首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroserpin is an axonally secreted serine protease inhibitor expressed in the nervous system that protects neurons from ischemia-induced apoptosis. Mutant neuroserpin forms have been found polymerized in inclusion bodies in a familial autosomal encephalopathy causing dementia, or associated with epilepsy. Regulation of neuroserpin expression is mostly unknown. Here we demonstrate that neuroserpin mRNA and the RNA-binding protein HuD are co-expressed in the rat central nervous system, and that HuD binds neuroserpin mRNA in vitro with high affinity. Gel-shift, supershift and T1 RNase assays revealed three HuD-binding sequences in the 3′-untranslated region (3′-UTR) of neuroserpin mRNA. They are AU-rich and 20, 51 and 19 nt in length. HuD binding to neuroserpin mRNA was also demonstrated in extracts of PC12 pheochromocytoma cells. Additionally, ectopic expression of increasing amounts of HuD in these cells results in the accumulation of neuroserpin 3′-UTR mRNA. Furthermore, stably transfected PC12 cells over-expressing HuD contain increased levels of both neuroserpin mRNAs (3.0 and 1.6 kb) and protein. Our results indicate that HuD stabilizes neuroserpin mRNA by binding to specific AU-rich sequences in its 3′-UTR, which prolongs the mRNA lifetime and increases protein level.  相似文献   

2.
Neuroserpin (NS) is a serine protease inhibitor (or serpin) that is widely expressed in the developing and adult nervous systems. It has been implicated in the regulation of proteases involved in processes such as synaptic plasticity, neuronal migration, and axogenesis. To aid in the characterization of this new serpin we have established a high-level expression system in Drosophila S2 cells and developed a purification strategy to obtain neuroserpin for functional studies. Suspension cultures of S2-NS cells secreted recombinant neuroserpin into the medium. High-level expression was maintained when the cells were switched to a nonselection serum-free medium for 3-4 days to facilitate protein purification. Recombinant neuroserpin was purified by sequential chromatography on Macroprep ceramic hydroxyapatite, Type I, POROS HQ20, Resource Q, and Superdex 75 HR 10/30 media. Two secreted forms of neuroserpin were observed with molecular weights of approximately 49 and approximately 50 kDa which may represent alternative glycosylation at three putative N-linked glycosylation sites. Amino acid sequence analysis indicated three NH(2)-terminal sequences. The major sequence was generated by cleavage at the Gly(18)-Ala(19) bond consistent with removal of an 18-amino-acid signal peptide. Two further sequences were identified each with one fewer amino acids at the NH(2)-terminus. All three NH(2)-terminal sequences were also identified by mass spectrometric analysis of neuroserpin following trypsin digestion. Mass spectrometry also confirmed the protein had an intact carboxyl terminus while complex formation assays indicated the inhibitor was functionally active. In summary, Drosophila S2 cells offered a nonlytic stable expression system for the continual production of neuroserpin in high-density suspension cultures.  相似文献   

3.
Proteases contribute to a variety of processes in the brain; consequently, their activity is carefully regulated by protease inhibitors, such as neuroserpin. This inhibitor is thought to be secreted by axons at synaptic regions where it controls tissue-type plasminogen activator (tPA) activity. Mechanisms regulating neuroserpin are not known, and the current studies were undertaken to define the cellular pathways involved in neuroserpin catabolism. We found that both active neuroserpin and neuroserpin.tPA complexes were internalized by mouse cortical cultures and embryonic fibroblasts in a process mediated by the low density lipoprotein receptor-related protein (LRP). Surprisingly, despite the fact that active neuroserpin is internalized by LRP, this form of the molecule does not directly bind to LRP on its own, indicating the requirement of a cofactor for neuroserpin internalization. Our studies ruled out the possibility that endogenously produced plasminogen activators (i.e. tPA and urokinase-type plasminogen activator) are responsible for the LRP-mediated internalization of active neuroserpin, but could not rule out the possibility that another cell-associated proteases capable of binding active neuroserpin functions in this capacity. In summary, neuroserpin levels appear to be carefully regulated by LRP and an unidentified cofactor, and this pathway may be critical for maintaining the balance between proteases and inhibitors.  相似文献   

4.
Neuroserpin (NS) is a serine protease inhibitor (or serpin) that is widely expressed in the developing and adult nervous systems. It has been implicated in the regulation of proteases involved in processes such as synaptic plasticity, neuronal migration, and axogenesis. To aid in the characterization of this new serpin we have established a high-level expression system in Drosophila S2 cells and developed a purification strategy to obtain neuroserpin for functional studies. Suspension cultures of S2-NS cells secreted recombinant neuroserpin into the medium. High-level expression was maintained when the cells were switched to a nonselection serum-free medium for 3-4 days to facilitate protein purification. Recombinant neuroserpin was purified by sequential chromatography on Macroprep ceramic hydroxyapatite, Type I, POROS HQ20, Resource Q, and Superdex 75 HR 10/30 media. Two secreted forms of neuroserpin were observed with molecular weights of 49 and 50 kDa which may represent alternative glycosylation at three putative N-linked glycosylation sites. Amino acid sequence analysis indicated three NH2-terminal sequences. The major sequence was generated by cleavage at the Gly18-Ala19 bond consistent with removal of an 18-amino-acid signal peptide. Two further sequences were identified each with one fewer amino acids at the NH2-terminus. All three NH2-terminal sequences were also identified by mass spectrometric analysis of neuroserpin following trypsin digestion. Mass spectrometry also confirmed the protein had an intact carboxyl terminus while complex formation assays indicated the inhibitor was functionally active. In summary, Drosophila S2 cells offered a nonlytic stable expression system for the continual production of neuroserpin in high-density suspension cultures.  相似文献   

5.
Neuroserpin is a serine protease inhibitor widely expressed in the developing and adult nervous systems and implicated in the regulation of proteases involved in processes such as synaptic plasticity, neuronal migration and axogenesis. We have analysed the effect of neuroserpin on growth factor-induced neurite outgrowth in PC12 cells. We show that small changes in neuroserpin expression result in changes to the number of cells extending neurites and total neurite length following NGF treatment. Increased expression of neuroserpin resulted in a decrease in the number of cells extending neurites and a reduction in total free neurite length whereas reduced levels of neuroserpin led to a small increase in the number of neurite extending cells and a significant increase in total free neurite length compared to the parent cell line. Neuroserpin also altered the response of PC12 cells to bFGF and EGF treatment. Neuroserpin was localised to dense cored secretory vesicles in PC12 cells but was unable to complex with its likely enzyme target, tissue plasminogen activator at the acidic pH found in these vesicles. These data suggest that modulation of neuroserpin levels at the extending neurite growth cone may play an important role in regulating axonal growth.  相似文献   

6.
Neuroserpin is a brain-specific serine protease inhibitor that is expressed in the developing and adult nervous system. Its expression profile led to suggestions that it played roles in neuronal growth and connectivity. In this study, we provide direct evidence to support a role for neuroserpin in axon and dendritic growth. We report that axon growth is enhanced while axon and dendrite diameter are reduced following neuroserpin treatment of hippocampal neurons. More complex effects are seen on dendritic growth and branching with neuroserpin-stimulating dendritic growth and branching in young neurons but switching to an inhibitory response in older neurons. The protease inhibitory activity of neuroserpin is not required to activate changes in neuronal morphology and a proportion of responses are modulated by an antagonist to the LRP1 receptor. Collectively, these findings support a key role for neuroserpin as a regulator of neuronal development through a non-inhibitory mechanism and suggest a basis for neuroserpin's effects on complex emotional behaviours and recent link to schizophrenia.  相似文献   

7.
8.
Ns (neuroserpin) is a member of the serpin (serine protease inhibitor) gene family that is primarily expressed within the central nervous system. Its principal target protease is tPA (tissue plasminogen activator), which is thought to contribute to synaptic plasticity and to be secreted in a stimulus-dependent manner. In the present study, we demonstrate in primary neuronal cultures that Ns co-localizes in LDCVs (large dense core vesicles) with the regulated secretory protein chromogranin B. We also show that Ns secretion is regulated and can be specifically induced 4-fold by secretagogue treatment. A novel 13-amino-acid sorting signal located at the C-terminus of Ns is identified that is both necessary and sufficient to target Ns to the regulated secretion pathway. Its deletion renders Ns no longer responsive to secretagogue stimulation, whereas PAI-Ns [Ns (neuroserpin)-PAI-1 (plasminogen activator inhibitor-1) chimaera appending the last 13 residues of Ns sequence to the C-terminus of PAI-1] shifts PAI-1 secretion into a regulated secretory pathway.  相似文献   

9.
Neuroserpin is a member of the serine protease inhibitor or serpin superfamily of proteins. It is secreted by neurones and plays an important role in the regulation of tissue plasminogen activator at the synapse. Point mutations in the neuroserpin gene cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. This is one of a group of disorders caused by mutations in the serpins that are collectively known as the serpinopathies. Others include α(1)-antitrypsin deficiency and deficiency of C1 inhibitor, antithrombin and α(1)-antichymotrypsin. The serpinopathies are characterised by delays in protein folding and the retention of ordered polymers of the mutant serpin within the cell of synthesis. The clinical phenotype results from either a toxic gain of function from the inclusions or a loss of function, as there is insufficient protease inhibitor to regulate important proteolytic cascades. We describe here the methods required to characterise the polymerisation of neuroserpin and draw parallels with the polymerisation of α(1)-antitrypsin. It is important to recognise that the conditions in which experiments are performed will have a major effect on the findings. For example, incubation of monomeric serpins with guanidine or urea will produce polymers that are not found in vivo. The characterisation of the pathological polymers requires heating of the folded protein or alternatively the assessment of ordered polymers from cell and animal models of disease or from the tissues of humans who carry the mutation.  相似文献   

10.
We have cloned a human cDNA encoding a new serine protease that has been called polyserase-2 (polyserine protease-2) because it is the second identified human enzyme with several tandem serine protease domains in its amino acid sequence. The first serine protease domain contains all characteristic features of these enzymes, whereas the second and third domains lack one residue of the catalytic triad of serine proteases and are predicted to be catalytically inactive. This complex domain organization is also present in the sequences of mouse and rat polyserase-2 and resembles that of polyserase-1, which also contains three serine protease domains in its amino acid sequence. However, polyserase-2 lacks additional domains present in polyserase-1, including a type II transmembrane motif and a low-density lipoprotein receptor A module. Enzymatic analysis demonstrated that both full-length polyserase-2 and its first serine protease domain hydrolyzed synthetic peptides used for assaying serine proteases. Nevertheless, the activity of the isolated domain was greater than that of the entire protein, suggesting that the two catalytically inactive serine protease domains of polyserase-2 may modulate the activity of the first domain. Northern blot analysis showed that polyserase-2 is expressed in fetal kidney; adult skeletal muscle, liver, placenta, prostate, and heart; and tumor cell lines derived from lung and colon adenocarcinomas. Finally, analysis of post-translational processing mechanisms of polyserase-2 revealed that, contrary to those affecting to the membrane-bound polyserase-1, this novel polyprotein is a secreted enzyme whose three protease domains remain as an integral part of a single polypeptide chain.  相似文献   

11.
Tissue-type plasminogen activator (tPA) is a highly specific serine proteinase that activates the zymogen plasminogen to the broad-specificity proteinase plasmin. Tissue-type plasminogen activator is found not only in the blood, where its primary function is as a thrombolytic enzyme, but also in the central nervous system (CNS), where it promotes events associated with synaptic plasticity and acts as a regulator of the permeability of the neurovascular unit. Tissue-type plasminogen activator has also been associated with pathological events in the CNS such as cerebral ischemia and seizures. Neuroserpin is an inhibitory serpin that reacts preferentially with tPA and is located in regions of the brain where either tPA message or tPA protein are also found, indicating that neuroserpin is the selective inhibitor of tPA in the CNS. There is a growing body of evidence demonstrating the participation of tPA in a number of physiological and pathological events in the CNS, as well as the role of neuroserpin as the natural regulator of tPA's activity in these processes. This review will focus on nonhemostatic roles of tPA in the CNS with emphasis on its newly described function as a regulator of permeability of the neurovascular unit and on the regulatory role of neuroserpin in these events.  相似文献   

12.
We have isolated a cDNA that encodes a novel serine protease, prosemin, from human brain. The cDNA of human prosemin is 1306 bp, encoding 317 amino acids. It showed significant homology with the sequence of a chromosome 16 cosmid clone (accession no. NT_037887.4). The prosemin gene contains six exons and five introns. The amino acid sequence of prosemin shows significant homology to prostasin, gamma-tryptase, and testisin (43%, 41%, and 38% identity, respectively), the genes of which are also located on chromosome 16. Northern hybridization showed that prosemin is expressed predominantly in the pancreas and weakly in the prostate and cerebellum. However, western blot and RT-PCR analyses showed that prosemin is expressed and secreted from various kinds of cancer cells, such as glioma, pancreas, prostate, and ovarian cell lines. Prosemin is secreted in the cystic fluid of clinical ovarian cancers. Furthermore, immunohistochemistry showed prosemin protein localized in the apical parts of ovarian carcinomas. Recombinant prosemin was expressed in COS cells and was purified by immunoaffinity chromatography. Recombinant prosemin preferentially cleaved benzyloxycarbonyl (Z)-His-Glu-Lys-methylcoumaryl amidide (MCA) and t-butyloxycarbonyl (Boc)-Gln-Ala-Arg-MCA. Our results suggest that prosemin is a novel serine protease of the chromosome 16 cluster that is highly expressed in the pancreas. The usefulness of this serine protease as a candidate tumor marker should be further examined.  相似文献   

13.
Alzheimer disease is characterized by extracellular plaques composed of Abeta peptides. We show here that these plaques also contain the serine protease inhibitor neuroserpin and that neuroserpin forms a 1:1 binary complex with the N-terminal or middle parts of the Abeta(1-42) peptide. This complex inactivates neuroserpin as an inhibitor of tissue plasminogen activator and blocks the loop-sheet polymerization process that is characteristic of members of the serpin superfamily. In contrast neuroserpin accelerates the aggregation of Abeta(1-42) with the resulting species having an appearance that is distinct from the mature amyloid fibril. Neuroserpin reduces the cytotoxicity of Abeta(1-42) when assessed using standard cell assays, and the interaction has been confirmed in vivo in novel Drosophila models of disease. Taken together, these data show that neuroserpin interacts with Abeta(1-42) to form off-pathway non-toxic oligomers and so protects neurons in Alzheimer disease.  相似文献   

14.
Amyloid‐beta plaques are a pathological hallmark of Alzheimer’s disease. Several proteases are known to cleave/remove amyloid‐beta, including plasmin, the product of tissue plasminogen activator cleavage of the pro‐enzyme plasminogen. Although plasmin levels are lower in Alzheimer brain, there has been little analysis of the plasminogen activator/plasmin system in the brains of Alzheimer patients. In this study, zymography, immunocapture, and ELISAs were utilized to show that tissue plasminogen activator activity in frontal cortex tissue of Alzheimer patients is dramatically reduced compared with age‐matched controls, while tissue plasminogen activator and plasminogen protein levels are unchanged; suggesting that plasminogen activator activity is inhibited in the Alzheimer brain. Analysis of endogenous plasminogen activator inhibitors shows that while plasminogen activator inhibitor‐1 and protease nexin‐1 levels are unchanged, the neuroserpin levels are significantly elevated in brains of Alzheimer patients. Furthermore, elevated amounts of tissue plasminogen activator‐neuroserpin complexes are seen in the Alzheimer brain, and immunohistochemical studies demonstrate that both tissue plasminogen activator and neuroserpin are associated with amyloid‐beta plaques in Alzheimer brain tissue. Thus, neuroserpin inhibition of tissue plasminogen activator activity leads to reduced plasmin and may be responsible for reduced clearance of amyloid‐beta in the Alzheimer disease brain. Furthermore, decreased tissue plasminogen activator activity in the Alzheimer brain may directly influence synaptic activity and impair cognitive function.  相似文献   

15.
The serpinopathies result from conformational transitions in members of the serine proteinase inhibitor superfamily with aberrant tissue deposition or loss of function. They are typified by mutants of neuroserpin that are retained within the endoplasmic reticulum of neurons as ordered polymers in association with dementia. We show here that the S49P mutant of neuroserpin that causes the dementia familial encephalopathy with neuroserpin inclusion bodies (FENIB) forms a latent species in vitro and in vivo in addition to the formation of polymers. Latent neuroserpin is thermostable and inactive as a proteinase inhibitor, but activity can be restored by refolding. Strikingly, latent S49P neuroserpin is unlike any other latent serine proteinase inhibitor (serpin) in that it spontaneously forms polymers under physiological conditions. These data provide an alternative method for the inactivation of mutant neuroserpin as a proteinase inhibitor in FENIB and demonstrate a second pathway for the formation of intracellular polymers in association with disease.  相似文献   

16.
Accumulation and deposition of Aβ is one of the main neuropathological hallmarks of Alzheimer's disease (AD) and impaired Aβ degradation may be one mechanism of accumulation. Plasmin is the key protease of the plasminogen system and can cleave Aβ. Plasmin is activated from plasminogen by tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). The activators are regulated by inhibitors which include plasminogen activator inhibitor-1 (PAI-1) and neuroserpin. Plasmin is also regulated by inhibitors including α2-antiplasmin and α2-macroglobulin. Here, we investigate the mRNA levels of the activators and inhibitors of the plasminogen system and the protein levels of tPA, neuroserpin and α2-antiplasmin in post-mortem AD and control brain tissue. Distribution of the activators and inhibitors in human brain sections was assessed by immunoperoxidase staining. mRNA measurements were made in 20 AD and 20 control brains by real-time PCR. In an expanded cohort of 38 AD and 38 control brains tPA, neuroserpin and α2-antiplasmin protein levels were measured by ELISA. The activators and inhibitors were present mainly in neurons and α2-antiplasmin was also associated with Aβ plaques in AD brain tissue. tPA, uPA, PAI-1 and α2-antiplasmin mRNA were all significantly increased in AD compared to controls, as were tPA and α2-antiplasmin protein, whereas neuroserpin mRNA and protein were significantly reduced. α2-macroglobulin mRNA was not significantly altered in AD. The increases in tPA, uPA, PAI-1 and α2-antiplasmin may counteract each other so that plasmin activity is not significantly altered in AD, but increased tPA may also affect synaptic plasticity, excitotoxic neuronal death and apoptosis.  相似文献   

17.
A full-length cDNA clone of a serine proteinase, mouse brain serine proteinase (mBSP), was isolated from a mouse brain cDNA library. mBSP, which has been recently reported to be expressed in the hair follicles of nude mice, is most similar (88% identical) in sequence to rat myelencephalon-specific protease. The mBSP mRNA was steadily expressed in the brain of adult mice with a transient expression in the early fetal stage during development. The genomic structure of the mouse gene for mBSP was determined. The gene, which is mapped to chromosome 7B4-B5, is about 7.4 kilobases in size and contains 7 exons. Interestingly, the 5'-untranslated region of the mBSP gene was interrupted by two introns. In situ hybridization analyses revealed that mBSP is expressed in the white matter of the cerebellum, medulla oblongata, and capsula interna and capsula interna pars retrolenticularis of mouse brain. Further, mBSP was immunolocalized to the neuroglial cells in the white matter of the cerebellum. Recombinant mBSP was produced in the bacterial expression system and activated by lysyl endopeptidase digestion, and the activated enzyme was purified for characterization. The enzyme showed amidolytic activities preferentially cleaving Arg-X bonds when 4-methylcoumaryl-7-amide-containing peptide substrates were used. Typical serine proteinase inhibitors, such as diisopropyl fluorophosphates, phenylmethanesulfonyl fluoride, soybean trypsin inhibitor, aprotinin, leupeptin, antipain, and benzamidine, strongly inhibited the enzyme activity. The recombinant mBSP effectively hydrolyzed fibronectin and gelatin, but not laminin, collagens I and IV, or elastin. These results suggest that mBSP plays an important role in association with the function of the adult mouse brain.  相似文献   

18.
Serine protease inhibitor Spi2 mediated apoptosis of olfactory neurons   总被引:2,自引:0,他引:2  
The olfactory epithelium of adult mouse, where primary sensory neurons are massively committed to apoptosis by removal of their synaptic target, was used as a model to determine in vivo mechanisms for neuronal cell death induction. A macro-array assay revealed that the death of olfactory neurons is accompanied with over-expression of the serine protease inhibitor Spi2. This over-expression is associated with decreased serine protease activity in the olfactory mucosa. Moreover, in vitro or in vivo inhibition of serine proteases induced apoptotic death of olfactory neuronal cells. Interestingly, Spi2 over-expression is not occurring in olfactory neurons but in cells of the lamina propria, suggesting that Spi2 may act extracellularly as a cell death inducer. In that sense, we present evidence that in vitro Spi2 overexpression generates a secreted signal for olfactory neuron death. Hence, taken together these results document a possible novel mechanism for apoptosis induction that might occur in response to neurodegenerative insults.  相似文献   

19.
The dementia familial encephalopathy with neuroserpin inclusion bodies (FENIB) is caused by the accumulation of mutant neuroserpin within neurons (Davis, R. L., Shrimpton, A. E., Holohan, P. D., Bradshaw, C., Feiglin, D., Sonderegger, P., Kinter, J., Becker, L. M., Lacbawan, F., Krasnewich, D., Muenke, M., Lawrence, D. A., Yerby, M. S., Shaw, C.-M., Gooptu, B., Elliott, P. R., Finch, J. T., Carrell, R. W., and Lomas, D. A. (1999) Nature 401, 376-379), but little is known about the trafficking of wild type and mutant neuroserpins. We have established a cell model to study the processing of wild type neuroserpin and the Syracuse (S49P) and Portland (S52R) mutants that cause FENIB. Here we show that Syracuse and Portland neuroserpin are retained soon after their synthesis in the endoplasmic reticulum and that the limiting step in their processing is the transport to the Golgi complex. This is in contrast to the wild type protein, which is secreted into the culture medium. Mutant neuroserpin is retained within the endoplasmic reticulum as polymers, similar to those isolated from the intraneuronal inclusions in the brains of individuals with FENIB. Remarkably, the Portland mutant showed faster accumulation and slower secretion compared with the Syracuse mutant, in keeping with the more severe clinical phenotype found in patients with the Portland variant of neuroserpin. Both mutant and wild type neuroserpin were partially degraded by proteasomes. Taken together, our results provide further understanding of how cells handle defective but ordered mutant proteins and provide strong support for a common mechanism of disease caused by mutants of the serine protease inhibitor superfamily.  相似文献   

20.
Members of the serine protease inhibitor (serpin) superfamily are found in all branches of life and play an important role in the regulation of enzymes involved in proteolytic cascades. Mutants of the serpins result in a delay in folding, with unstable intermediates being cleared by endoplasmic reticulum-associated degradation. The remaining protein is either fully folded and secreted or retained as ordered polymers within the endoplasmic reticulum of the cell of synthesis. This results in a group of diseases termed the serpinopathies, which are typified by mutations of α(1)-antitrypsin and neuroserpin in association with cirrhosis and the dementia familial encephalopathy with neuroserpin inclusion bodies, respectively. Current evidence strongly suggests that polymers of mutants of α(1)-antitrypsin and neuroserpin are linked by the sequential insertion of the reactive loop of one molecule into β-sheet A of another. The ordered structure of the polymers within the endoplasmic reticulum stimulates nuclear factor-kappa B by a pathway that is independent of the unfolded protein response. This chronic activation of nuclear factor-kappa B may contribute to the cell toxicity associated with mutations of the serpins. We review the pathobiology of the serpinopathies and the development of novel therapeutic strategies for treating the inclusions that cause disease. These include the use of small molecules to block polymerization, stimulation of autophagy to clear inclusions and stem cell technology to correct the underlying molecular defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号