首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Large single crystals of ω-amino acid: pyruvate aminotransferase, were prepared by dialysis of the enzyme solution against 2.2 m-ammonium sulphate solution at pH 7.8. X-ray diffraction patterns show that the crystals belong to the orthorhombic space group I222 or I212121 with unit cell dimensions a = 124.1 A?, b = 137.9 A?, and c = 61.2 A?. The asymmetric unit consists of one monomer of molecular weight 43,000.  相似文献   

2.
The three-dimensional structure of omega-amino acid:pyruvate aminotransferase from Pseudomonas sp. F-126, an isologous alpha 4 tetramer containing pyridoxal 5'-phosphate (PLP) as a cofactor, has been determined at 2.0 A resolution. The diffraction data were collected with a newly developed Weissenberg camera with a Fuji Imaging Plate, using synchrotron radiation. The mean figure-of-merit was 0.57. The subunit is rich in secondary structure and comprises two domains. PLP is located in the large domain. The high homology in the secondary structure between this enzyme and aspartate aminotransferase strongly indicates that these two types of enzymes have evolved from a common ancestor.  相似文献   

3.
Kynurenine pyruvate aminotransferase was purified from rat kidney. The purified enzyme had an isoelectric point of pH 5.2 and a pH optimum of 9.3. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors. L-Amino acids were effective in the following order of activity: histidine greather than phenylalanine greater than kynurenine greater than tyrosine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values were about 0.63 mM, 1.4 mM and 0.09 mM for histidine, kynurenine and phenylalanine, respectively. Km values for pyruvate were 5.5 mM with histidine as amino donor, 1.3 mM with kynurenine and 8.5 mM with phenylalanine. Kynurenine pyruvate aminotransferase activity of the enzyme was inhibited by the addition of histidine or phenylalanine. The molecular weights determined by gel filtration and sucrose density gradient centrifugation were approximately 76000 and 79000, respectively. On the basis of purification ratio, substrate specificity, inhibition by common substrates, subcellular distribution, isoelectric focusing and polyacrylamide-gel electrophoresis, it is suggested that kynurenine pyruvate aminotransferase is identical with histidine pyruvate aminotransferase and also with phenylalanine pyruvate aminotransferase. The physiological significance of the enzyme is discussed.  相似文献   

4.
An enzyme which catalyzes the transamination of beta-alanine with alpha-ketoglutarate was purified to homogeneity from Streptomyces griseus IFO 3102 and crystallized. Molecular weight of the enzyme was found to be 185,000 +/- 10,000 by a gel-filtration method. The enzyme consists of four subunits identical in molecular weight (51,000 +/- 1,000). The transaminase is composed of 483 amino acids/subunit containing 7 and 8 residues of half-cystine and methionine, respectively. The enzyme exhibits absorption maxima at 278 and 415 nm. The pyridoxal 5'-phosphate content was determined to be 4 mol/mol of enzyme. The enzyme catalyzes transamination of omega-amino acids including taurine and hypotaurine. beta-Alanine and DL-beta-aminoisobutyrate served as a good amino donor; the Michaelis constants are 8.0 and 12.5 mM, respectively. alpha-Ketoglutarate is the only amino acceptor (Km = 4.0 mM); pyruvate and oxalacetate are inactive. Based on the substrate specificity, the terminology of beta-alanine:alpha-ketoglutarate transaminase is proposed for the enzyme. Carbonyl reagents, HgCl2,DL-gabaculine, and alpha-fluoro-beta-alanine strongly inhibited the enzyme.  相似文献   

5.
The complete amino acid sequence of the mitochondrial aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1) from human heart has been determined based mainly on analysis of peptides obtained by digestion with trypsin and by chemical cleavage with cyanogen bromide. Comparison of the sequence with those of the isotopic isoenzymes from pig, rat and chicken showed 27, 29 and 55 differences, respectively, out of a total of 401 amino acid residues. Evidence for structural microheterogeneity at position 317 has also been obtained.  相似文献   

6.
7.
Bacillus cereus strain K-22 produced two distinct omega-amino acid transaminases, one catalyzing the transamination between beta-alanine and pyruvic acid and the other that between gamma-aminobutyric acid and alpha-ketoglutaric aic. The two enzymes were partially purified and separated from each other by various chromatographies. beta-Alanine:pyruvic acid transaminase and gamma-aminobutyric acid:alpha-ketoglutaric acid transaminase were induced by the addition of beta-alanine and gamma-aminobutyric acid, respectively, to the growth medium. beta-Alanine transaminase showed an optimum pH of 10.0 and optimum temperature of 35 degrees C, and its Km values for beta-alanine and pyruvic acid were both 1.1 mM. gamma-Aminobutyric acid, epsilon-aminocaproic acid, 2-aminoethylphosphonic acid, and propylamine showed about 30-40% of the activity of beta-alanine as amino donors, and oxalacetic acid was as good an amino acceptor as pyruvic acid. The optimum pH and temperature of gamma-aminobutyric acid transaminase were 9.0 and 50 degrees C, respectively, and its Km value for gamma-aminobutyric acid was 2.8 mM, while that for alpha-ketoglutaric acid was 2.3 mM. gamma-Aminobutyric acid and delta-aminovaleric acid were good amino donors but other omega-amino acids were virtually inactive with gamma-aminobutyric acid transaminase; alpha-ketoglutaric acid, and to a lesser extent glyoxylic acid, were active amino acceptors. Sulfhydryl reagents specifically activated gamma-aminobutyric acid transaminase.  相似文献   

8.
The gene for thermostable D-amino acid aminotransferase from a thermophile, Bacillus species YM-1 was cloned and expressed efficiently in Escherichia coli. The entire covalent structure of the enzyme was determined from the nucleotide sequence of the cloned gene and mostly confirmed by amino acid sequences of tryptic peptides from the gene product. The polypeptide is composed of 282 amino acid residues with a calculated molecular weight of 32,226. Comparison of the primary structure with those of various proteins registered in a protein data bank revealed a significant sequence homology between D-amino acid aminotransferase and the L-branched chain amino acid aminotransferase of E. coli (Kuramitsu, S., Ogawa, T., Ogawa, H., and Kagamiyama, H. (1985) J. Biochem. (Tokyo) 97, 993-999); the active site lysyl residue is located in an equivalent position in both enzyme sequences of similar size. Despite the difference in subunit composition and no immunochemical cross-reactivity, the sequences of the two enzymes show similar hydropathy profiles, and spectrophotometric properties of the enzyme-bound cofactor are also similar. The sequence homology suggests that the structural genes for D-amino acid and L-branched chain amino acid aminotransferases evolved from a common ancestral gene.  相似文献   

9.
Pyruvate decarboxylase (E.C. 4.1.1.1), the key enzyme in the glycolytic pathway to ethanol, was isolated in gram amounts from Zymomonas mobilis for structural studies. The primary structure was determined by automated Edman degradation and compared with that deduced from the DNA sequence of the structural gene, previously published by two groups (A. D. Neale, R. K. Scopes, R. E. H. Wettenhall, and N. J. Hoogenraad, 1987, Nucleic Acids Res. 15, 1753-1761; M. Reynen, and H. Sahm, 1988, J. Bacteriol. 170, 3310-3313). The peptide data differ from the published DNA sequences, which also deviate from each other. Crystals diffracting to about 0.3 nm resolution have been obtained by the hanging drop vapor diffusion method. The space group was identified as P4(1)22 or its enantiomorphs containing presumably one tetramer per asymmetric unit.  相似文献   

10.
Dimethylarginine:pyruvate aminotransferase, which plays a role in the metabolism of dimethylarginines, has been purified to homogeneity from rat kidney. The enzyme has a molecular weight of approximately 200,000 and an isoelectric point at about pH 6.3. The enzyme consists of four similar subunits having a molecular weight of about 50,000. The enzyme catalyzes the effective transaminations of guanidino-N methylated L-arginines (e.g. NG,NG-dimethyl-L-arginine, NG,N'G-dimethyl-L-arginine and NG-monomethyl-L-arginine) and the alpha-amino group of L-ornithine to pyruvate or glyoxylate. The enzyme was always accompanied by the known alanine:glyoxylate amino-transferase activity with the ratios of their specific activities remaining constant during the purification steps. The physicochemical and immunological properties of the purified enzyme were shown to be identical with those of the isozyme of alanine:glyoxylate aminotransferase (EC 2.6.1.44), designated as alanine:glyoxylate aminotransferase 2 (Noguchi, T. (1987) in Peroxisomes in Biology and Medicine (Fahimi, H. D., and Sies, H., eds) pp. 234-243, Springer-Verlag, Heidelberg). The distribution profiles in tissues and the negative response to glucagon treatment further supported the identity of the two enzymes. The present data show that alanine:glyoxilate aminotransferase 2 functions in dimethylarginine metabolism in vivo in rats.  相似文献   

11.
The structure of cat muscle pyruvate kinase.   总被引:17,自引:2,他引:17       下载免费PDF全文
The complete amino acid sequence of cat muscle pyruvate kinase has been determined and fitted to the 2.6 A resolution electron density map. Residues in the active site region are highly conserved in the cat muscle, chicken muscle, rat liver and yeast enzymes. The enzyme-bound magnesium, which is essential for activity, interacts with the side chain of glutamate-271 and with two main carbonyl groups. Lysine-269 is the probable acid/base catalyst responsible for the interconversion of pyruvate and enolpyruvate. A possible binding site for the essential monovalent cation is proposed.  相似文献   

12.
Aspartate: 2-oxoglutarate aminotransferase from the anaerobic protozoon Trichomonas vaginalis was purified to homogeneity and characterized. It is a dimeric protein of overall Mr approx. 100000. Only a single isoenzyme was found in T. vaginalis. The overall molecular and catalytic properties have features in common with both the vertebrate cytoplasmic and mitochondrial isoenzymes. The purified aspartate aminotransferase from T. vaginalis showed very high rates of activity with aromatic amino acids as donors and 2-oxoglutarate as acceptor. This broad-spectrum activity was restricted to aromatic amino acids and aromatic 2-oxo acids, and no significant activity was seen with other common amino acids, other than with the substrates and products of the aspartate: 2-oxoglutarate aminotransferase reaction. Co-purification and co-inhibition, by the irreversible inhibitor gostatin, of the aromatic amino acid aminotransferase and aspartate aminotransferase activities, in conjunction with competitive substrate experiments, strongly suggest that a single enzyme is responsible for both activities. Such high rates of aromatic amino acid aminotransferase activity have not been reported before in eukaryotic aspartate aminotransferase.  相似文献   

13.
14.
Phenylalanine pyruvate aminotransferase in rat liver was found in both the mitochondrial and supernatant fractions. Phenylalanine pyruvate aminotransferase was purified from rat liver mitochondria. The purified enzyme was specific for pyruvate, exhibiting no activity with 2-oxoglutarate as aminoacceptor, and utilized a wide range of amino acids as amino donors. Amino acids were effective in the following order of activity: L-phenylalanine > L-tyrosine > L-histidine > 3,4-dihydroxy-DL-phenylalanine. Very little activity was observed with L-tryptophan and 5-hydroxy-L-tryptophan. The apparent Km values for L-phenylalanine and L-histidine were 2.6 mM and 2.7 mM, respectively. The Km values for pyruvate were 5.0 mM and 1.5 mM with phenylalanine and histidine as amino donors, respectively. The pH optimum was near 9.0. Sucrose density gradient centrifugation gave a molecular weight of approximately 68,000. On the basis of subcellular distributions, substrate specificities, substrate inhibition, pH optima, polyacrylamide gel electrophoresis and some other properties, it was suggested that mitochondrial phenylalanine pyruvate aminotransferase was identical with mitochondrial histidine pyruvate aminotransferase.  相似文献   

15.
Hepatic phenylalanine(histidine):pyruvate aminotransferase activity is much higher in the mouse and rat than in other animal species (human, guinea-pig, rabbit, pig, dog and chicken). The activity is elevated in the mouse and rat by the injection of glucagon but not in other species (guinea-pig, rabbit and chicken). The enzyme was purified from the mitochondrial fraction of mouse liver to homogeneity as judged by polyacrylamide disc gel electrophoresis in the presence of dodecylsulphate. With histidine as amino donor, the enzyme was active with pyruvate, oxaloacetate and hydroxypyruvate as amino acceptors but not with 2-oxoglutarate. Effective amino donors were histidine, phenylalanine and tyrosine with pyruvate, and methionine, serine and glutamine with phenylpyruvate. The apparent Km for histidine was about 6.9 mM with pyruvate and that for pyruvate was 21 mM with histidine. The enzyme is probably composed of two identical subunits with a molecular weight of approximately 40000. The pH optimum was near 9.0. Isoelectric focusing of the purified enzyme resulted in the detection of four forms with pI 6.0, 6.2, 6.5 and 6.7, respectively, all of which were responsive to glucagon. These four forms were nearly identical with the purified enzyme before the focusing with respect to physical and enzymic properties. A possible mechanism of this multiplicity is discussed.  相似文献   

16.
17.
18.
《The Journal of cell biology》1993,123(5):1237-1248
Primary hyperoxaluria type 1 (PH 1), an inborn error of glyoxylate metabolism characterized by excessive synthesis of oxalate and glycolate, is caused by a defect in serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT). This enzyme is peroxisomal in human liver. Recently, we cloned SPT/AGT-cDNA from a PH 1 case, and demonstrated a point mutation of T to C in the coding region of the SPT/AGT gene encoding a Ser to Pro substitution at residue 205 (Nishiyama, K., T. Funai, R. Katafuchi, F. Hattori, K. Onoyama, and A. Ichiyama. 1991. Biochem. Biophys. Res. Commun. 176:1093-1099). In the liver of this patient, SPT/AGT was very low with respect to not only activity but also protein detectable on Western blot and immunoprecipitation analyses. Immunocytochemically detectable SPT/AGT labeling was also low, although it was detected predominantly in peroxisomes. On the other hand, the level of translatable SPT/AGT-mRNA was higher than normal, indicating that SPT/AGT had been synthesized in the patient's liver at least as effectively as in normal liver. Rapid degradation of the mutant SPT/AGT was then demonstrated in transfected COS cells and transformed Escherichia coli, accounting for the low level of immunodetectable mutant SPT/AGT in the patient's liver. The mutant SPT/AGT was also degraded much faster than normal in an in vitro system with a rabbit reticulocyte extract, and the degradation in vitro was ATP dependent. These results indicate that a single amino acid substitution in SPT/AGT found in the PH1 case leads to a reduced half- life of this protein. It appears that the mutant SPT/AGT is recognized in cells as an abnormal protein to be eliminated by degradation.  相似文献   

19.
20.
A simple and specific method with bacterial ω-amino acid:pyruvate aminotransferase and lactate dehydrogenase has been reported for the determination of l-alanine. This method involves a transamination of l-alanine with sulfoacetaldehyde to produce pyruvate and the spectrometric determination of this product with the aid of lactate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号