首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inefficient cardiomyocyte differentiation limits the therapeutic use of embryonic stem (ES) cell-derived cardiomyocytes. While large collections of proprietary chemicals had been screened to improve ES cell differentiation into cardiomyocytes, the natural product library remained unexplored. Using a mouse ES cell line transfected with a cardiomyocyte-specific α-myosin heavy chain promoter-driven enhanced green fluorescent protein (EGFP) reporter, we screened 24 natural products with known cardioprotective actions. Salvianolic acid B (saB), while produced minimal effect on its own, concentration-dependently synergized with vitamin C in inducing cardiomyocyte differentiation, as demonstrated by an increase in EGFP+ cells, beating area in embryoid bodies, and expression of cardiomyocyte maturity markers. This synergy is specific to cardiomyocyte differentiation, and is involved with collagen synthesis. The present study demonstrates the saB-vitamin C synergy in inducing ES cell differentiation into matured and functional cardiomyocytes, and this may lead to a practicable cocktail approach to generate ES cell-derived cardiomyocytes for cardiac stem cell therapy.  相似文献   

2.
In order to investigate the effect of ascorbic acid (AsA) and ascorbic acid 2-phosphate (Asc 2-P), a long-acting vitamin C derivative, on the growth and differentiation of human osteoblast-like cells, we supplemented the culture medium of MG-63 cells with various concentrations (0.25 to 1 mM) of these factors. Asc 2-P significantly stimulated nascent cell growth at all concentrations in the presence of fetal bovine serum (FBS). On the other hand, AsA showed a growth repressive effect depending on its concentration, and that of FBS. Asc 2-P also increased expression of osteoblast differentiation markers, such as collagen synthesis and alkaline phosphatase (ALP) activity. These stimulative activities of Asc 2-P were attenuated by inhibitors of collagen synthesis, indicating that these effects were dependent on collagen synthesis. Electron micrographs of the cells showed the formation of a three-dimensional tissue-like structure endowed with a mature extracellular matrix in the presence of Asc 2-P.  相似文献   

3.
Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture,they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formarion and their subsequent differentiation in a single three dimensional environment.  相似文献   

4.
5.
The molecules and environment that direct pluripotent stem cell differentiation into cardiomyocytes are largely unknown. Here, we determined a critical role of receptor tyrosine kinase, EphB4, in regulating cardiomyocyte generation from embryonic stem (ES) cells through endothelial cells. The number of spontaneous contracting cardiomyocytes, and the expression of cardiac‐specific genes, including α‐MHC and MLC‐2V, was significantly decreased in EphB4‐null ES cells. EphB4 was expressed in endothelial cells underneath contracting cardiomyocytes, but not in cardiomyocytes. Angiogenic inhibitors, including endostatin and angiostatin, inhibited endothelial cell differentiation and diminished cardiomyogenesis in ES cells. Generation of functional cardiomyocytes and the expression of cardiac‐specific genes were significantly enhanced by co‐culture of ES cells with human endothelial cells. Furthermore, the defects of cardiomyocyte differentiation in EphB4‐deficient ES cells were rescued by human endothelial cells. For the first time, our study demonstrated that endothelial cells play an essential role in facilitating cardiomyocyte differentiation from pluripotent stem cells. EphB4 signaling is a critical component of the endothelial niche to regulate regeneration of cardiomyocytes. J. Cell. Biochem. 111: 29–39, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
为检测血管紧张素Ⅱ(angiotensin Ⅱ,AⅡ)对小鼠胚胎干细胞(embryonic stem cells,ESCs)向心肌细胞方向分化的作用,采用10-4 mol/L维生素C诱导小鼠R1胚胎干细胞分化为心肌细胞. Western印记检测胚胎干细胞诱导分化的心肌细胞中表达血管紧张素Ⅱ1 型受体(angiotensin Ⅱ type 1 receptor,AT1R).诱导分化期间用1 μmol/L AⅡ刺激胚胎干细胞,计数搏动拟胚体的比例;诱导分化第14 d用real-time RT-PCR 和Western 印记检测心肌标志物的表达确定其作用. 结果显示,与对照组相比,1 μmol/L AⅡ处理组可显著增加搏动拟胚体的比例,上调心肌标志物mRNA的表达. 预先用1 μmol/L洛沙坦处理1 h后可显著阻碍这种上调作用. 本实验结果表明,AⅡ通过AT1R可促进小鼠R1胚胎干细胞向心肌细胞分化.  相似文献   

7.
Cao N  Liu Z  Chen Z  Wang J  Chen T  Zhao X  Ma Y  Qin L  Kang J  Wei B  Wang L  Jin Y  Yang HT 《Cell research》2012,22(1):219-236
Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases, drug screening and potential autologous cardiac regeneration. However, their application is hampered by inefficient cardiac differentiation, high interline variability, and poor maturation of iPSC-derived cardiomyocytes (iPS-CMs). To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms, we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential. We then optimized the treatment conditions and demonstrated that differentiation day 2-6, a period for the specification of cardiac progenitor cells (CPCs), was a critical time for AA to take effect. This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers. Noteworthily, AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs. Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by through promoting collagen synthesis. In addition, AA-induced cardiomyocytes showed better sarcomeric organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations. These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply, universally, and efficiently. These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells.  相似文献   

8.
Though cardiac progenitor cells should be a suitable material for cardiac regeneration, efficient ways to induce cardiac progenitors from embryonic stem (ES) cells have not been established. Extending our systematic cardiovascular differentiation method of ES cells, here we show efficient and specific expansion of cardiomyocytes and highly cardiogenic progenitors from ES cells. An immunosuppressant, cyclosporin-A (CSA), showed a novel effect specifically acting on mesoderm cells to drastically increase cardiac progenitors as well as cardiomyocytes by 10-20 times. Approximately 200 cardiomyocytes could be induced from one mouse ES cell using this method. Expanded progenitors successfully integrated into scar tissue of infracted heart as cardiomyocytes after cell transplantation to rat myocardial infarction model. CSA elicited specific induction of cardiac lineage from mesoderm in a novel mesoderm-specific, NFAT independent fashion. This simple but efficient differentiation technology would be extended to induce pluripotent stem (iPS) cells and broadly contribute to cardiac regeneration.  相似文献   

9.
10.
11.
Primate nonhuman and human embryonic stem (ES) cells provide a powerful model of early cardiogenesis. Furthermore, engineering of cardiac progenitors or cardiomyocytes from ES cells offers a tool for drug screening in toxicology or to search for molecules to improve and scale up the process of cardiac differentiation using high-throughput screening technology, as well as a source of cell therapy of heart failure. Spontaneous differentiation of ES cells into cardiomyocytes is, however, limited. Herein, we describe a simple protocol to commit both rhesus and human ES cells toward a cardiac lineage and to sort out early cardiac progenitors. Primate ES cells are challenged for 4 d with the cardiogenic morphogen bone morphogenetic protein 2 (BMP2) and sorted out using anti-SSEA-1 antibody-conjugated magnetic beads. Cardiac progenitor cells can be generated and isolated in 4 d using this protocol.  相似文献   

12.
Both mouse and human embryonic stem (ES) cells provide a powerful model of early cardiogenesis. Furthermore engineering of cardiac progenitors or cardiomyocytes from ES cells offers a tool for drug screening in toxicology or to search for molecules to improve and scale up the process of cardiac differentiation using high throughput screening technology. Spontaneous differentiation of ES cells into cardiomyocytes is however limited. Herein, I described simple protocols to commit both mouse and human ES cells toward a cardiac lineage and in turn to improve the process of in vitro differentiation.  相似文献   

13.
Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.  相似文献   

14.
Ascorbic acid has been shown to stimulate collagen synthesis in monolayer cultures of human dermal fibroblasts. In the present studies, we examined whether the presence of a collagen matrix influences this response of dermal fibroblasts to ascorbic acid. Fibroblasts and collagen were mixed and allowed to gel and contract for 6 days to form a matrix prior to determining the concentration and time dependence for ascorbic acid to affect collagen synthesis by fibroblasts within the matrix. Collagen synthesis was stimulated at levels at or above 10 μM ascorbic acid and was maximal after 2 days of treatment. This concentration and time dependence is similar to that of cells grown in monolayer cultures. The effects of transforming growth factor-β (TGF-β) and fibroblast growth factor (FGF) were also examined in this model. TGF-β increased and FGF inhibited collagen synthesis in the gels, as has been shown for cells in monolayer cultures. The effects of potential inhibitors of lipid peroxidation induced by ascorbic acid were also examined in these matrices and compared to previous results obtained in monolayer cultures. Propyl gallate, cobalt chloride, α,α-dipyridyl, and α-tocopherol inhibited the ascorbic acid-mediated stimulation of collagen synthesis while mannitol had no effect. Natural retinoids inhibited total protein synthesis without the specific effect on collagen synthesis that was seen in monolayer cultures. These results indicate that ascorbic acid stimulates collagen synthesis in fibroblasts grown in a collagen matrix in a manner similar to that found in monolayer cultures. In contracting collagen gels, however, the magnitude of the effect is less and retinoids do not specifically inhibit collagen synthesis.  相似文献   

15.
The stromal cell line ST2, derived from mouse bone marrow,differentiated into osteoblast-like cells in response to ascorbic acid.Ascorbic acid induced alkaline phosphatase (ALPase) activity, theexpression of mRNAs for proteins that are markers of osteoblastic differentiation, the deposition of calcium, and the formation ofmineralized nodules by ST2 cells. We investigated the mechanism wherebyascorbic acid induced the differentiation of ST2 cells. Inhibitors ofthe formation of collagen triple helices completely blocked the effectsof ascorbic acid on ST2 cells, an indication that matrix formation bytype I collagen is essential for the induction of osteoblasticdifferentiation of ST2 cells by ascorbic acid. We furthermore examinedthe effects of bone morphogenetic proteins (BMPs) on thedifferentiation of ST2 cells induced by ascorbic acid. Ascorbic acidhad no effect on the expression of mRNAs for BMP-4 and the BMPreceptors. However, a soluble form of BMP receptor IAinhibited the induction of ALPase activity by ascorbic acid. Theseresults suggest that ascorbic acid might promote the differentiation ofST2 cells into osteoblast-like cells by inducing the formation of amatrix of type I collagen, with subsequent activation of the signalingpathways that involve BMPs.

  相似文献   

16.
17.
As the signals required for cardiomyocyte differentiation and functional regulation are complex and only partly understood, the mechanisms prompting the differentiation and specification of pluripotential embryonic stem (ES) cells into cardiomyocytes remain unclear. We hypothesized that a combined technology system, cocultured with a visceral endoderm (VE) - like cell line, END-2, and added cytokine BMP-2, would induce high percentage conversion of murine ES-D3 cell line into cardiomyocytes, and derived cardiomyocytes in this system would exhibit more mature characteristics. It was observed that 92% (P<0.01) ES cell-derived aggregates in this system exhibited rhythmic contractions, and the contractile areas were greater. By contrast, in ES cells cultured alone, on the feeder layer of END-2 cells, or with added BMP-2, the total percentage of beating aggregates was 19, 69 (P<0.01) and 44% (P<0.01), respectively. All the rhythmically contractile cells derived from ES cells expressed cardiac-specific proteins for troponin T. Among them, the combined system resulted in significantly increased cardiac-specific genes (NKx2.5, alpha-MHC). Transmission electron microscopy (TEM) revealed varying degrees of myofibrillar organization, and the combined system resulted in a more mature phenotype such as Z bands, nascent intercalated discs and gap junctions. Before shifting to the cardiomyocyte phenotype, this system could accelerate apoptosis of the cell population (P<0.01). The inductive efficacy of this system can provide an opportunity to facilitate cardiomyocyte differentiation of ES cells. The inducible effects of this system may depend on increasing cardiac-specific gene expression and the induction of apoptosis in cells that are not committed to cardiac differentiation.  相似文献   

18.
Cardiomyocyte differentiation overall has been analyzed in vivo and in vitro at the molecular level by homologous recombination, gene mutation studies, and by transgenics; however, the roles of many signal transduction mechanisms that drive this differentiation process are still not fully understood. One set of signal transduction components that has been studied in detail in mature, differentiated cardiomyocytes is the PKC isotype superfamily. However, while the function of each isotype is slowly being uncovered in adult cardiomyocytes, limited information persists concerning their function in the differentiation process of cardiomyocytes. To begin analyzing the function of specific PKC isotypes in the differentiation process, we employed an established model for differentiating ES cells into cardiomyocyte-positive embryoid bodies (EBs) in vitro. RT-PCR, Western analyses, and confocal microscopy all showed that the expression of specific PKC isotypes was significantly changed as ES cells differentiated into cardiomyocytes. More importantly, by using antagonists specific for each isotype we found that this change was a final step in the differentiation process. PKC beta and zeta downregulation served to promote differentiation (beating), while upregulation of PKC epsilon appeared to amplify differentiation (beating). Finally, melding classical tools (i.e., ionic exchange glass beads) with recently developed methods for differentiating ES cells creates a possible novel technique for investigating differentiation of ES cells into cardiomyocytes as well as other cell types.  相似文献   

19.
20.
The treatment of ES cells with trichostatin A (TSA), an HDAC inhibitor, induces the acetylation of GATA4 as well as histones, and facilitates their differentiation into cardiomyocytes. Recently, we demonstrated that cyclin‐dependent kinase 9 (Cdk9), a core component of positive elongation factor‐b, is a novel GATA4‐binding partner. The present study examined whether Cdk9 forms a complex with GATA4 in mouse ES cells and is involved in their differentiation into cardiomyocytes. Mouse ES cells and Nkx2.5/GFP ES cells, in which green fluorescent protein (GFP) is expressed under the control of the cardiac‐specific Nkx2.5 promoter, were induced to differentiate on feeder‐free gelatin‐coated plates. Immunoprecipitation/Western blotting in nuclear extracts from mouse ES cells demonstrated that Cdk9 as well as cyclin T1 interact with GATA4 during myocardial differentiation. TSA treatment increased Nkx2.5/GFP‐positive cells and endogenous mRNA levels of Nkx2.5 and atrial natriuretic factor. To determine the role of Cdk9 in myocardial cell differentiation, we examined the effects of a dominant‐negative form of Cdk9 (DN‐Cdk9), which loses its kinase activity, and a Cdk9 kinase inhibitor, 5,6‐dichloro‐1‐β‐ribofuranosyl‐benzimidazole (DRB) on TSA‐induced myocardial cell differentiation. The introduction of the DN‐Cdk9 inhibited TSA‐induced increase in GFP expression in Nkx2.5/GFP ES cells. The administration of DRB into ES cells significantly inhibited TSA‐induced increase of endogenous Nkx2.5 mRNA levels in ES cells as well as GFP expression in Nkx2.5/GFP ES cells. These findings demonstrate that Cdk9 is involved in the differentiation of mouse ES cells into cardiomyocytes by interacting with GATA4. J. Cell. Physiol. 226: 248–254, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号