首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the Gram-positive organism Bacillus subtilis, chemotaxis to the attractant asparagine is mediated by the chemoreceptor McpB. In this study, we show that rapid net demethylation of B. subtilis McpB results in the immediate production of methanol, presumably due to the action of CheB. We also show that net demethylation of McpB occurs upon both addition and removal of asparagine. After each demethylation event, McpB is remethylated to nearly prestimulus levels. Both remethylation events are attributable to CheR using S-adenosylmethionine as a substrate. Therefore, no methyl transfer to an intermediate carrier need be postulated to occur during chemotaxis in B. subtilis as was previously suggested. Furthermore, we show that the remethylation of asparagine-bound McpB requires the response regulator, CheY-P, suggesting that CheY-P acts in a feedback mechanism to facilitate adaptation to positive stimuli during chemotaxis in B. subtilis. This hypothesis is supported by two observations: a cheRBCD mutant is capable of transient excitation and subsequent oscillations that bring the flagellar rotational bias below the prestimulus value in the tethered cell assay, and the cheRBCD mutant is capable of swarming in a Tryptone swarm plate.  相似文献   

2.
Addition and removal of the attractant asparagine causes methanol formation as a consequence of methylation and demethylation of conserved glutamate residues in the Bacillus subtilis chemotaxis receptor McpB C-terminal domain. We found that methanol was released on both addition and removal of asparagine even when the response regulator domain of CheB was removed (to produce CheB(141-357)). Thus, in undergoing the transition from unbound receptor to ligand-bound adapted receptor, the receptor must pass through a state of heightened susceptibility to demethylation by CheB that is independent of phosphorylation. The same result occurred when the aspartate phosphorylation site of CheB, Asp54, had been mutated to an asparagine residue, provided the enzyme was sufficiently induced. However, no methanol release was observed for an active site point mutant, cheB(S173C), in response to addition or removal of asparagine even when induced. Finally, methanol release was observed only for attractant addition in a mutant background lacking the coupling proteins, CheW and CheV, provided CheB(141-357) was present. Thus, on attractant addition, methanol must arise from a transient conformation of the receptor C-terminal domain that is an intrinsic property of the receptor; on attractant removal, however, methanol must arise from a different transient conformation, one dependent on the presence of coupling proteins.  相似文献   

3.
The methyl-accepting chemotaxis protein, McpB, is the sole receptor mediating asparagine chemotaxis in Bacillus subtilis. In this study, we show that wild-type B. subtilis cells contain approximately 2,000 copies of McpB per cell, that these receptors are localized polarly, and that titration of only a few receptors is sufficient to generate a detectable behavioural response. In contrast to the wild type, a cheB mutant was incapable of tumbling in response to decreasing concentrations of asparagine, but the cheB mutant was able to accumulate to low concentrations of asparagine in the capillary assay, as observed previously in response to azetidine-2-carboxylate. Furthermore, net demethylation of McpB is logarithmically dependent on asparagine concentration, with half-maximal demethylation of McpB occurring when only 3% of the receptors are titrated. Because the corresponding methanol production is exponentially dependent on attractant concentration, net methylation changes and increased turnover of methyl groups must occur on McpB at high concentrations of asparagine. Together, the data support the hypothesis that methylation changes occur on asparagine-bound McpB to enhance the dynamic range of the receptor complex and to enable the cell to respond to a negative stimulus, such as removal of asparagine.  相似文献   

4.
Na,K-ATPase mediates net electrogenic transport by extruding three Na+ ions and importing two K+ ions across the plasma membrane during each reaction cycle. We mutated putative cation coordinating amino acids in transmembrane hairpin M5-M6 of rat Na,K-ATPase: Asp776 (Gln, Asp, Ala), Glu779 (Asp, Gln, Ala), Asp804 (Glu, Asn, Ala), and Asp808 (Glu, Asn, Ala). Electrogenic cation transport properties of these 12 mutants were analyzed in two-electrode voltage-clamp experiments on Xenopus laevis oocytes by measuring the voltage dependence of K+-stimulated stationary currents and pre-steady-state currents under electrogenic Na+/Na+ exchange conditions. Whereas mutants D804N, D804A, and D808A hardly showed any Na+/K+ pump currents, the other constructs could be classified according to the [K+] and voltage dependence of their stationary currents; mutants N776A and E779Q behaved similarly to the wild-type enzyme. Mutants E779D, E779A, D808E, and D808N had in common a decreased apparent affinity for extracellular K+. Mutants N776Q, N776D, and D804E showed large deviations from the wild-type behavior; the currents generated by mutant N776D showed weaker voltage dependence, and the current-voltage curves of mutants N776Q and D804E exhibited a negative slope. The apparent rate constants determined from transient Na+/Na+ exchange currents are rather voltage-independent and at potentials above -60 mV faster than the wild type. Thus, the characteristic voltage-dependent increase of the rate constants at hyperpolarizing potentials is almost absent in these mutants. Accordingly, dislocating the carboxamide or carboxyl group of Asn776 and Asp804, respectively, decreases the extracellular Na+ affinity.  相似文献   

5.
R Schinzel  D Palm 《Biochemistry》1990,29(42):9956-9962
The role of Escherichia coli maltodextrin phosphorylase (EC 2.4.1.1) active site residues Glu637 and Tyr538 which line the sugar-phosphate contact region of the enzyme was investigated by site-directed mutagenesis. Substitution of Glu637 by an Asp or Gln residue reduced kcat to approximately 0.2% of wild-type activity, while the Km values were affected to a minor extent. This indicated participation of Glu637 in transition-state binding rather than in ground-state binding. 31P NMR analysis of the ionization state of enzyme-bound pyridoxal phosphate suggested that Glu637 is also involved in modulation of the protonation state of the coenzyme phosphate observed during catalysis. Despite loss of proposed hydrogen-bonded substrate contacts, the Tyr538Phe mutant enzyme retained more than 10% activity; the apparent affinity of all substrates was slightly decreased. Mutations at either site affected the error rate of the enzyme (ratio of hydrolysis/phosphorolysis). Besides a role in substrate binding, the hydrogen-bond network of Tyr538 supports the exclusion of water from the active site.  相似文献   

6.
Methanol production during chemotaxis to amino acids in Bacillus subtilis   总被引:5,自引:4,他引:1  
The 20 common amino acids act as attractants during chemotaxis by the Gram-positive organism Bacillus subtilis . In this study, we report that all amino acids induce B. subtilis to produce methanol both upon addition and removal of the chemoeffector. Asparagine-induced methanol production is specific to the McpB receptor and aspartate-induced methanol production correlates with receptor occupancy. These findings suggest that addition and removal of all amino acids cause demethylation of specific receptors which results in methanol production. We also demonstrate that certain attractants cause greater production of methanol after multiple stimulations. CheC and CheD, while affecting the levels of receptor methylation, are not absolutely required for either methylation or demethylation. In contrast, CheY is necessary for methanol formation upon removal of attractant but not upon addition of attractant. We conclude that methanol formation due to negative stimuli indicates the existence of a unique adaptational mechanism in B. subtilis involving the response regulator, CheY.  相似文献   

7.
To probe the structure of the quinol oxidation site in loop VI/VII of the Escherichia coli cytochrome bd, we substituted three conserved residues (Gln249, Lys252, and Glu257) in the N-terminal region and three glutamates (Glu278, Glu279, and Glu280) in the first internal repeat. We found that substitutions of Glu257 by Ala or Gln, and Glu279 and Glu280 by Gln, severely reduced the oxidase activity and the expression level of cytochrome bd. In contrast, Lys252 mutations reduced only the oxidase activity. Blue shifts in the 440 and 630 nm peaks of the reduced Lys252 mutants and in the 561 nm peak of the reduced Glu257 mutants indicate the proximity of Lys252 to the heme b(595)-d binuclear center and Glu257 to heme b(558), respectively. Perturbations of reduced heme b(558) upon binding of aurachin D support structural changes in the quinol-binding site of the mutants. Substitutions of Lys252 and Glu257 caused large changes in kinetic parameters for the ubiquinol-1 oxidation. These results indicate that Lys252 and Glu257 in the N-terminal region of the Q-loop are involved in the quinol oxidation by bd-type terminal oxidase.  相似文献   

8.
We identified two conserved polar amino acids within different membrane domains (MD) of Streptococcus equisimilis hyaluronan synthase (seHAS), Lys48 in MD2 and Glu327 in MD4. In eukaryotic HASs, the position of the Glu is very similar and the Lys is replaced by a conserved polar Gln. To assess whether Lys48 and Glu327 interact or influence seHAS activity, we investigated the effects of changing Lys48 to Arg or Glu and Glu327 to Lys, Asp, or Gln. Mutants, including a double switch variant with Lys48 and Glu327 exchanged, were expressed and assayed in Escherichia coli membranes. SeHASE327Q and seHASE327K were expressed at low levels, whereas seHASE327D and the Lys48 mutants were expressed well. The specific enzyme activities (relative to wild type) were 17 and 7% for the K48R and K48E mutants and 26 and 38% for the E327Q and E327D mutants, respectively. In contrast, seHAS(E327K) showed only 0.16% of wild-type activity but was rescued over 46-fold by changing Lys48 to Glu. Expression of the seHASE327K,K48E protein was also rescued to near wild-type levels. Based on size exclusion chromatography coupled to multiangle laser light scattering analysis, all the variants synthesized hyaluronan (HA) of smaller weight-average molar mass than wild-type enzyme (3.6 MDa); the smallest HA (approximately 0.6 MDa) was made by seHASE327K,K48E and seHASK48E. The results indicate that Glu327 within MD4 is a critical residue for the stability of seHAS, that it may interact with Lys48 within MD2, and that these residues are involved in the ability of HAS to synthesize very large HA.  相似文献   

9.
Norman DP  Chung SJ  Verdine GL 《Biochemistry》2003,42(6):1564-1572
Members of the HhH-GPD superfamily of DNA glycosylases are responsible for the recognition and removal of damaged nucleobases from DNA. The hallmark of these proteins is a motif comprising a helix-hairpin-helix followed by a Gly/Pro-rich loop and terminating in an invariant, catalytically essential aspartic acid residue. In this study, we have probed the role of this Asp in human 8-oxoguanine DNA glycosylase (hOgg1) by mutating it to Asn (D268N), Glu (D268E), and Gln (D268Q). We show that this aspartate plays a dual role, acting both as an N-terminal alpha-helix cap and as a critical residue for catalysis of both base excision and DNA strand cleavage by hOgg1. Mutation of this residue to asparagine, another helix-capping residue, preserves stability of the protein while drastically reducing enzymatic activity. A crystal structure of this mutant is the first to reveal the active site nucleophile Lys249 in the presence of lesion-containing DNA; this structure offers a tantalizing suggestion that base excision may occur by cleavage of the glycosidic bond and then attachment of Lys249. Mutation of the aspartic acid to glutamine and glutamic acid destabilizes the protein fold to a significant extent but, surprisingly, preserves catalytic activity. Crystal structures of these mutants complexed with an unreactive abasic site in DNA reveal these residues to adopt a sterically disfavored helix-capping conformation.  相似文献   

10.
A limitation of site-directed mutagenesis of homodimeric proteins is that both subunits will carry the same mutation. We have devised a way to prepare mixed dimers, in which only one chain bears a desired mutation, or each chain can bear a different mutation. Using the inducible nitric oxide oxygenase domain as a model, our strategy focused on the co-expression of two differentially tagged versions of the oxygenase domain, with isolation of the desired mixed dimer in two chromatography steps. We evaluated expression vectors encoding polyhistidine (His(6)), cellulose binding domain, glutathione-S-transferase, and polyglutamate (Glu(7))-tagged versions of the oxygenase domain for satisfactory levels of soluble protein expression and for their ability to form mixed dimers. The combination of His(6)- and Glu(7)-tagged subunits was successful in both respects, and the mixed dimers could be separated from either form of homodimer by sequential immobilized metal affinity chromatography and anion exchange chromatography. The UV-Vis spectrum, substrate binding properties, and enzymatic activity were not altered in the mixed dimer wild-type (His(6)/Glu(7)) compared to the two homodimers (His(6)/His(6) and Glu(7)/Glu(7)). We then characterized a mixed dimer variant in which one chain contained an E371A substitution (which prevents binding of the substrate L-arginine) while the other subunit was left unaltered. This species binds L-arginine and has about one-half the activity of the wild-type homodimer. Mutants known to destabilize the iNOS dimer (E411A, D454A, and W188F) were also investigated; in these cases co-expression with the wild-type subunit did not lead to the formation of stable mixed dimers.  相似文献   

11.
The 464-amino acid baculovirus Lef4 protein is a bifunctional mRNA capping enzyme with triphosphatase and guanylyltransferase activities. The hydrolysis of 5'-triphosphate RNA and free NTPs by Lef4 is dependent on a divalent cation cofactor. RNA triphosphatase activity is optimal at pH 7.5 with either magnesium or manganese, yet NTP hydrolysis at neutral pH is activated only by manganese or cobalt. Here we show that Lef4 possesses an intrinsic magnesium-dependent ATPase with a distinctive alkaline pH optimum and a high K(m) for ATP (4 mm). Lef4 contains two conserved sequences, motif A ((8)IEKEISY(14)) and motif C ((180)LEYEF(184)), which define the fungal/viral/protozoal family of metal-dependent RNA triphosphatases. We find by mutational analysis that Glu(9), Glu(11), Glu(181), and Glu(183) are essential for phosphohydrolase chemistry and likely comprise the metal-binding site of Lef4. Conservative mutations E9D and E183D abrogate the magnesium-dependent triphosphatase activities of Lef4 and transform it into a strictly manganese-dependent RNA triphosphatase. Limited proteolysis of Lef4 and ensuing COOH-terminal deletion analysis revealed that the NH(2)-terminal 236-amino acid segment of Lef4 constitutes an autonomous triphosphatase catalytic domain.  相似文献   

12.
The aspartate chemoreceptor Tar has a thermosensing function that is modulated by covalent modification of its four methylation sites (Gln295, Glu302, Gln309, and Glu491). Without posttranslational deamidation, Tar has no thermosensing ability. When Gln295 and Gln309 are deamidated to Glu, the unmethylated and heavily methylated forms function as warm and cold sensors, respectively. In this study, we carried out alanine-scanning mutagenesis of the methylation sites. Although alanine substitutions influenced the signaling bias and the methylation level, all of the mutants retained aspartate-sensing function. Those with single substitutions had almost normal thermosensing properties, indicating that substitutions at any particular methylation site do not seriously impair thermosensing function. In the posttranslational modification-defective background, some of the alanine substitutions restored thermosensing ability. Warm sensors were found among mutants retaining two glutamate residues, and cold sensors were found among those with one or no glutamate residue. This result suggests that the negative charge at the methylation sites is one factor that determines thermosensor phenotypes, although the size and shape of the side chain may also be important. The warm, cold, and null thermosensor phenotypes were clearly differentiated, and no intermediate phenotypes were found. Thus, the different thermosensing phenotypes that result from covalent modification of the methylation sites may reflect distinct structural states. Broader implications for the thermosensing mechanism are also discussed.  相似文献   

13.
Combined mutation of "catalytic carboxylates" in both nucleotide binding domains (NBDs) of P-glycoprotein generates a conformation capable of tight binding of 8-azido-ADP (Sauna, Z. E., Müller, M., Peng, X. H., and Ambudkar, S. V. (2002) Biochemistry 41, 13989-14000). Here we characterized this conformation using pure mouse MDR3 P-glycoprotein and natural MgATP and MgADP. Mutants E552A/E1197A, E552Q/E1197Q, E552D/E1197D, and E552K/E1197K had low but real ATPase activity in the order Ala > Gln > Asp > Lys, emphasizing the requirement for Glu stereochemistry. Mutant E552A/E1197A bound MgATP and MgADP (1 mol/mol) with K(d) 9.2 and 92 microm, showed strong temperature sensitivity of MgATP binding and equal dissociation rates for MgATP and MgADP. With MgATP as the added ligand, 80% of bound nucleotide was in the form of ATP. None of these parameters was vanadate-sensitive. The other mutants showed lower stoichiometry of MgATP and MgADP binding, in the order Ala > Gln > Asp > Lys. We conclude that the E552A/E1197A mutation arrests the enzyme in a conformation, likely a stabilized NBD dimer, which occludes nucleotide, shows preferential binding of ATP, does not progress to a normal vanadate-sensitive transition state, but hydrolyzes ATP and releases ADP slowly. Impairment of turnover is primarily due to inability to form the normal transition state rather than to slow ADP release. The Gln, Asp, and Lys mutants are less effective at stabilizing the occluded nucleotide, putative dimeric NBD, conformation. We envisage that in wild-type the occluded nucleotide conformation occurs transiently after MgATP binds to both NBDs with associated dimerization, and before progression to the transition state.  相似文献   

14.
Glycosyltrehalose trehalohydrolase (GTHase) is an α-amylase that cleaves the α-1,4 bond adjacent to the α-1,1 bond of maltooligosyltrehalose to release trehalose. To investigate the catalytic and substrate recognition mechanisms of GTHase, two residues, Asp252 (nucleophile) and Glu283 (general acid/base), located at the catalytic site of GTHase were mutated (Asp252→Ser (D252S), Glu (D252E) and Glu283→Gln (E283Q)), and the activity and structure of the enzyme were investigated. The E283Q, D252E, and D252S mutants showed only 0.04, 0.03, and 0.6% of enzymatic activity against the wild-type, respectively. The crystal structure of the E283Q mutant GTHase in complex with the substrate, maltotriosyltrehalose (G3-Tre), was determined to 2.6-Å resolution. The structure with G3-Tre indicated that GTHase has at least five substrate binding subsites and that Glu283 is the catalytic acid, and Asp252 is the nucleophile that attacks the C1 carbon in the glycosidic linkage of G3-Tre. The complex structure also revealed a scheme for substrate recognition by GTHase. Substrate recognition involves two unique interactions: stacking of Tyr325 with the terminal glucose ring of the trehalose moiety and perpendicularly placement of Trp215 to the pyranose rings at the subsites −1 and +1 glucose.  相似文献   

15.
Site-directed mutagenesis experiments designed to identify the active site of Bacillus licheniformis endo-beta-1,3-1,4-D-glucan 4-glucanohydrolase (beta-glucanase) have been performed. Putative catalytic residues were chosen on the basis of sequence similarity analysis to viral and eukaryotic lysozymes. Four mutant enzymes were expressed and purified from recombinant E. coli and their kinetics analysed with barley beta-glucan. Replacement of Glu134 by Gln produced a mutant (E134Q) that retains less than 0.3% of the wild-type activity. The other mutants, D133N, E160Q and D179N, are active but show different kinetic parameters relative to wild-type indicative of their participation in substrate binding and transition-state complex stabilization. Glu134 is essential for activity; it is comprised in a region of high sequence similarity to the active site of T4 lysozyme and matches the position of the general acid catalyst. These results strongly support a lysozyme-like mechanism for this family of Bacillus beta-glucan hydrolases with Glu134 being the essential acid catalyst.  相似文献   

16.
The active site of the cAMP-dependent protein kinase catalytic subunit harbors a cluster of acidic residues-Asp 127, Glu 170, Glu 203, Glu 230, and Asp 241-that are not conserved throughout the protein kinase family. Based on crystal structures of the catalytic subunit, these amino acids are removed from the site of phosphoryl transfer and are implicated in substrate recognition. Glu 230, the most buried of these acidic residues, was mutated to Ala (rC[E230A]) and Gln (rC[E230Q]) and overexpressed in Escherichia coli. In contrast to the mostly insoluble and destabilized rC[E230A], rC[E230Q] is largely soluble, purifies like wild-type enzyme, and displays wild-type-like thermal stability. The mutation in rC[E230Q] causes an order of magnitude decrease in the affinity for a heptapeptide substrate, Kemptide. In addition, two independent kinetic techniques were used to dissect phosphoryl transfer and product release steps in the reaction pathway. Viscosometric and pre-steady-state quench-flow analyses revealed that the phosphoryl transfer rate constant decreases by an order of magnitude, whereas the product release rate constant remains unperturbed. Electrostatic alterations in the rC[E230Q] active site were assessed using modeling techniques that provide molecular interpretations for the substrate affinity and phosphoryl transfer rate decreases observed experimentally. These observations indicate that subsite recognition elements in the catalytic subunit make electrostatic contributions that are important not only for peptide affinity, but also for catalysis. Protein kinases may, therefore, discriminate substrates by not only binding them tightly, but also by only turning over ones that complement the electrostatic character of the active site.  相似文献   

17.
The activities of the eight mutant proteins of Escherichia coli RNase HI, in which the four carboxylic amino acids (Asp(10), Glu(48), Asp(70), and Asp(134)) involved in catalysis are changed to Asn (Gln) or Ala, were examined in the presence of Mn(2+). Of these proteins, the E48A, E48Q, D134A, and D134N proteins exhibited the activity, indicating that Glu(48) and Asp(134) are dispensable for Mn(2+)-dependent activity. The maximal activities of the E48A and D134A proteins were comparable to that of the wild-type protein. However, unlike the wild-type protein, these mutant proteins exhibited the maximal activities in the presence of >100 microM MnCl(2), and their activities were not inhibited at higher Mn(2+) concentrations (up to 10 mM). The wild-type protein contains two Mn(2+) binding sites and is activated upon binding of one Mn(2+) ion at site 1 at low ( approximately 1 microM) Mn(2+) concentrations. This activity is attenuated upon binding of a second Mn(2+) ion at site 2 at high (>10 microM) Mn(2+) concentrations. The cleavage specificities of the mutant proteins, which were examined using oligomeric substrates at high Mn(2+) concentrations, were identical to that of the wild-type protein at low Mn(2+) concentrations but were different from that of the wild-type protein at high Mn(2+) concentrations. These results suggest that one Mn(2+) ion binds to the E48A, E48Q, D134A, and D134N proteins at site 1 or a nearby site with weaker affinities. The binding analyses of the Mn(2+) ion to these proteins in the absence of the substrate support this hypothesis. When Mn(2+) ion is used as a metal cofactor, the Mn(2+) ion itself, instead of Glu(48) and Asp(134), probably holds water molecules required for activity.  相似文献   

18.
Briggs GD  Gordon SL  Dickson PW 《Biochemistry》2011,50(9):1545-1555
Tyrosine hydroxylase (TH) performs the first and rate-limiting step in the synthesis of catecholamines, which feed back to regulate the enzyme by irreversibly binding to a high-affinity site and inhibiting TH activity. Phosphorylation of Ser40 relieves this inhibition by allowing dissociation of catecholamine. We have recently documented the existence of a low-affinity catecholamine binding which is dissociable, is not abolished by phosphorylation, and inhibits TH by competing with the essential cofactor, tetrahydrobiopterin. Here, we have substituted a number of active site residues to determine the structural nature of the low- and high-affinity sites. E332D and Y371F increased the IC(50) of dopamine for the low-affinity site 10-fold and 7 0-fold, respectively, in phosphorylated TH, indicating dramatic reductions in affinity. Only 2-4-fold increases in IC(50) were measured in the nonphosphorylated forms of E332D and Y371F and also in L294A and F300Y. This suggests that while the magnitude of low-affinity site inhibition in wild-type TH remains the same upon TH phosphorylation as previously shown, the active site structure changes to place greater importance on E332 and Y371. Changes to high affinity binding were also measured, including a loss of competition with tetrahydrobiopterin for E332D, A297L, and Y371F and a decreased ability to inhibit catalysis (V(max)) for A297L and Y371F. The common roles of E332 and Y371 indicate that the low- and high-affinity catecholamine binding sites are colocalized in the active site, but due to simultaneous binding, may exist in separate monomers of the TH tetramer.  相似文献   

19.
Polypeptide release factors from eubacteria and eukaryotes, although similar in function, belong to different protein families. They share one sequence motif, a GGQ tripeptide that is vital to release factor (RF) activity in both kingdoms. In bacteria, the Gln residue of the motif in RF1 and RF2 is modified to N(5)-methyl-Gln by the S-adenosyl l-methionine-dependent methyltransferase PrmC and the absence of Gln methylation decreases the release activity of Escherichia coli RF2 in vitro severalfold. We show here that the same modification is made to the GGQ motif of Saccharomyces cerevisiae release factor eRF1, the first time that N(5)-methyl-Gln has been found outside the bacterial kingdom. The product of the YDR140w gene is required for the methylation of eRF1 in vivo and for optimal yeast cell growth. YDR140w protein has significant homology to PrmC but lacks the N-terminal domain thought to be involved in the recognition of the bacterial release factors. Overproduced in S. cerevisiae, YDR140w can methylate eRF1 from yeast or man in vitro using S-adenosyl l-methionine as methyl donor provided that eRF3 and GTP are also present, suggesting that the natural substrate of the methyltransferase YDR140w is the ternary complex eRF1.eRF3.GTP.  相似文献   

20.
Inter-helix hydrogen bonding involving asparagine (Asn, N), glutamine (Gln, Q), aspartic acid (Asp, D) or glutamic acid (Glu, E) can drive efficient di- or trimerization of transmembrane helices in detergent micelles and lipid bilayers. Likewise, Asn-Asn and Asp-Asp pairs can promote the formation of helical hairpins during translocon-mediated membrane protein assembly in the endoplasmic reticulum. By in vitro translation of model integral membrane protein constructs in the presence of rough microsomes, we show that Asn- or Asp-mediated interactions with a neighbouring transmembrane helix can enhance the membrane insertion efficiency of a marginally hydrophobic transmembrane segment. Our observations suggest that inter-helix hydrogen bonds can form during Sec61 translocon-assisted insertion and thus could be important for membrane protein assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号