis with typical onset in the fourth or fifth decade, and may be involved in the etiology of a large proportion of adult-onset hereditary nephritis in Ashkenazi Jews. Received: 14 October 1996 / Revised: 11 December 1996  相似文献   

6.
7.
The COL4A5 gene encodes the alpha5 (type IV) collagen chain and is defective in X-linked Alport syndrome (AS). Here, we report the first systematic analysis of all 51 exons of COL4A5 gene in a series of 201 Italian AS patients. We have previously reported nine major rearrangements, as well as 18 small mutations identified in the same patient series by SSCP analysis of several exons. After systematic analysis of all 51 exons of COL4A5, we have now identified 30 different mutations: 10 glycine substitutions in the triple helical domain of the protein, 9 frameshift mutations, 4 in-frame deletions, 1 start codon, 1 nonsense, and 5 splice-site mutations. These mutations were either unique or found in two unrelated families, thus excluding the presence of a common mutation in the coding part of the gene. Overall, mutations were detected in only 45% of individuals with a certain or likely diagnosis of X-linked AS. This finding suggests that mutations in noncoding segments of COL4A5 account for a high number of X-linked AS cases. An alternative hypothesis is the presence of locus heterogeneity, even within the X-linked form of the disease. A genotype/phenotype comparison enabled us to better substantiate a significant correlation between the degree of predicted disruption of the alpha5 chain and the severity of phenotype in affected male individuals. Our study has significant implications in the diagnosis and follow-up of AS patients.  相似文献   

8.
Alport syndrome (AS) is an inherited disorder and clinically characterized by glomerulonephritis and end-stage kidney disease (ESRD). The aim of this study was to identify the gene responsible for glomerulopathy in a 4-generation Chinese pedigree. Exome sequencing was conducted in four patients of the family, and then direct sequencing was performed in other members of the pedigree. A novel missense mutation c.368G>A (p.Gly123Glu) in the collagen type IV alpha-5 gene (COL4A5) was found to be the genetic cause. The p.Gly123Glu mutation occurs prior to Gly-X-Y repeats in the alpha-5 chain of type IV collagen. Neither sensorineural hearing loss nor ocular abnormalities were present in patients of this family. Other clinical features, such as age of onset, age of ESRD, disease severity and complications, varied among patients of this family. Our finding may provide new insights into the cause and diagnosis of AS, and also have implications for genetic counseling.  相似文献   

9.
Autosomal recessive Alport syndrome is a progressive hematuric glomerulonephritis characterized by glomerular basement membrane abnormalities and associated with mutations in either the COL4A3 or the COL4A4 gene, which encode the alpha3 and alpha4 type IV collagen chains, respectively. To date, mutation screening in the two genes has been hampered by the lack of genomic structure information. We report here the complete characterization of the 48 exons of the COL4A4 gene, a comprehensive gene screen, and the subsequent detection of 10 novel mutations in eight patients diagnosed with autosomal recessive Alport syndrome. Furthermore, we identified a glycine to alanine substitution in the collagenous domain that is apparently silent in the heterozygous carriers, in 11.5% of all control individuals, and in one control individual homozygous for this glycine substitution. There has been no previous finding of a glycine substitution that is not associated with any obvious phenotype in homozygous individuals.  相似文献   

10.
11.
Sequence-tagged sites (STSs) were developed for three loci of uncertain X chromosomal localization (DXS122, DXS137, and DXS174) and were used to seed YAC contigs. Two contigs now total about 3.3 Mb formatted with 34 STSs. One contains DXS122 and DXS174 within 250 kb on single YACs; it is placed in Xq21.3–q22.1 by FISH analysis, which is consistent with somatic cell hybrid panel analyses and with the inclusion of a probe that detects polymorphism at the DXS118 locus already assigned to that general region. The other contig, which contains DXS137, is in Xq22.2 by FISH, consistent with cell hybrid analyses and with the finding that it covers the human COL4A5 and COL4A6 genes known to be in that vicinity. In addition to extending the cloned coverage of this portion of the X chromosome, these materials should aid, for example, in the further analysis of Alport syndrome.  相似文献   

12.
This is a study of a patient who manifests all of the features of a diffuse leiomyomatosis-Alport syndrome (DL-ATS), and her two-year-old son who has already been diagnosed with Alport syndrome. Fourteen years ago, the patient underwent a partial esophageal resection followed by a replacement with jejunum. Recently, she underwent a surgical resection of the esophagus due to esophageal dysfunction. Genetic analyses of COL4A5 and COL4A6 on the X-chromosome were efficiently performed using the genomic DNA of her son. We have identified a novel deletion of 194-kb in length, encompassing COL4A5-COL4A6 promoters as well as nearly the entire large intron 1 of COL4A5 and intron 2 of COL4A6. To uncover the relationship of the esophagus-specific occurrence of the tumor and the expression of those genes, immunohistochemical analyses of type IV collagen α chains were conducted in the non-affected individuals. The esophageal smooth muscle-specific expression of α5(IV) and α6(IV) chains in the gastrointestinal tract was observed. Moreover, CAG repeat analysis of the androgen receptor gene and an immunohistochemical analysis in the leiomyoma revealed clonal overgrowth of the cells which received X-inactivation on the non-affected allele. These results may suggest that the dominant effect was caused by the partial deletion of the esophageal smooth muscle-specific genes, COL4A5 and COL4A6.  相似文献   

13.
《The Journal of cell biology》1995,130(5):1219-1229
Genes for the human alpha 5(IV) and alpha 6(IV) collagen chains have a unique arrangement in that they are colocalized on chromosome Xq22 in a head-to-head fashion and appear to share a common bidirectional promoter. In addition we reported a novel observation that the COL4A6 gene is transcribed from two alternative promoters in a tissue-specific manner (Sugimoto, M., T. Oohashi, and Y. Ninomiya. 1994. Proc. Natl. Acad. Sci. USA. 91:11679-11683). To know whether the translation products of both genes are colocalized in various tissues, we raised alpha 5(IV) and alpha 6(IV) chain-specific rat monoclonal antibodies against synthetic peptides reflecting sequences near the carboxy terminus of each noncollagenous (NC)1 domain. By Western blotting alpha 6(IV) chain-specific antibody recognized 27-kD monomers and associated dimers of the human type IV collagen NC1 domain, which is the first demonstration of the presence in tissues of the alpha 6(IV) polypeptide as predicted from its cDNA sequence. Immunofluorescence studies using anti-alpha 6(IV) antibody demonstrated that in human adult kidney the alpha 6(IV) chain was never detected in the glomerular basement membrane, whereas the basement membranes of the Bowman's capsules and distal tubules were positive. The staining pattern of the glomerular basement membrane was quite different from that obtained with the anti- alpha 5(IV) peptide antibody. The alpha 5(IV) and alpha 6(IV) chains were colocalized in the basement membrane in the skin, smooth muscle cells, and adipocytes; however, little if any reaction was seen in basement membranes of cardiac muscles and hepatic sinusoidal endothelial cells. Thus, both genes are expressed in a tissue-specific manner, perhaps due to the unique function of the bidirectional promoter for both genes, which is presumably different from that for COL4A1 and COL4A2.  相似文献   

14.
Summary Ehlers-Danlos syndrome (EDS) type I is a generalized connective tissue disorder, the major manifestations of which are soft, velvety hyperextensible skin and moderately severe joint hypermobility. The gene defect or defects causing EDS type I have not yet been defined, but previous observations suggested that the syndrome may be caused by mutations in the genes for type-I collagen (COL1A1 and COL1A2) or type-III collagen (COL3A1). Here, we performed linkage studies for these three genes in large Azerbaijanian family with EDS type I. Three polymorphisms in the COL3A1 gene, two in the COL1A1 gene, and one in the COL1A2 gene were tested using the polymerase chain reaction. The data obtained excluded linkage of any of the three genes to EDS type I in the family.On leave of absence from Institute of Human Genetics, National Research Center of Medical Genetics, Moskvorechie St., 1. Moscow 115478, USSR  相似文献   

15.
We report here on the complete structure of the human COL3A1 and COL5A2 genes. Collagens III and V, together with collagens I, II and XI make up the group of fibrillar collagens, all of which share a similar structure and function; however, despite the similar size of the major triple-helical domain, the number of exons coding for the domain differs between the genes for the major fibrillar collagens characterized so far (I, II, and III) and the minor ones (V and XI). The main triple-helical domain being encoded by 49-50 exons, including the junction exons, in the COL5A1, COL11A1 and COL11A2 genes, but by 43-44 exons in the genes for the major fibrillar collagens. Characterization of the genomic structure of the COL3A1 gene confirmed its association with the major fibrillar collagen genes, but surprisingly, the genomic organization of the COL5A2 gene was found to be similar to that of the COL3A1 gene. We also confirmed that the two genes are located in tail-to-tail orientation with an intergenic distance of approximately 22 kb. Phylogenetic analysis suggested that they have evolved from a common ancestor gene. Analysis of the genomic sequences identified a novel single nucleotide polymorphism and a novel dinucleotide repeat. These polymorphisms should be useful for linkage analysis of the Ehlers-Danlos syndrome and related disorders.  相似文献   

16.
Li  Zhihui  Zhu  Peng  Huang  Hui  Pan  Ying  Han  Peng  Cui  Huanhuan  Kang  Zhijuan  Xun  Mai  Zhang  Yi  Liu  Saijun  Wang  Jian  Wu  Jing 《中国科学:生命科学英文版》2019,62(12):1572-1579
Alport syndrome(AS) is a hereditary progressive nephropathy characterized by hematuria, ultrastructural lesions of the glomerular basement membrane, ocular lesions and sensorineural hearing loss. Germline mutations of COL4 A5 are associated with X-linked AS with an extreme phenotypic heterogeneity. Here, we investigated a Chinese family with Alport syndrome. The proband was a 9-year-old boy with hematuria and proteinuria. Based on the test results of renal biopsy and immunofluorescence,the proband was initially diagnosed as Ig A nephropathy and the treatment was recommended accordingly. Meanwhile, we found that the treatment outcome was poor. Therefore, for proper clinical diagnosis and appropriate treatment, targeted exome-based next-generation sequencing has been undertaken. We identified a novel hemizygous single nucleotide deletion c.1902 del A in COL4 A5 gene. Segregation analysis identified that this novel mutation is co-segregated among the affected family members but absent in unaffected family members. The clinical diagnosis of the proband was revised as AS accompanied by Ig A nephropathy,which has been rarely reported. Our findings demonstrated the significance of the application of Genetic screening, expanded the mutation spectrum of COL4 A5 associated AS patients with atypical renal phenotypes and provided a good lesson to be learned from our detour during the diagnosis.  相似文献   

17.
D Vetrie  E Boye  F Flinter  M Bobrow  A Harris 《Genomics》1992,14(3):624-633
Alport syndrome (AS), an X-linked kidney disorder, has been shown to be caused by mutations in the gene for the alpha 5-chain of type IV collagen (COL4A5), which maps to Xq22. On the basis of the results of conventional Southern blot analysis of AS patient DNAs, we employed pulsed-field gel electrophoresis to characterize further three gene rearrangements at the 3'-end of alpha 5(IV). We were able to construct long-range restriction maps for all three of these patients and deduce the extent and nature of each rearrangement. One of these mutations is a 450-kb simple deletion that includes 12 kb of the alpha 5(IV) gene. A second mutation has been shown to be a direct duplication of 35 kb of alpha 5(IV) genomic DNA, and a third mutation involves a complex insertion/deletion event resulting in an overall loss of 25 kb.  相似文献   

18.
The Ehlers-Danlos syndrome (EDS) is a heterogeneous connective-tissue disorder of which at least nine subtypes are recognized. Considerable clinical overlap exists between the EDS I and II subtypes, suggesting that both are allelic disorders. Recent evidence based on linkage and transgenic mice studies suggest that collagen V is causally involved in human EDS. Collagen V forms heterotypic fibrils with collagen I in many tissues and plays an important role in collagen I fibrillogenesis. We have identified a mutation in COL5A1, the gene encoding the pro(alpha)1(V) collagen chain, segregating with EDS I in a four-generation family. The mutation causes the substitution of the most 5' cysteine residue by a serine within a highly conserved sequence of the pro(alpha)1(V) C-propeptide domain and causes reduction of collagen V by preventing incorporation of the mutant pro(alpha)1(V) chains in the collagen V trimers. In addition, we have detected splicing defects in the COL5A1 gene in a patient with EDS I and in a family with EDS II. These findings confirm the causal role of collagen V in at least a subgroup of EDS I, prove that EDS I and II are allelic conditions, and represent a, so far, unique example of a human collagen disorder caused by substitution of a highly conserved cysteine residue in the C-propeptide domain of a fibrillar collagen.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号