首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptive heterothermy and selective brain cooling are regarded as important thermal adaptations of large arid-zone mammals. Adaptive heterothermy, a process which reduces evaporation by storing body heat, ought to be enhanced by ambient heat load and by water deficit, but most mammals studied fail to show at least one of those attributes. Selective brain cooling, the reduction of brain temperature below arterial blood temperature, is most evident in artiodactyls, which possess a carotid rete, and traditionally has been considered to protect the brain during hyperthermia. The development of miniature ambulatory data loggers for recording body temperature allows the temperatures of free-living wild mammals to be measured in their natural habitats. All the African ungulates studied so far, in their natural habitats, do not exhibit adaptive heterothermy. They have low-amplitude nychthemeral rhythms of temperature, with mean body temperature over the night exceeding that over the day. Those with carotid retes (black wildebeest, springbok, eland) employ selective brain cooling but zebra, without a rete, do not. None of the rete ungulates, however, seems to employ selective brain cooling to prevent the brain overheating during exertional hyperthermia. Rather, they use it at rest, under moderate heat load, we believe in order to switch body heat loss from evaporative to non-evaporative routes.  相似文献   

2.
The study of brain evolution, particularly that of the neocortex, is of primary interest because it directly relates to how behavioural variations arose both between and within mammalian groups. Artiodactyla is one of the most diverse mammalian clades. However, the first 10 Myr of their brain evolution has remained undocumented so far. Here, we used high-resolution X-ray computed tomography to investigate the endocranial cast of Diacodexis ilicis of earliest Eocene age. Its virtual reconstruction provides unprecedented access to both metric parameters and fine anatomy of the most complete endocast of the earliest artiodactyl. This picture is assessed in a broad comparative context by reconstructing endocasts of 14 other Early and Middle Eocene representatives of basal artiodactyls, allowing the tracking of the neocortical structure of artiodactyls back to its simplest pattern. We show that the earliest artiodactyls share a simple neocortical pattern, so far never observed in other ungulates, with an almond-shaped gyrus instead of parallel sulci as previously hypothesized. Our results demonstrate that artiodactyls experienced a tardy pulse of encephalization during the Late Neogene, well after the onset of cortical complexity increase. Comparisons with Eocene perissodactyls show that the latter reached a high level of cortical complexity earlier than the artiodactyls.  相似文献   

3.
Episodes of rapid faunal turnover in the fossil record are often used to examine processes driving macroevolutionary changes, such as competitive exclusion. The sudden appearance in the earliest Eocene of North America of artiodactyls and perissodactyls, and subsequent decline of endemic “condylarths” constitutes such an episode. It has been suggested that the specializations for high speed locomotion (cursoriality) that are present in artiodactyls and perissodactyls were key innovations of these orders accounting for their success in the Eocene and onwards. A quantitative geometric morphometric analysis of distal femoral articular morphology was used to examine changes in locomotor specializations in North American ungulates across the Paleocene-Eocene boundary. “Condylarths” were found to have displayed a broad range of locomotor adaptions, including cursoriality. The early Eocene had the broadest disparity in terms of taxonomic and locomotor contributions to morphological diversity. Changes in locomotor variety were associated with the disappearance of arboreal taxa, primarily “condylarths.” The initial impact of artiodactyls and perissodactyls in North America on existing locomotor diversity was limited and does not support a competitive exclusion hypothesis.  相似文献   

4.
Recent molecular studies are inconsistent with ungulate phylogenetic trees that are based on morphological traits. These inconsistencies especially relate to the position of cetaceans and perissodactyls. Evaluation of the close phylogenetic ties between artiodactyls and cetaceans has been hampered by the absence of tarsal bones of primitive cetaceans, as artiodactyls are often diagnosed on the basis of their tarsus. We here describe newly discovered tarsal bones that are the oldest cetacean tarsals known. We present a character analysis for primitive ungulate tarsals and evaluate their impact on the ungulate phylogenetic tree. Tarsal data are consistent with some molecular studies in suggesting that the extant sister group of Cetacea is Artiodactyla or that Cetacea should be included within the latter order. Tarsal data do not support Cete (Mesonychia plus Cetacea) and are consistent with the exclusion of perissodactyls from paenungulates as suggested by some molecular studies.  相似文献   

5.
Mandibles and teeth of ungulates have been extensively studied to discern the functional significance of their design. Grazing ungulates have deeper mandibles, longer coronoid processes, flatter incisor arcades, and more hypsodont molars in comparison to browsers. If the functional significance of both mandible and teeth shapes is well‐established, it remains uncertain to what extent mandible shapes are really adapted to grazing, meaning that they evolved either to serve their current biological function or just as a structural requirement to accommodate higher crowned molars. Here, we address this question by studying the contribution of phylogeny, hypsodonty, and body size to mandibular shape variation. The mandible shape appeared to be significantly influenced by hypsodonty but not by body size. Interestingly, hypsodonty‐related changes influenced the tooth row in artiodactyls and perissodactyls significantly but in the opposite directions, which is ultimately related to their different digestive strategies. Yet, we obtained a strong phylogenetic effect in perissodactyls, suggesting that their mandible shape should be strongly inherited. The strength of this effect was not significant within artiodactyls (where hypsodonty explained much more variance in mandible shape). Digestive strategy is deemed to interplay with hypsodonty to produce different paths of adaptation to particular diets in ungulates.  相似文献   

6.
The degree of variability in the temperature difference between the brain and carotid arterial blood is greater than expected from the presumed tight coupling between brain heat production and brain blood flow. In animals with a carotid rete, some of that variability arises in the rete. Using thermometric data loggers in five sheep, we have measured the temperature of arterial blood before it enters the carotid rete and after it has perfused the carotid rete, as well as hypothalamic temperature, every 2 min for between 6 and 12 days. The sheep were conscious, unrestrained, and maintained at an ambient temperature of 20-22 degrees C. On average, carotid arterial blood and brain temperatures were the same, with a decrease in blood temperature of 0.35 degrees C across the rete and then an increase in temperature of the same magnitude between blood leaving the rete and the brain. Rete cooling of arterial blood took place at temperatures below the threshold for selective brain cooling. All of the variability in the temperature difference between carotid artery and brain was attributable statistically to variability in the temperature difference across the rete. The temperature difference between arterial blood leaving the rete and the brain varied from -0.1 to 0.9 degrees C. Some of this variability was related to a thermal inertia of the brain, but the majority we attribute to instability in the relationship between brain blood flow and brain heat production.  相似文献   

7.
In artiodactyls, arterial blood destined for the brain can be cooled through counter-current heat exchange within the cavernous sinus via a process called selective brain cooling. We test the hypothesis that selective brain cooling, which results in lowered hypothalamic temperature, contributes to water conservation in sheep. Nine Dorper sheep, instrumented to provide measurements of carotid blood and brain temperature, were dosed with deuterium oxide (D2O), exposed to heat for 8 days (40◦C for 6-h per day) and deprived of water for the last five days (days 3 to 8). Plasma osmolality increased and the body water fraction decreased over the five days of water deprivation, with the sheep losing 16.7% of their body mass. Following water deprivation, both the mean 24h carotid blood temperature and the mean 24h brain temperature increased, but carotid blood temperature increased more than did brain temperature resulting in increased selective brain cooling. There was considerable inter-individual variation in the degree to which individual sheep used selective brain cooling. In general, sheep spent more time using selective brain cooling, and it was of greater magnitude, when dehydrated compared to when they were euhydrated. We found a significant positive correlation between selective brain cooling magnitude and osmolality (an index of hydration state). Both the magnitude of selective brain cooling and the proportion of time that sheep spent selective brain cooling were negatively correlated with water turnover. Sheep that used selective brain cooling more frequently, and with greater magnitude, lost less water than did conspecifics using selective brain cooling less efficiently. Our results show that a 50kg sheep can save 2.6L of water per day (~60% of daily water intake) when it employs selective brain cooling for 50% of the day during heat exposure. We conclude that selective brain cooling has a water conservation function in artiodactyls.  相似文献   

8.
We studied the effect of food supplementation during summer and winter in seminatural field conditions on thermoregulation of a desert rodent, the golden spiny mouse Acomys russatus. We hypothesized that (a) under natural food availability (control conditions), mice will use less precise thermoregulation (i.e., an increase in the variance of body temperature [T(b)]) during winter because of low ambient temperatures (T(a)'s) and low food availability and during summer because of low food and water availability; (b) food supplementation will result in more precise thermoregulation during winter, but the effect will be smaller during summer because variation in T(b) in summer is also driven by water availability during that period. We found that under natural food availability, spiny mice thermoregulated more precisely during summer than during winter. They spent more time torpid during summer than during winter even when food was supplemented (although summer nights are shorter), allowing them to conserve water. Supplementing food resulted in more precise thermoregulation in both seasons, and mice spent less time torpid. In summer, thermoregulation at high T(a)'s was less precise, resulting in higher maximum T(b)'s in summer than in winter and when food was supplemented, in accord with the expected effect of water shortage on thermoregulation. Our results suggest that as expected, precise thermoregulation is beneficial when possible and is abandoned only when the costs of homeothermy outweigh the benefits.  相似文献   

9.
Abstract. . Under laboratory conditions the hissing-cockroach Gromphadorhina portentosa (Schaum) forms clusters, which appears to be an adaptive behaviour to help reduce water loss. Adults grouped together retain water nearly twice as effectively as isolated individuals. This 'group effect' complements the cockroach's large body size (small surface area to volume ratio) to lower the rate of water loss still further. Despite a modest 28% tolerance limit for weight loss during dehydration, adult females survive absolute drying conditions of 0 % relative humidity without food and free water for at least a month, showing their impressive capacity for water retention. Rates of water loss of immature adults correlate with size, and no transition temperature is detected in females. To replenish water stores, cockroaches drank liquid water; there is no evidence for water gain by water vapour absorption. The profound impact exerted by the 'group' for water conservation suggests that members of this species live huddled together in nature, particularly during the long tropical dry season in order to conserve water, and this adds to previous evidence for the existence of a probable social structure.  相似文献   

10.
We investigated the relationship between individual heterozygosity and the utilization of food and water in experimental populations of Liomys pictus from the markedly seasonal tropical dry deciduous and semideciduous forests of Chamela, Jalisco, in western Mexico. Thirty presumptive gene loci were analysed using starch-gel electrophoresis to estimate levels of heterozygosity. Mean body weight was used as a direct measure of the performance of individuals under food and water stressful conditions. L. pictus individuals subjected to a sequentially decreasing food treatment showed high feeding efficiency, with a ratio of food absorbed/food consumed of almost one. The association between food utilization and heterozygosity was not statistically significant, despite the pattern observed that the more heterozygous individuals maintained their weight better during the food treatment. Water utilization was positively associated with heterozygosity. When deprived of water, the more heterozygous individuals lost less weight than the less heterozygous ones. The ability of the more heterozygous individuals to better conserve water and energy may contribute to their adaptation to the extreme seasonality of the Chamela forests.  相似文献   

11.
Why do neonatal and adult delphinids have much larger brains than artiodactyls when they have common ancestors? We explore relationships between neonatal brain size, gestation duration, maternal body mass, and body growth. Cetacean brains grow fast in the womb and longer gestation results in a larger brain. Allometry shows that the larger the mother's body mass, the larger the neonatal brain. After birth, delphinid bodies grow much faster than brains, and the index of encephalization decreases even as brains grow beyond maturity. Delphinids’ larger brain growth during life at sea may be explained by at least three differences from artiodactyls’ life on land. First, the sea offers high calorie prey to support growth of a large brain. Second, life in water offers relief from gravity, allowing for a large head to contain a large brain. Third, sound in water may pass through an immersed body. This allows sounds from the water to reach the fetus, driving early development of delphinoid auditory brain parts. As an example of this, the dolphin ear bone is very large at birth. Furthermore, the auditory nervous system appears mature well before birth. Compared with artiodactyls, these three differences likely result in a larger delphinid brain.  相似文献   

12.
EVOLUTION OF HORNS IN UNGULATES: ECOLOGY AND PALEOECOLOGY   总被引:2,自引:0,他引:2  
(1) The savanna ungulate faunas of the North American Miocene were broadly similar to those of present-day East Africa in terms of overall morphological and taxonomic diversity. However, the predominant ungulates of the African faunas are bovids, which possess bony horns that are primitively sexually dimorphic in their occurrence. The predominant ungulates of the North American Tertiary were equids, camelids and oreodonts, which all lacked horns. A limited number of horned ruminants were present, but these were largely Miocene immigrants from Eurasia. Horns were also absent from the large-bodied herbivores in the endemic faunas of South America and Australia. (2) The absence of horns in equids and tylopod artiodactyls is unlikely to be due to genetic insufficiency. Bony horns were present in brontotheres, which were closely related to equids, and in protoceratids, which were closely related to camelids. Nasal horns were present in one oreodont genus. (3) Studies on living ungulates show that a strong correlation exists between habitat type, feeding behaviour, social behaviour and morphology. It is possible to use the morphological remains of extinct ungulates to reconstruct the types of feeding and social behaviour, and to use the distribution of morphologies and body sizes in a community of mammals, in conjunction with geological and paleobotanical evidence, to reconstruct the type of habitat. (4) The importance of the post-Eocene climatic changes to the history of mammalian evolution is stressed. Continents at higher latitudes have become increasingly seasonal in terms of temperature and rainfall since the equable global conditions of the early Tertiary. Savanna mosaic were the predominant biome in North America by the early Miocene, and in Eurasia by the middle Miocene. Living temperate-latitude species of ungulates may not be a reliable guide for the assessment of the interrelationship between behaviour and morphology in an evolutionary perspective, as their behaviour may have been recently adapted to a habitat type that has only been in existence since the Pleistocene. (5) The primitive condition in eupecorans and protoceratids is the absence of horns, with the presence of large sabre-like canines in the males. The first horned members of these divisions had horns in the males only. Small present-day antelope, where horns may also be present in the females of the species, are probably secondarily small. (6) Horns were acquired independently in ruminant artiodactyls at least three times, and a maximum number of seven times is not unlikely. In each case, horns first appeared at a critical body weight of about 18 kg, and in correlation with a change in habitat from closed to open woodland. (7) Horns in living ruminants are associated with territorial defence by males holding exclusive feeding and reproductive territories in woodland habitats. Such behaviour in present-day antelope is correlated with a body size of greater than 15 kg and a folivorous diet. It is argued that horns evolved in ruminant artiodactyls on the adoption of this type of territorial behaviour once the critical combination of body size, diet and habitat type had been attained in their evolution from small, essentially frugivorous, forest-dwelling animals. (8) Perissodactyls never evolved sexually dimorphic bony horns of the type seen in ruminant artiodactyls. This is because their foraging and digestive strategies necessitate a larger daily intake of food. In a woodland habitat they were never able to adopt a feeding area small enough to make exclusive territory maintenance an economical proposition. Territory holding in male perissodactyls is seen, but under the opposite conditions of habitat to territorial behaviour in ruminant artiodactyls. (9) Study of the morphology and paleoecology of oreodonts suggests that they were woodland herd-forming browsers with exclusively folivorous diets. They probably had some forestomach fermentation, but did not chew the cud. Similar studies of Tertiary camelids suggest that they were predominantly selective browsers eating herbage at a low level in open country and formed mixed-sex feeding groups. These combinations of feeding and social behaviour suggest a more open structure of the mid-Tertiary habitat in North America than in Eurasia. (10) Studies of the behaviour and morphology of living members of the Ruminantia, and of the morphology and paleoecology of their fossil ancestors, suggest that they were primitively tree browsers living in closed woodland habitats. Such habitats were abundant in the Old World, but in limited supply in North America during the Oligocene, where the protoceratids were the only ungulates to parallel the eupecoran type of feeding and social behaviour. South America appears to have had an even more open habitat in the Oligocene than North America, and no parallel to the eupecorans was seen amongst the indigenous ungulates. The radiation of the Bovidae into open grassy habitats in the Pliocene may have been dependent on the immigration of grazing equids into the Old World. (11) I conclude that there was a difference in habitat structure between North America and the Old World during the Tertiary. The food resources in North America were more widely dispersed, and this may have been the result of the trees being more widely spaced. A possible causal mechanism for this was the stable land mass of the North American continent during the Tertiary, resulting in a more continental climate, with a more severe effect of the post-Eocene seasonality on the vegetation. The faunal record of the two continents also implied a greater density of trees in the Old World. (12) Thus most endemic North American ruminants did not evolve horns because, at the critical combination of body size and diet seen in the evolution of horns in the Old World ruminants, the dispersal of the food resources within the vegetation was too great for an effective home range to be maintained as an exclusive territory. (13) Attention is drawn to the dangers of constructing evolutionary stories about living animals without primary reference to the fossil record to see if the hypotheses are upheld, and of assuming that fossil animal communities can be made to fit models of existing communities.  相似文献   

13.
Summary The water balance of three different sized coexisting species of heteromyid rodents (Dipodomys merriami ca. 39 g;Perognathus fallax ca. 23 g;Perognathus longimembris ca. 9 g) was assessed while consuming two different diets (either wheat or hulled sunflower) at ambient temperatures of 15–30°C. The metabolism of wheat as the sole food source was calculated to provide a greater metabolic water production (MWP) than the consumption of sunflower seed because of their different composition. The state of water balance was assessed by measuring urine concentrations and body weight maintenance on each diet at each temperature. Both measures showed that (i) all species were able to maintain a more positive water on the higher MWP seed, (ii) for all species there was an ambient temperature above which water balance could no longer be maintained, (iii) that this temperature was higher with the higher MWP food source and (iv) water regulatory efficiency was negatively correlated with body mass.Dipodomys showed a reduced digestive efficiency compared toPerognathus. When presented with both seedsDipodomys showed no preference for either seed irrespective of the state of water balance whilst thePerognathus species showed a tendency for an increased preference for the high MWP food source at the higher ambient temperatures. The ecological implications of these findings are discussed.  相似文献   

14.
Abstract.  Several parasitic wasps of the Pimplinae (Ichneumonidae) use self-produced vibrations transmitted through plant substrate to locate their concealed immobile hosts (lepidopteran pupae) by reflected signals. This mechanosensory mechanism of host location, called vibrational sounding, depends on the physical characteristics of the plant substrate and the wasp's body and is postulated to depend on ambient temperature. Adaptations of two parasitoid species to thermal conditions of their habitats and the influence of temperature on the trophic interaction during host location are investigated in the tropical Xanthopimpla stemmator (Thunberg) and compared with the temperate Pimpla turionellae (L.). Plant-stem models with hidden host mimics are offered to individual wasps under defined temperature treatments and scored for the number and location of ovipositor insertions. Significant effects of temperature are found on host-location activity and its success. The tropical species possesses an optimum temperature range for vibrational sounding between 26 and 32 °C, whereas the performance decreases both at low and high temperatures. The temperate species reveals substantial differences with respect to performance at the same thermal conditions. With increasing temperature, P. turionellae shows a reduced response to the host mimic, reduced numbers of ovipositor insertions, and decreased precision of mechanosensory host location. In the tropical X. stemmator , the female wasps are able to locate their host with high precision over a broad range of ambient temperatures, which suggests endothermic thermoregulation during vibrational sounding. Environmental physiology may therefore play a key role in adaptation of the host location mechanism to climatic conditions of the species' origin.  相似文献   

15.
系统记述了在2007年从辽宁省朝阳市龙城区马山洞出土的奇蹄目和偶蹄目化石:普氏野马(Equus przewalskii)、马鹿(Cervus(E.)elaphus)、普氏原羚(Proca praprzewalskii)、恰克图转角羚羊(Spirocerus kiakhtensis)、裴氏转角羚羊(Spirocerus peii)和岩羊未定种(Pseudois sp.)。并对马山洞哺乳动物群的性质和年代进行了探讨, 指出马山洞动物群含有的北方种类较多, 与北方区的很多动物群可以比较, 属于典型的北方区动物群。其生态环境为以山地原草地为主, 镶嵌有零散的森林, 属北温带半湿润-半干旱大陆性季风气候, 年平均温度似低于现在。马山洞动物群中绝灭种类不多, 主要为晚更新世的类型, 在组成上与古龙山、小孤山和阎家岗这3地的动物群最相似, 其时代似应为晚更新世中晚期, 其绝对年龄估计在5ka左右。  相似文献   

16.
Summary Male and femalePsammodromus hispanicus from southern Europe were acclimated to four seasonal conditions of photoperiod and night time temperature. During the dark period, the lizards' body temperatures fell to ambient air temperature but during the light period the lizards were allowed to thermoregulate behaviourally and at such times the lizards' mean body temperature varied from 29.0°C to 32.6°C. The resting metabolic rate of these lizards was measured in 5°C steps from 5°C to 30°C or 35°C. Sexual condition had little effect on resting metabolic rate, but at low temperatures lizards acclimated to winter or spring seasonal conditions had lower resting metabolic rates than those acclimated to summer or autumn conditions. At temperatures above 20°C seasonal acclimation had no effect on resting metabolic rate. It is considered that the reduction in low temperature metabolic rate in spring and winter is induced by low night time temperatures and serves to conserve energy during those seasons when lizards must spend long periods at low temperature without being able to feed.  相似文献   

17.
Phylogenetic analysis of 12 protein-coding genes from complete mitochondrial DNA (mtDNA) molecules of various mammals including a xenarthran representative, the armadillo (Dasypus novemcinctus), showed that the order Xenarthra (Edentata) is a sister group to the ferungulates (carnivores, perissodactyls, artiodactyls, cetaceans). Morphological and previous molecular analyses have placed the Xenarthra basal to other extant eutherians. The present findings are in striking contrast with that understanding. The results suggest that Xenarthra and ferungulates separated about 86 MYA.   相似文献   

18.
In posthatching mallard ducks (Anas platyrhynchos), brain cooling improves with growth. To determine whether this may be correlated with growth-related changes in morphology of the rete ophthalmicum, we studied the development of this rete in immature mallards from hatching to 29 days of age. We found that the number of arteries and veins was fixed at hatching. The rete continued to grow, however, in length and vessel diameter during body and brain growth. The vascular surface area for heat exchange in the rete therefore also increased with body and brain mass. The increase in retial heat-exchange area was faster than the simultaneous increase in brain mass. The increase in body-to-brain temperature difference (delta T) described previously occurred nearly in direct proportion to heat-exchange area, such that the ratio of delta T to exchange area was nearly constant at about 0.1 degrees C per mm2 during growth. It is concluded that the increase in heat-exchange area of the rete ophthalmicum plays a major role in the development of brain cooling capacity of posthatching ducks.  相似文献   

19.
In the past few decades, many new discoveries have provided numerous transitional fossils that show the evolution of hoofed mammals from their primitive ancestors. We can now document the origin of the odd-toed perissodactyls, their early evolution when horses, brontotheres, rhinoceroses, and tapirs can barely be distinguished, and the subsequent evolution and radiation of these groups into distinctive lineages with many different species and interesting evolutionary transformations through time. Similarly, we can document the evolution of the even-toed artiodactyls from their earliest roots and their great radiation into pigs, peccaries, hippos, camels, and ruminants. We can trace the complex family histories in the camels and giraffes, whose earliest ancestors did not have humps or long necks and looked nothing like the modern descendants. Even the Proboscidea and Sirenia show many transitional fossils linking them to ancient ancestors that look nothing like modern elephants or manatees. All these facts show that creationist attacks on the fossil record of horses and other hoofed mammals are completely erroneous and deceptive. Their critiques of the evidence of hoofed mammal evolution are based entirely on reading trade books and quoting them out of context, not on any firsthand knowledge or training in paleontology or looking at the actual fossils.  相似文献   

20.
Mechanisms that influence body temperature patterns in black-tailed prairie dogs are not well understood. Previous research on both free-ranging and laboratory populations of black-tailed prairie dogs (Cynomys ludovicianus) has suggested that reductions in ambient temperature and food and water deprivation are the primary factors that stimulate torpor in this species. In other species, however, torpor has been shown to be influenced by a multitude of factors, including innate circadian and circannual timing mechanisms, energy status, and reproductive behaviors. Our objective was to clarify the influence of weather, sex, and intrinsic timing mechanisms on the body temperature patterns of free-ranging black-tailed prairie dogs. We monitored body temperatures of eight adult (>1 yr) prairie dogs from November 1999 to June 2000. Prairie dogs showed distinct daily and seasonal body temperature patterns, which reflected changes in ambient temperatures that occurred during these periods. These patterns of daily and seasonal heterothermy suggest that body temperature patterns of black-tailed prairie dogs may be driven by an innate timing mechanism. All prairie dogs entered torpor intermittently throughout winter and spring. Torpor bouts appeared to be influenced by precipitation and reductions in ambient temperature. Our results also suggest that reproductive behaviors and circadian timing may influence torpor in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号