首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytosolic free Ca2+ concentration ([Ca2+]i) was monitored in quiescent atrial and ventricular myocytes isolated from guinea-pig hearts by the fura-2 fluorescence ratio technique. Recombinant human atrial natriuretic peptide (ANP) was found to reduce their basal [Ca2+]i level in a dose-dependent manner. Dibutyryl-cGMP mimicked the effect of ANP. Neither the prior application of caffeine nor removal of extracellular Na+ impaired the ANP effect. ANP had no inhibitory effect on voltage-gated Ca2+ currents measured by a whole-cell patch clamp technique. The ANP-induced [Ca2+]i decrease was abolished by orthovanadate. Thus, it is concluded that ANP reduces the basal [Ca2+]i presumably through the cGMP-mediated activation of the plasma membrane Ca2(+)-pump in cardiac myocytes.  相似文献   

2.
17Beta-estradiol has potent Ca2+ ionophore capability and its signaling in macrophages is mediated through binding to surface and genomic receptors, resulting in transient nitric oxide (NO) elaboration. We decided to examine if the transient release of NO is due to Ca2+ influx pattern or the quenching effect of superoxide (*O2-) through peroxynitrite formation. Differential chelation of intracellular Ca2+ ([Ca2+]i) showed that NO generation was favored by [Ca2+]i concentration of 237 nM. Application of an estrogen receptor antagonist ICI 182 780 resulted in attenuation of estradiol mediated NO release. Studies directed at identifying the possible role of *O2-; in the attenuation of NO showed no supportive evidence. Inhibition of extracellular Ca2+ channel or extracellular and intracellular Ca2+ channels showed data consistent with a case for optimum Ca2+ influx signal favoring iNOS gene expression, accompanied by an elevation in iNOS protein. These data show that Ca2+ influx pattern determines macrophage NO elaboration.  相似文献   

3.
We investigated the effects of cGMP-elevating agents, including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and sodium nitroprusside (SNP), on cGMP accumulation and on carbachol (CCh)-stimulated intracellular calcium ([Ca2+]i) mobilisation in SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells and in primary cultured cat iris sphincter smooth muscle (CISM) cells. The stimulatory effects of the natriuretic peptides on cGMP production correlated well with their inhibitory effects on CCh-induced [Ca+1]i mobilisation, and these effects were significantly more pronounced in the SV-CISM-2 cells than in the CISM cells. Thus, ANP (1 microM) increased cGMP production in the SV-CISM-2 cells and CISM cells by 487- and 1.7-fold, respectively, and inhibited CCh-induced [Ca2+]i mobilisation by 95 and 3%, respectively. In the SV-CISM-2 cells, ANP and CNP dose dependently inhibited CCh-induced [Ca2+]i mobilisation with IC50 values of 156 and 412 nM, respectively, and dose dependently stimulated cGMP formation with EC50 values of 24 and 88 nM, respectively, suggesting that the inhibitory actions of the peptides are mediated through cGMP. Both ANP and CNP stimulated cGMP accumulation in a time-dependent manner. The potency of the cGMP-elevating agents were in the following order: ANP>CNP>SNP; these agents had no effect on cAMP accumulation. The inhibitory effects of the natriuretic peptides were mimicked by 8-Br-cGMP, a selective activator of cGMP-dependent protein kinase. LY83583, a soluble guanylyl cyclase inhibitor, significantly inhibited SNP-induced cGMP formation but had no effect on those of ANP and CNP. The basal activities of the guanylyl cyclase and the dissociation constant (Kd) and total receptor density (Bmax) values of the natriuretic peptide receptor for [125I]ANP binding were not significantly different between the two cell types. The cGMP system, as with the cAMP system, has a major inhibitory influence on the muscarinic responses in the iris sphincter smooth muscle cells, and SV-CISM-2 cells can serve as an excellent model for investigating the cross talk between cGMP and the Ca2+ signalling system.  相似文献   

4.
C-type natriuretic peptide (CNP), the third member of the atrial natriuretic peptide family, acts via guanylyl cyclase containing GC-B receptors to stimulate cyclic guanosine 3',5' monophosphate (cGMP) accumulation in the gonadotrope-derived alphaT3-1 cell line and rat pituitary cells. This effect is inhibited by concomitant activation of the phospholipase C (PLC)-coupled gonadotrophin hormone-releasing hormone (GnRH) receptors in these cells. Since GnRH stimulates gonadotrophin secretion from gonadotropes by increasing the cytosolic Ca2+ concentration ([Ca2+]i) and natriuretic peptides have been found to influence PLC/Ca2+ signalling in other systems, we have investigated whether CNP can alter basal or GnRH-stimulated changes in [Ca2+]i in alphaT3-1 cells. In Ca 2+-containing medium, 10(-7) M CNP modestly, but significantly increased [Ca2+]i over several min, but subsequently inhibited the elevation of [Ca2+]i in response to 10(-7) M GnRH in both Ca2+-containing and Ca2+-free medium. This inhibitory effect was mimicked by 10(-6) M 8-Br-cGMP, but not by ANP, indicating mediation by cyclic GMP and the CNP-specific GC-B receptor. However, basal and GnRH-stimulated inositol (1,4,5) trisphosphate (Ins(1,4,5)P3) generation were not measurably affected by CNP, and CNP failed to affect thapsigargin-induced capacitative Ca2+ entry. Thus, it appears that the cross-talk between CNP and GnRH in these cells is reciprocal in that GnRH modulates CNP effects on cGMP generation, whereas, CNP modulates GnRH effects on Ca2+ mobilisation.  相似文献   

5.
A concentration-dependent elevation of intracellular calcium ([Ca2+]i) and oxidation of NAD(P)H occurred in alveolar macrophages during exposure to sublethal tert-butylhydroperoxide concentrations (tBOOH) (< or = 100 microM in 1 ml with 1 x 10(6) cells). Oxidation of NAD(P)H preceded a rise in [Ca2+]i. The elevation of [Ca2+]i was reversible at < 50 microM tBOOH exposure and the return to the steady state [Ca2+]i correlated temporally with repletion of NAD(P)H. At > 50 microM tBOOH, the changes in NAD(P)H and [Ca2+]i were sustained. The relative contributions of NADPH and NADH oxidation were examined by varying the substrates supplying reducing equivalents and by inhibiting glutathione reductase activity. The results suggested that at < 50 microM tBOOH, oxidation of NADPH predominated, while at > 50 microM tBOOH, NADH oxidation predominated. A complex relationship between the relative roles of NADPH and NADH oxidation and the elevation of [Ca2+]i was revealed: (i) reversible oxidation of NADPH is associated with the initial and reversible elevation of [Ca2+]i at < 50 microM tBOOH; (ii) the sustained elevation of [Ca2+]i at > 50 microM tBOOH correlates with the sustained oxidation of NADH; and (iii) the changes in [Ca2+]i did not depend on influx of extracellular Ca2+. We speculate that at low tBOOH, Ca2+ was released from the NADPH/NADP(+)-sensitive mitochondrial Ca2+ pool while higher tBOOH caused additional Ca2+ release from GSH/GSSG-sensitive nonmitochondrial Ca2+ pools with sustained elevation of [Ca2+]i due to decreased mitochondrial Ca2+ reuptake.  相似文献   

6.
Using 19F-NMR and the intracellular divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid, we have recently demonstrated that Pb2+ treatment elevates the intracellular free calcium ion concentration ([Ca2+]i) of rat osteoblastic osteosarcoma cells (ROS 17/2.8) (Proc. Natl. Acad. Sci. USA (1989) 86, 5133-5135). In this study, we have examined the effects of Pb2+ on the basal and parathyroid hormone (PTH)-stimulated levels of [Ca2+]i and cAMP in cultured ROS 17/2.8 cells. PTH treatment (400 ng/ml) stimulated a 150% elevation in [Ca2+]i from a control level of 105 +/- 25 nM to a concentration of 260 +/- 24 nM. Treatment of ROS 17/2.8 cells with Pb2+ (5 microM) alone produced a 50% elevation in the [Ca2+]i to 155 +/- 23 nM. Pb2+ treatment diminished subsequent elevation in [Ca2+]i in response to PTH administration thereby limiting the peak increase in [Ca2+]i to only 25% or 193 +/- 22 nM. In contrast to the dampening effect of Pb2+ on the peak rise in [Ca2+]i produced by PTH, Pb2+ (1 to 25 microM) had no effect on PTH-induced increments in intracellular cAMP levels. Hence, Pb2+ dissociated the PTH stimulation of adenylate cyclase from PTH effects on [Ca2+]i and shifted the regulation of [Ca2+]i beyond the control of PTH modulation. These observations further extend the hypothesis that an early toxic effect of Pb2+ at the cellular level is perturbation of [Ca2+]i homeostasis.  相似文献   

7.
Macrophage cytocidal activation requires the sequential impingement on the macrophage of a priming stimulus (interferon [IFN] alpha, beta, or gamma) and a triggering stimulus (such as polyinosinic acid:polycytidylic acid [poly [I:C]] or bacterial lipopolysaccharide). The mechanism of progression from the IFN-primed state to the cytocidal state is poorly understood. By quantifying the level of expression of a gene product (complement component factor B [Bf]) associated with cytocidal activation and through the use of phenotypically distinct populations of macrophages (unprimed and IFN-primed), we have investigated the functional necessity of changes in intracellular concentration of free calcium ions ([Ca2+]i) in signaling the transition from the primed to the cytocidal state. Elevating the [Ca2+]i by incubation of unprimed macrophages with the calcium ionophore, ionomycin, failed to induce the expression of Bf. By contrast, Bf was expressed at high levels when IFN-primed macrophages were exposed to ionomycin, suggesting that priming induced within the macrophages the capacity to respond to a nonspecific change in [Ca2+]i. Quantification of the [Ca2+]i in response to exposure to ionomycin revealed an initial transient elevation, followed by a secondary sustained component. No differences in these changes were observed between unprimed and IFN-primed macrophages. We therefore questioned if changes in [Ca2+]i were also implicated in the transition between the primed and the cytocidal state using the ligand, poly [I:C]. In contrast to ionomycin, incubation of IFN-primed macrophages with poly [I:C] did not sustain measurable increases in [Ca2+]i, yet fully stimulated the transition from the IFN primed to the cytocidal state. However, incubation of IFN-primed macrophages with poly [I:C] in the presence of 1) a Ca2+/ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid buffer calculated to clamp the extracellular concentration of free calcium ions to a value approximately equal to the resting [Ca2+]i; 2) the calcium channel blocker verapamil; or 3) the intracellular Ca2+ antagonists (W-7, W-13, and TMB-8) substantially inhibited the induction of Bf. Collectively, these data support the following conclusions. First, that changes in [Ca2+]i comprise an important element in the induction of progression from the IFN-primed to the cytocidal state. Second, the failure to detect global changes in [Ca2+]i in response to the ligand, poly [I:C], suggests that changes in [Ca2+]i or Ca2+ movement may occur in either a spatially restricted or in an asynchronous cyclical fashion and are not detected by population fluorescence measurements. Third, the source of the relevant Ca2+ is extracellular. Fourth, our findings suggest that priming influences macrophage functional responses at a locus that is distal to the changes in [Ca2+]i, thereby potentially allowing signaling processes to be utilized to initiate different cellular responses.  相似文献   

8.
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation.  相似文献   

9.
《The Journal of cell biology》1993,120(4):1003-1010
Intracellular calcium ([Ca2+]i) was measured in FURA 2-loaded endothelial cells plated on fibronectin or vitronectin. Average values for [Ca2+]i increased to approximately twofold above basal levels by approximately 1 h after plating, and then declined. The increase in [Ca2+]i required extracellular calcium. Substituting potassium for sodium in the medium reduced the elevation of [Ca2+]i, a result that rules out the involvement of Na-Ca exchangers or voltage-dependent calcium channels, but that is consistent with the involvement of voltage-independent calcium channels. Plating cells on an anti-integrin beta 1 subunit antibody gave a similar [Ca2+]i response, but clustering beta 1 integrins with the same antibody, or occupying integrins with RGD (arg-gly-asp) peptides had no effect. Time course measurements on single cells revealed that in each cell [Ca2+]i rose abruptly at some point during spreading, from the basal level to a higher steady-state level that was maintained for some time. The elevated [Ca2+]i was unrelated to previously observed changes in intracellular pH, because chelating the Ca2+ in the medium failed to inhibit the elevation of pHi that occurred during cell spreading. In conclusion, these results show that integrin-mediated cell spreading can regulate [Ca2+]i, and the pathways involved are distinct from those that regulate intracellular pH.  相似文献   

10.
Calcium is an important regulator of cell function, and may be influenced by the intracellular sodium content. In the present study, the Na(+)-ionophore, monensin, was used to investigate the interrelationship between changes in intracellular Na+ concentration ([Na+]i) and elevation of cytosolic Ca2+ concentration ([Ca2+]i) in FRTL-5 thyroid cells. Cytoplasmic Ca2+ levels were measured using the fluorescent dye, indo-1. Monensin induced a dose-dependent increase in [Ca2+]i in FRTL-5 cells. Inhibitors of intracellular Ca2+ release, TMB-8 and ryanodine, were unable to prevent the monensin effect on [Ca2+]i. The alpha 1-receptor antagonist, prazosin, did not block the monensin-stimulated increase in [Ca2+]i. In the absence of extracellular calcium there was a marked diminution in the monensin effect on [Ca2+]i, yet calcium channel antagonists (nifedipine, diltiazem and verapamil) did not inhibit the response. Replacement of Na+ by choline chloride in the medium depressed the monensin-evoked rise in [Ca2+]i by up to 84%. Furthermore, addition of the Na(+)-channel agonist, veratridine, elicited an increase in [Ca2+]i, even though less dramatic than that caused by monensin. Ouabain increased the resting cytosolic Ca2+ concentration as well as the magnitude of the monensin effect on [Ca2+]i. The absence of any effect on the Na(+)-ionophore evoked increase in [Ca2+]i upon addition of tetrodotoxin (TTX) excluded a possible involvement of TTX-sensitive Na+ channels. These data show that the rise in [Ca2+]i induced by increasing [Na+]i is largely dependent on both external Na+ and Ca2+. Calcium entry appears not to involve voltage-dependent or alpha 1-receptor sensitive Ca2+ channels, but may result from activation of an Na(+)-Ca2+ exchange system.  相似文献   

11.
In this report we demonstrate evidence which strongly suggests that human alveolar macrophages possess receptor for the platelet activating factor (PAF). We investigated the effects of PAF by measuring (a) the intracellular free calcium concentration [Ca2+]i, using the fura-2 method in single isolated cells and (b) the production of superoxide anion. PAF increased [Ca2+]i in a dose-dependent manner (EC50 = 1 x 10(-8) M), whereas lyso-PAF had no effect. The initial increase of [Ca2+]i was followed by a slow decrease to a sustained elevation of [Ca2+]i significantly above basal values. While the initial rise in [Ca2+]i was only slightly reduced in Ca(2+)-free medium (1 mM EGTA), the sustained phase was totally abolished. The sustained calcium increase was also blocked after preincubation of AM with the calcium-channel blocker nitrendipine. PAF increased the production of superoxide anion (O2-) by human alveolar macrophages in a dose- dependent manner. The effects of PAF on [Ca2+]i and (O2-) could be blocked by the PAF-specific antagonist WEB 2086 dose dependently, indicating a receptor-mediated event.  相似文献   

12.
In human embryonic kidney (HEK) cells stably transfected with green fluorescent protein targeted to the endoplasmic reticulum (ER), elevation of intracellular Ca2+ ([Ca2+]i) altered ER morphology, making it appear punctate. Electron microscopy revealed that these punctate structures represented circular and branched rearrangements of the endoplasmic reticulum, but did not involve obvious swelling or pathological fragmentation. Activation of protein kinase C with phorbol 12-myristate 13-acetate (PMA), prevented the effects of ionomycin on ER structure without affecting the elevation of [Ca2+]i. These results suggest that protein kinase C activation alters cytoplasmic or ER components underlying the effects of high [Ca2+]i on ER structure. Treatment of HEK cells with PMA also reduced the size of the thapsigargin-sensitive Ca2+ pool and inhibited Ca2+ entry in response to thapsigargin. Thus, protein kinase C activation has multiple actions on the calcium storage and signalling function of the endoplasmic reticulum in HEK cells: (1) reduced intracellular Ca2+ storage capacity, (2) inhibition of capacitative Ca2+ entry, and (3) protection of the endoplasmic reticulum against the effects of high [Ca2+]i.  相似文献   

13.
Vasopressin (VP) release from the hypothalamo-neurohypophyseal system (HNS) is stimulated by ATP activation of P2X purinergic receptors and by activation of 1-adrenergic receptors by phenylephrine (PE). These responses are potentiated by simultaneous exposure to ATP+PE. Potentiation was blocked by depleting intracellular calcium stores with thapsigargin. To test the hypothesis that the synergistic response to ATP+PE reflects alterations in the intracellular calcium concentration ([Ca2+]i), [Ca2+]i was monitored in supraoptic neurons in HNS explants loaded with fura 2-AM. Both ATP and PE induced rapid, but transient, elevations in [Ca2+]i. In 0.3 mM Ca2+, the peak response to ATP was greater than to PE but did not differ from the peak response to ATP+PE. A sustained elevation in [Ca2+]i was induced by ATP+PE, that was greater than ATP or PE alone. In 2 mM Ca2+, the peak response to ATP+PE was significantly greater than to either ATP or PE alone, and the sustained response to ATP+PE was greater than to either agent alone. Responses were comparable in the presence of TTX. The sustained elevation in [Ca2+]i was also observed when ATP+PE was removed after 1 min, but it was eliminated by either thapsigargin or removing external calcium, indicating that both calcium influx and calcium release from internal stores are required. Some cells were vasopressinergic based on a VP-induced increase in [Ca2+]i. These observations support the hypothesis that simultaneous exposure to ATP+PE induces a different pattern of [Ca2+]i than either agent alone that may initiate events leading to synergistic stimulation of VP release.  相似文献   

14.
Recently we reported a decrease of C-type natriuretic peptide (CNP)-dependent, natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP (cGMP) synthesis in a non-neuronal compartment of cerebral cortical slices of hyperammonemic rats [Zielińska, M., Fresko, I., Konopacka, A., Felipo, V., Albrecht, J., 2007. Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28, 1260-1263]. Here we accounted for the possible involvement of cerebral capillary endothelial cells in this response by measuring the effect of ammonia on the CNP-mediated cGMP formation and intracellular calcium ([Ca2+]i) accumulation in a rat cerebral endothelial cell line (RBE-4). We first established that stimulation of cGMP synthesis in RBE-4 cells was coupled to protein kinase G (PKG)-mediated Ca2+ influx from the medium which was inhibited by an L-type channel blocker nimodipine. Ammonia treatment (1h, 5mM NH4Cl) evoked a substantial decrease of CNP-stimulated cGMP synthesis which was related to a decreased binding of CNP to NPR2 receptors, and depressed the CNP-dependent [Ca2+]i accumulation in these cells. Ammonia also abolished the CNP-dependent Ca2+ accumulation in the absence of Na+. In cells incubated with ammonia in the absence of Ca2+ a slight CNP-dependent increase of [Ca2+]i was observed, most likely representing Ca2+ release from intracellular stores. Depression of CNP-dependent cGMP-mediated [Ca2+]i accumulation may contribute to cerebral vascular endothelial dysfunction associated with hyperammonemia or hepatic encephalopathy.  相似文献   

15.
The Na+/Ca2+ exchanger of squid axons, barnacle muscle and sarcolemma requires micromolar intracellular calcium for activation in the Na+i/Ca2+o exchange mode ('reverse' Na+/Ca2+ exchange). The requirement for [Ca2+]i has been demonstrated with the use of intracellular calcium buffers, such as Quin-2, to inhibit Na+i/Ca2+o exchange. However, the inhibition of Na+i/Ca2+o exchange in mammalian nerve terminals loaded with Quin-2 has not been observed [7], suggesting a lower sensitivity to low [Ca2+]i for this system. In contrast, the results reported herein indicate that 45Ca2+ uptake in synaptosomes through Na+i/Ca2+o exchange is inhibited by Quin-2 much in the same way as it is in the squid, provided that synaptosomes are preincubated in low Ca2+ medium to avoid saturation of Quin-2. Under these conditions, 45Ca2+ efflux via Ca2+i/Ca2+o exchange is also inhibited. Our results indicate that the Na+i/Ca2+o and Ca2+i/Ca2+o modes of the Na+/Ca2+ exchanger from rat brain synaptosomes require intracellular calcium for activation. However, because no clear relationship between the observed [Ca2+]i values and the inhibition of Na+i/Ca2+o exchange has been found, it is suggested that localised submembrane calcium concentrations not detected by the [Ca2+]i probe might regulate the exchanger.  相似文献   

16.
《The Journal of cell biology》1988,107(6):2533-2539
A broad range of membrane functions, including endocytosis and exocytosis, are strongly inhibited during mitosis. The underlying mechanisms are unclear, however, but will probably be important in relation to the mitotic cycle and the regulation of surface phenomena generally. A major unanswered question is whether membrane signal transduction is altered during mitosis; suppression of an intracellular calcium [( Ca2+]i) transient could inhibit exocytosis; [Ca2+]i elevation could disassemble the mitotic spindle. Activation of the histamine H1 receptor interphase in HeLa cells is shown here by Indo-1 fluorescence to produce a transient elevation of [Ca2+]i. The [Ca2+]i transient consists of an initial sharp rise that is at least partially dependent on intracellular calcium followed by an elevated plateau that is absolutely dependent on extracellular calcium. The [Ca2+]i transient is completely suppressed by preincubation with the tumor promoter, phorbol myristate acetate, but is unaffected by preincubation with pertussis toxin (islet-activating protein). In mitotic (metaphase- arrested) HeLa cells, the [Ca2+]i transient is largely limited to the initial peak. Measurement of 45Ca2+ uptake shows that it is stimulated by histamine in interphase cells, but not in mitotics. We conclude that the histamine-stimulated generation of the second messenger, [Ca2+]i, in mitotic cells is limited by failure to activate a sustained calcium influx. The initial phase of calcium mobilization from intracellular stores is comparable to that in interphase cells. Hormone signal transduction thus appears to be altered during mitosis.  相似文献   

17.
We have studied the effects of extracellular nucleotides on the cytosolic free calcium concentration [( Ca2+]i) in J774 macrophages using quin2 and indo-1 as indicator dyes. Micromolar quantities of ATP induced a biphasic increase in [Ca2+]i: a rapid and transient increase (peak I) which was due to mobilization of Ca2+ from intracellular stores and a second more sustained elevation (peak II) due to influx of extracellular Ca2+. The sustained peak II elevation had two components, a "low threshold" (1 microM ATP) response which saturated at 10-50 microM ATP and a "high threshold" response, apparent at [ATP] greater than 100 microM. The latter component was not seen with nucleotides other than ATP and correlated with an ATP-induced generalized increase in plasma membrane permeability. A variant J774 cell line was isolated which does not demonstrate this ATP-induced increase in plasma membrane permeability; nevertheless, it demonstrated both the release of Ca2+ from intracellular stores and the low threshold component of the Ca2+ influx across the plasma membrane in response to nucleoside di- and triphosphates. Several lines of evidence indicate that the fully ionized (i.e. free acid) forms of nucleoside di- and triphosphates were the ligands that mediated these increases in [Ca2+]i. These data show that extracellular nucleotides mediate Ca2+ fluxes by two distinct mechanisms in J774 cells. In one, the rise in [Ca2+]i is due to release of Ca2+ from intracellular stores and Ca2+ influx across the plasma membrane. This response is elicited preferentially by the free acid forms of purine and pyrimidine nucleoside di- and triphosphates. In the other, the rise in [Ca2+]i reflects a more generalized increase in plasma membrane permeability and is elicited by ATP4- only.  相似文献   

18.
Micromolar concentrations of extracellular beta-NAD+ (NAD(e)+) activate human granulocytes (superoxide and NO generation and chemotaxis) by triggering: (i) overproduction of cAMP, (ii) activation of protein kinase A, (iii) stimulation of ADP-ribosyl cyclase and overproduction of cyclic ADP-ribose (cADPR), a universal Ca2+ mobilizer, and (iv) influx of extracellular Ca2+. Here we demonstrate that exposure of granulocytes to millimolar rather than to micromolar NAD(e)+ generates both inositol 1,4,5-trisphosphate (IP3) and cAMP, with a two-step elevation of intracellular calcium levels ([Ca2+]i): a rapid, IP3-mediated Ca2+ release, followed by a sustained influx of extracellular Ca2+ mediated by cADPR. Suramin, an inhibitor of P2Y receptors, abrogated NAD(e)+-induced intracellular increases of IP3, cAMP, cADPR, and [Ca2+]i, suggesting a role for a P2Y receptor coupled to both phospholipase C and adenylyl cyclase. The P2Y(11) receptor is the only known member of the P2Y receptor subfamily coupled to both phospholipase C and adenylyl cyclase. Therefore, we performed experiments on hP2Y(11)-transfected 1321N1 astrocytoma cells: micromolar NAD(e)+ promoted a two-step elevation of the [Ca2+]i due to the enhanced intracellular production of IP3, cAMP, and cADPR in 1321N1-hP2Y(11) but not in untransfected 1321N1 cells. In human granulocytes NF157, a selective and potent inhibitor of P2Y(11), and the down-regulation of P2Y(11) expression by short interference RNA prevented NAD(e)+-induced intracellular increases of [Ca2+]i and chemotaxis. These results demonstrate that beta-NAD(e)+ is an agonist of the P2Y(11) purinoceptor and that P2Y(11) is the endogenous receptor in granulocytes mediating the sustained [Ca2+]i increase responsible for their functional activation.  相似文献   

19.
Antigenic stimulation of rat basophilic leukemia cells (RBL-3H3) elevates intracellular free Ca2+ concentration ([Ca2+]i) and induces production of leukotriene C4 (LTC4). This model was used to examine the role of Ca2+ in LTC4 formation, and inhibition by hydrocortisone (HC). HC, at a physiological concentration (2 x 10(-7) M), selectively prevented the stimulatory effect of the antigen on LTC4 production whereas the response to calcium ionophore (A23187) remained unimpaired. The inhibition by HC was time-dependent: half maximal response was reached at 2 hour and maximal response at 3 hours. Addition of arachidonic acid (3 micrograms/ml) did not overcome the inhibitory action of HC. An elevated [Ca2+]i is known to be essential for the activation of both 5-lipoxygenase and phospholipase A2. The stimulatory effect of the antigen on LTC4 production was abolished when the cells were incubated in Ca2+-deficient medium. Likewise, calcium ionophore stimulation shows dependence on extracellular Ca2+. Half maximal stimulation by the antigen and calcium ionophore was observed at external Ca2+ concentration of 150 microM and 40 microM respectively. Treatment with HC largely prevented the antigen-induced rise in [Ca2+]i, measured by Quin 2. In addition, HC reduced by 70% the accumulation of 45Ca2+ induced by the antigen. Collectively, these results demonstrate for the first time that HC reduces antigen-induced elevation of [Ca2+]i, and this may be associated with the inhibitory action of HC on LTC4 formation. This property could be partly responsible for the antiallergic and antiinflammatory activities of HC.  相似文献   

20.
The role of calcium in control of HCl secretion by the gastric parietal cell was examined using a recently available intracellular calcium-releasing agent, thapsigargin, which has been shown, in some cell types, to induce sustained elevation of intracellular calcium ([Ca2+]i), an action that appears to be independent of inositol lipid breakdown and protein kinase C activation and to be mediated, at least partially, by selective inhibition of endoplasmic reticulum Ca2(+)-ATPase. Using the calcium-sensitive fluorescent probe, fura-2, in combination with digitized video image analysis of single cells as well as standard fluorimetric techniques, we found that thapsigargin induced sustained elevation of [Ca2+]i in single parietal cells and in parietal cells populations. Chelation of medium calcium led to a transient rise and fall in [Ca2+]i, indicating that the sustained elevation in [Ca2+]i in response to thapsigargin was due to both intracellular calcium release and influx. Although thapsigargin appeared to affect the same calcium pool(s) regulated by the cholinergic agonist, carbachol, and the pattern of thapsigargin-induced increases in [Ca2+]i were similar to the plateau phase of the cholinergic response, thapsigargin did not induce acid secretory responses of the same magnitude as those initiated by carbachol (28 vs 600% of basal). The protein kinase C activator, 12-O-tetradecanoyl phorbol-13-acetate (TPA) potentiated the secretory response to thapsigargin but this combined response also did not attain the same magnitude as the maximal cholinergic response. In the presence but not the absence of medium calcium, thapsigargin potentiated acid secretory responses to histamine, which elevate both cyclic AMP (cAMP) and [Ca2+]i in parietal cells, as well as forskolin and cAMP analogues but had no effect on submaximal and an inhibitory effect on maximal cholinergic stimulation. Furthermore, thapsigargin did not fully mimic potentiating interactions between histamine and carbachol, either in magnitude or in the pattern of temporal response. Assuming that the action of thapsigargin is specific for intracellular calcium release mechanisms, these data suggest that 1) sustained influx of calcium is necessary but not sufficient for cholinergic activation of parietal cell HCl secretion and for potentiating interactions between cAMP-dependent agonists and carbachol; 2) mechanisms in addition to elevated [Ca2+]i and protein kinase C activation may be involved in cholinergic regulation; and 3) increases in [Ca2+]i in response to histamine are not directly involved in the mechanism of histamine-stimulated secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号