首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two chimeric synthetic peptides incorporating immunodominant sequences from HTLV-II virus were synthesized. Monomeric peptides P2 and P3 represent sequences from transmembrane protein (gp21) and envelope protein (gp46) of the virus. The peptide P2 is a gp21 (370-396) sequence and the peptide P3 is a gp46 (178-205) sequence. Those peptides were arranged in a way that permits one to obtain different combinations of chimeric peptides (P2-GG-P3 and P3-GG-P2), separated by two glycine residues as spacer arms. The antigenic activity of these peptides was evaluated by UltramicroEnzyme-linked immunosorbent assay (UMELISA) by using panels anti-HTLV-II-positive sera (n = 11), anti-HTLV-I/II-positive sera (n = 2), HTLV-positive (untypeable) serum samples (n = 2), and anti-HTLV-I-positive sera (n = 22), while specificity was evaluated with anti-HIV-positive samples (n = 19) and samples from healthy blood donors (n = 30). The efficacy of the chimeric peptides in solid-phase immunoassays was compared with the monomeric peptides and a mixture of the monomeric peptides. Higher sensitivity was observed for chimeric peptide Q5 assay. Those results may be related to a higher peptide adsorption capacity to the solid surface and for epitope accessibility to the antibodies. This chimeric peptide would be very useful for HTLV-II diagnostic.  相似文献   

2.
Two chimeric synthetic peptides incorporating immunodominant sequences from HTLV-I virus were synthesized. Monomeric peptides P7 and P8 represent sequences from transmembrane protein (gp21) and envelope protein (gp46) of the virus. The peptide P7 is a gp21 (374-400) sequence and the peptide P8 is a gp46 (190-207) sequence. Those peptides were arranged in a way that permits one to obtain different combinations of chimeric peptides (P7-GG-P8 and P8-GG-P7), separated by two glycine residues as spacer arms. The antigenic activity of these peptides were evaluated by UltramicroEnzyme-linked immunosorbent assay (UMELISA) by using panels of anti-HTLV-I-positive sera (n = 22), anti-HTLV-I/II-positive sera (n = 2), HTLV-positive (untypeable) serum samples (n = 2), and anti-HTLV-II-positive sera (n = 11), while specificity was evaluated with anti-HIV-positive samples (n = 19) and samples from healthy blood donors (n = 30). The efficacy of the chimeric peptides in solid-phase immunoassays was compared with the monomeric peptides and monomeric peptides together. The chimeric peptide P7-GG-P8 proved to be the most reactive with anti-HTLV-I-positive sera. These results may be related to a higher peptide adsorption capacity to the solid surface and for epitope accessibility to the antibodies. This chimeric peptide would be very useful for HTLV-I diagnostics.  相似文献   

3.
Twelve synthetic peptides containing hydrophilic amino acid sequences of human T-cell lymphotropic virus type I (HTLV-I) envelope glycoprotein were coupled to tetanus toxoid and used to raise epitope-specific antisera in goats and rabbits. Low neutralizing antibody titers (1:10 to 1:20) raised in rabbits to peptides SP-2 (envelope amino acids [aa] 86 to 107), SP-3 (aa 176 to 189), and SP-4A (aa 190 to 209) as well as to combined peptide SP-3/4A (aa 176 to 209) were detected in the vesicular stomatitis virus-HTLV-I pseudotype assay. Higher-titered neutralizing antibody responses to HTLV-I (1:10 to 1:640) were detected with pseudotype and syncytium inhibition assays in four goats immunized with a combined inoculum containing peptides SP-2, SP-3, and SP-4A linked to tetanus toxoid. These neutralizing anti-HTLV-I antibodies were type specific in that they did not inhibit HTLV-II syncytium formation. Neutralizing antibodies in sera from three goats could be absorbed with peptide SP-2 (aa 86 to 107) as well as truncated peptides containing envelope aa 90 to 98, but not with equimolar amounts of peptides lacking envelope aa 90 to 98. To map critical amino acids that contributed to HTLV-I neutralization within aa 88 to 98, peptides in which each amino acid was sequentially replaced by alanine were synthesized. The resulting 11 synthetic peptides with single alanine substitutions were then used to absorb three neutralizing goat antipeptide antisera. Both asparagines at positions 93 and 95 were required for adsorption of neutralizing anti-HTLV-I antibodies from all three sera. Peptide DP-90, containing the homologous region of HTLV-II envelope glycoprotein (aa 82 to 97), elicited antipeptide neutralizing antibodies to HTLV-II in goats that were type specific. In further adsorption experiments, it was determined that amino acid differences between homologous HTLV-I and HTLV-II envelope sequences at HTLV-I aa 95 (N to Q) and 97 (G to L) determined the type specificity of these neutralizing sites. Thus, the amino-terminal regions of HTLV-I and -II gp46 contain homologous, linear, neutralizing determinants that are type specific.  相似文献   

4.
We have generated a number of mAb against various epitopes on the external envelope glycoprotein, gp46, of human T cell leukemia virus type I (HTLV-I) from a WKA rat immunized with a recombinant vaccinia virus containing the HTLV-I env gene. Among these mAb, one group of mAb, represented by a mAb designated LAT-27, could neutralize the infectivity of HTLV-I, as determined by a HTLV-I-mediated cell fusion inhibition assay. LAT-27 also interfered with transformation of normal T lymphocytes by HTLV-I in vitro. An antibody-binding assay using overlapping synthetic oligopeptides showed that LAT-27 bound specifically to 10-mer peptides that contained the gp46 amino acid sequence 191-196 (Leu-Pro-His-Ser-Asn-Leu). Antibodies from HTLV-I+ humans interfered with the binding of LAT-27 to gp46 Ag. Sera from rabbits immunized with a LAT-27-reactive peptide, 190-199, conjugated with OVA, but not sera from OVA-immunized rabbits, reacted with gp46 Ag and neutralized infectivity of HTLV-I. These results show that the HTLV-I neutralization epitope recognized by LAT-27 locates to the gp46 amino acids 191-196, and that immunization with a peptide containing the LAT-27 epitope can elicit an HTLV-I neutralizing antibody response.  相似文献   

5.
A mouse hybridoma cell line producing monoclonal antibody, F10, was established from mice hyperimmunized with cells bearing adult T cell leukemia (ATL) virus (ATLV). F10 antibody reacted with an ATLV structural polypeptide ( gp21 ) with a m.w. of 21,000 that was glycosylated on cell surfaces. The gp21 was expressed on cell surfaces of all ATL-associated antigen (ATLA)-positive human cell lines but not on ATLA-negative cell lines nor peripheral blood leukocytes stimulated with mitogens. The gp21 was also detected with anti-ATLA-positive human serum, and the binding of F10 antibody to ATLA-positive cell surfaces was significantly blocked by pretreatment with anti-ATLA-positive human sera. Double immunofluorescence staining with F10 antibody and anti-ATLA-positive human serum caused co-capping on cell surfaces, which suggests that gp21 co-exists with other ATLV antigens expressed on cell surfaces. Immunoprecipitation studies also suggested that the gp21 is a minor component of the ATLV envelope.  相似文献   

6.
The antigenicity of three chimeric synthetic peptides (Qm, Qm-16, and Qm-17) incorporating an immunodominant epitope of the gp41 transmembrane protein (587-617) and the different epitopes of the gp120 envelope protein (495-516), (301-335), (502-516) of human immunodeficiency virus (HIV-1), separated by two glycine residues, was evaluated by UltramicroEnzyme-linked immunosorbent assay (UMELISA) by using panels of anti-HIV-1 positive sera (n = 47). The specificity was evaluated with samples from healthy blood donors (n = 20) and anti-HIV-2 positive samples (n = 10). The results indicate that the chimeric peptide, Qm, was the most reactive one because it detected antibodies to virus efficiently. This may be related to peptide adsorption onto the solid surface, the C-terminal region of HIV-1 gp120 (495-516) combined with gp41 (587-617) in the chimera, and the epitope accessibility to the antibodies. This study showed the usefulness of the chimeric peptides as antigen to detect antibodies to HIV-1 virus.  相似文献   

7.
That HTLV-I infects CD4(+) T cells and enhances their cell growth has been shown as successful long-term in vitro proliferation in the presence of IL-2. It is known that T cells isolated from HAM patients possess strong ability for cell proliferation in vitro and mRNA of various cytokines are abundantly expressed in CNS tissues of HAM patients. Hence, the cytokine-induced proliferation could have an important role in pathogenesis and immune responses of HAM. In this study, we examined the relationship between cell proliferation and ability of in vitro cytokine production of CD4(+) T cell clones isolated from HAM patients. We started a culture from a single cell to isolate cell clones immediately after drawing blood from the patients using limiting dilution method, which could allow the cell to avoid in vitro HTLV-I infection after initiation of culture. Many cell clones were obtained and the rate of proliferation efficiency from a single cell was as high as 80%, especially in the 4 weeks' culture cells from HAM patients. These cells were classified as mainly Th0 phenotype that produce both IFN-gamma and IL-4 after CD3-stimulation. However, the frequency of proviral DNA in these cloned cells was significantly low. Our results indicate that the ability of cell proliferation in HAM patients is not restricted in HTLV-I-infected T cells. HTLV-Iuninfected CD4(+) T cells, mainly Th0 cells, also have a strong ability to respond to IL-2-stimulation, showing that unusual immune activation on T cells has been observed in HAM patients.  相似文献   

8.
Tax, the human T cell leukemia virus type I oncoprotein, plays a crucial role in viral transformation and the development of the virally associated disease adult T cell leukemia. Because oncogenesis involves alterations in cell growth, it is important to examine the effects of Tax on cell cycle progression. Using a synchronized cell system, we have found that Tax expression accelerates G(1) phase progression and S phase entry with concomitant DNA replication. This accelerated progression is accompanied by an earlier onset of cdk2 kinase activity. In contrast to the shortening of G(1) phase, the length of S phase is unaffected by Tax expression. As a result of a more rapid cell cycle progression, cells expressing Tax exhibit faster growth kinetics and display an altered cell cycle distribution. Additionally, the decreased time allowed for growth in the presence of Tax results in a decreased cell size. Tax-associated acceleration of cell cycle progression may play a role in the ability of this viral oncoprotein to mediate cellular transformation and promote the development of human T cell leukemia virus type I-associated diseases.  相似文献   

9.
One strategy for the generation of broadly reactive neutralizing antibodies (NA) against human immunodeficiency virus type 1 (HIV-1) primary isolates is to use immunogens that have constrained HIV-1 envelope gp120 conformations reflective of triggered envelope on the surface of virions. A major change in gp120 following binding to CD4 is the enhanced exposure of the CCR5 binding site. One inducer of CCR5 binding site epitopes on gp120 is the human anti-gp120 monoclonal antibody, A32. We have made cross-linked A32-rgp120(89.6) and A32-rgp120(BaL) complexes and have compared their immunogenicities to those of uncomplexed recombinant gp120(BaL) (rgp120(BaL)) and rgp120(89.6). A32-rgp120(89.6) and A32-rgp120(BaL) complexes had stable induced CCR5 binding site expression compared to that of uncomplexed rgp120s. However, the A32-rgp120 complexes had similar capacities in guinea pigs for induction of NA against HIV-1 primary isolates versus that of rgp120 alone. A32-rgp120(89.6) induced antibodies that neutralized 6 out of 11 HIV-1 isolates, while rgp120(89.6) alone induced antibodies that neutralized 4 out of 11 HIV-1 isolates. A32-rgp120(BaL) complexes induced antibodies that neutralized 4 out of 14 HIV-1 isolates while, surprisingly, non-cross-linked rgp120(BaL) induced antibodies that neutralized 9 out of 14 (64%) HIV-1 isolates. Thus, stable enhanced expression of the coreceptor binding site on constrained gp120 is not sufficient for inducing broadly neutralizing anti-HIV-1 NA. Moreover, the ability of HIV-1 rgp120(BaL) to induce antibodies that neutralized approximately 60% of subtype B HIV-1 isolates warrants consideration of using HIV-1 BaL as a starting point for immunogen design for subtype B HIV-1 experimental immunogens.  相似文献   

10.
Two different approaches were used to map the type-specific regions on human T cell leukemia virus (HTLV) envelope glycoproteins. 1) Antibody reactivities of polymerase chain reaction-confirmed HTLV-I or HTLV-II carriers' sera were analyzed by Western blot assay with seven recombinant proteins containing different regions of HTLV-I or HTLV-II envelope proteins. 2) Rabbit antibodies elicited by nine HTLV-I Env synthetic peptides were used to react with the native HTLV envelope glycoproteins in an antibody-dependent cellular cytotoxicity (ADCC) assay. The results of the Western blot analysis showed that RP-B2, which contains amino acid residues 166 to 213 from HTLV-II exterior glycoprotein, was specifically reactive with 90.6% (48 of 53) of the HTLV-II carriers' sera but not with any of the HTLV-I carriers' serum (0 of 71). In contrast, RP-B, which contains amino acid residues 166 to 229 from HTLV-I exterior glycoprotein, was reactive with 85.1% (114 of 134) of the HTLV-I carriers' sera but not with any HTLV-II carrier serum (0 of 62). Furthermore, anti-HTLV-I Env synthetic peptide antibody-mediated ADCC identified several distinguishing HTLV-I ADCC epitopes in the middle region (amino acid residues 177 to 257) of the HTLV-I exterior glycoprotein. Therefore, HTLV type-specific epitopes reside mainly in a 69-amino acid sequence bounded by two cysteine residues (amino acids 157 and 225 for HTLV-I and 153 and 221 for HTLV-II), in the middle region of the exterior envelope glycoproteins.  相似文献   

11.
The major receptors required for attachment and entry of the human T-cell leukemia virus type 1 (HTLV-1) remain to be identified. Here we demonstrate that a functional, soluble form of the HTLV-1 surface envelope glycoprotein, gp46, fused to an immunoglobulin Fc region (gp46-Fc) binds to heparan sulfate proteoglycans (HSPGs) on mammalian cells. Substantial binding of gp46-Fc to HeLa and Chinese hamster ovary (CHO) K1 cells that express HSPGs was detected, whereas binding to the sister CHO lines 2244, which expresses no HSPGs, and 2241, which expresses no glycosaminoglycans (GAGs), was much reduced. Enzymatic removal of HSPGs from HeLa and CHO K1 cells also reduced gp46-Fc binding. Dextran sulfate inhibited gp46-Fc binding to HSPG-expressing cells in a dose-dependent manner, whereas chondroitin sulfate was less effective. By contrast, dextran sulfate inhibited gp46-Fc binding to GAG-negative cells such as CHO 2244, CHO 2241, and Jurkat T cells weakly or not at all. Dextran sulfate inhibited HTLV-1 envelope glycoprotein (Env)-pseudotyped virus infection of permissive, HSPG-expressing target cells and blocked syncytium formation between HTLV-1 Env-expressing cells and HSPG-expressing permissive target cells. Finally, HSPG-expressing cells were more permissive for HTLV-1 Env-pseudotyped virus infection than HSPG-negative cells. Thus, similar to other pathogenic viruses, HTLV-1 may have evolved to use HSPGs as cellular attachment receptors to facilitate its propagation.  相似文献   

12.
Three peptides corresponding to selected regions of the env gene products of human T cell leukemia virus type I were synthesized by solid-phase Merrifield techniques. The sequence of peptide designated SP-65 was identical to the predicted C-terminal 12 residues of the transmembrane protein p21env, and peptide SP-74 was inferred from a region shown to be highly conserved among mammalian retroviruses. The third peptide, SP-70, was derived from a C-terminal region of the surface glycoprotein gp46. Antibodies to each peptide were raised in rabbits and were used to identify and further characterize the proteins coded by the env gene. Despite being present at very low levels in purified viral preparations, these proteins were chromatographed by reverse-phase high pressure liquid chromatography and were located by Western blot analysis of the column fractions. Anti-SP-70 recognized the surface glycoprotein (gp46) and also its C-terminal cleavage fragment (gp16). Anti-SP-65 and anti-SP-74 both reacted with the hydrophobic transmembrane protein (p21) and provided evidence that this protein does not undergo apparent C-terminal processing during viral maturation, unlike the trans-membrane protein of murine leukemia virus. As expected, anti-SP-74 also reacted with homologous proteins from other Type C and Type D viruses, confirming that peptide SP-74 corresponds to a broadly conserved region of retroviral transmembrane proteins. SP-70, which is predicted to be quite near the C terminus of the major surface glycoprotein, was also reactive with sera of HTLV-I-positive patients, indicating that this peptide corresponds to, or is part of, a native epitope recognized by the natural host.  相似文献   

13.
A monoclonal IgG antibody directed against gp 41 from the human immunodeficiency virus (HIV-1) has been crystallized in both intact and Fab forms. Crystals of the intact antibody grow as tetragonal-like prisms too small for conventional X-ray analysis. However, the Fab portion of the antibody produces suitable plate-like crystals which belong to the space group P2(1)2(1)2(1) with unit cell constants of a = 66.5 A, b = 74.3 A and c = 105.3 A. There is one molecule of Fab in the asymmetric unit. The Fab crystals show diffraction to d-spacings less than 3.0 A.  相似文献   

14.
In previous studies, we have used antisera raised to envelope (env)-gene-encoded synthetic peptides to identify a region of (HIV) glycoprotein (gp) 120 env protein designated SP10 that contains a type-specific neutralizing determinant. To develop a polyvalent, synthetic peptide inoculum that can evoke both neutralizing antibodies and T cell proliferative responses to more than one HIV isolate, synthetic peptides containing type-specific neutralizing determinants of gp120 from HIV isolates HTLV-IIIB (IIIB), HTLV-IIIMN (MN) and HTLV-IIIRF (RF) were coupled to a 16 amino acid T cell epitope (T1) of HIV-IIIB gp120 and used to immunize goats. Goat antisera to each T1-SP10 peptide derived from the SP10 region of gp120 of IIIB, MN, and RF neutralized HIV isolates IIIB, MN and RF in a type-specific manner. Moreover, peripheral blood T cells from immunized goats also proliferated in a type-specific manner to peptides derived from gp120 of IIIB, MN, and RF. When combined in a trivalent inoculum, T1-SP10 peptides from HIV-1 isolates IIIB, MN, and RF evoked a high titered neutralizing antibody response to isolates IIIB, MN, and RF in goats and as well induced immune T cells to undergo blast transformation in the presence of peptides derived from gp120 of all three HIV isolates. The T1 portion of the T1-SP10 construct was shown to induce a B cell antibody response against determinants within the T1 peptide in addition to inducing T cell proliferative responses in immune goat T cells. Moreover, the SP10 portion of the T1-SP10 constructs not only induced B cell antibody production but also induced type-specific T cell proliferative responses localized to the C-terminal variable sequences of the SP10 peptides. Finally, the T1-SP10 peptide construct induced memory T cell proliferative responses to native gp120 env protein. Thus, combinations of homologous SP10 region synthetic peptides containing type-specific neutralizing determinants and T cell epitopes of HIV gp120 may be useful in man to elicit high titered neutralizing B cell responses and, as well, T cell responses to more than one HIV isolate.  相似文献   

15.
Ten human monoclonal antibodies derived from peripheral B cells of a patient with human T-cell lymphotropic virus (HTLV)-associated myelopathy are described. One monoclonal antibody recognized a linear epitope within the carboxy-terminal 43 amino acids of HTLV gp21, and two monoclonal antibodies recognized linear epitopes within HTLV type 1 (HTLV-1) gp46. The remaining seven monoclonal antibodies recognized denaturation-sensitive epitopes within HTLV-1 gp46 that were expressed on the surfaces of infected cells. Two of these antibodies also bound to viable HTLV-2 infected cells and immunoprecipitated HTLV-2 gp46. Virus neutralization was determined by syncytium inhibition assays. Eight monoclonal antibodies, including all seven that recognized denaturation-sensitive epitopes within HTLV-1 gp46, possessed significant virus neutralization activity. By competitive inhibition analysis it was determined that these antibodies recognized at least four distinct conformational epitopes within HTLV-1 gp46. These findings indicate the importance of conformational epitopes within HTLV-1 gp46 in mediating a neutralizing antibody response to HTLV infection.  相似文献   

16.
We established rat T cell lines expressing human T cell leukemia virus type I (HTLV-I) Ag from inbred strains of rats, WKA/H, DA, and F344, to study CTL response against the HTLV-I-infected cells. HTLV-I-specific Ag expressed in these rat cells were HTLV-I gag Ag, p19, p24, and p15, and pX Ag, p40tax and p27rex, but not env Ag, as determined by immunofluorescence and immunoblot assays. By immunization of rats with syngeneic HTLV-I-infected cells, CTL against syngeneic HTLV-I-infected cells and antibodies to HTLV-I Ag were generated in WKA/H and DA rats. The bulk CTL cultures from WKA/H and DA rats lysed specifically syngeneic SV40-transformed kidney cells infected with recombinant vaccinia viruses (RVV) expressing HTLV-I gag and pX Ag, but not those infected with RVV expressing HTLV-I env Ag or a control vaccinia virus. From WKA/H rat CTL cultures, four CTL clones reactive with syngeneic HTLV-I-infected cells were isolated, three of which were specific for p27rex/p21x, but the Ag recognized by the other CTL clone was not defined with any RVV used. These results indicate that HTLV-I gag and pX gene products are recognized by MHC-restricted rat CTL specific for syngeneic HTLV-I-infected cells.  相似文献   

17.
CD4(+) T cells predominate in early lesions in the CNS in the inflammatory disease human lymphotropic T cell virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP), but the pathogenesis of the disease remains unclear and the HTLV-I-specific CD4(+) T cell response has been little studied. We quantified the IFN-gamma-producing HTLV-I-specific CD4(+) T cells, in patients with HAM/TSP and in asymptomatic carriers with high proviral load, to test two hypotheses: that HAM/TSP patients and asymptomatic HTLV-I carriers with a similar proviral load differ in the immunodominance hierarchy or the total frequency of specific CD4(+) T cells, and that HTLV-I-specific CD4(+) T cells are preferentially infected with HTLV-I. The strongest CD4(+) T cell response in both HAM/TSP patients and asymptomatic carriers was specific to Env. This contrasts with the immunodominance of Tax in the HTLV-I-specific CD8(+) T cell response. The median frequency of HTLV-I-specific IFN-gamma(+) CD4(+) T cells was 25-fold greater in patients with HAM/TSP (p = 0.0023, Mann-Whitney) than in asymptomatic HTLV-I carriers with a similar proviral load. Furthermore, the frequency of CD4(+) T cells infected with HTLV-I (expressing Tax protein) was significantly greater (p = 0.0152, Mann-Whitney) among HTLV-I-specific cells than CMV-specific cells. These data were confirmed by quantitative PCR for HTLV-I DNA. We conclude that the high frequency of specific CD4(+) T cells was associated with the disease HAM/TSP, and did not simply reflect the higher proviral load that is usually found in HAM/TSP patients. Finally, we conclude that HTLV-I-specific CD4(+) T cells are preferentially infected with HTLV-I.  相似文献   

18.
Purified human T cell leukemia virus type I (HTLV-I) was biotinylated and used to study its attachment to human PBMC. The use of biotinylated HTLV-I (biot-HTLV-I) in conjunction with mouse mAb specific for selected cell-surface molecules and flow cytometric analysis allowed us to positively identify virus-binding cells among a heterogeneous blood mononuclear cell population. Biot-HTLV-I efficiently bound not only to T cells, but also to B cells and monocytes. Preincubation of monocytes with excess of unlabeled HTLV-I significantly reduced the attachment of biot-HTLV-I. HTLV-I not only bound to, but also infected, B cells, as suggested by: i) in situ hybridization of a 35S-labeled full length HTLV-I DNA probe with EBV-transformed B cells, previously cocultured with HTLV-I-producing (G11MJ) T cells, and ii) hybridization of the same nick-translated 32P-labeled DNA probe with blotted DNA from similar HTLV-I-infected EBV-transformed B cells. HTLV-I infection did not affect the ability of B cells to secrete IgG. These findings suggest that HTLV-I cannot only infect cells of the T lineage, but can also infect B cells.  相似文献   

19.
20.
We determined the nucleotide sequence of a region between the gag and pol genes of a replication-competent proviral clone of a human T-cell leukemia virus type I (HTLV-I) from MT-2 cells. This region overlapping the gag and pol genes contains an open reading frame with a different phase from others. The deduced amino acid sequences show significant homology with the known protease gene of other retroviruses, and harbors highly conserved amino acid sequences that are well conserved in other retroviral protease domains. These results indicate that this open reading frame encodes a HTLV-I protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号