首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four triterpene saponins, agrostemmosides A–D were isolated from the methanol extract of Agrostemma gracilis. The structures of the compounds were determined as 3-O-β-d-xylopyranosyloleanolic acid 28-O-β-d-glucopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  6)]-β-d-glucopyranosyl-(1  6)-β-d-glucopyranosyl ester, 3-O-α-l-rhamnopyranosyl-(1  2)-β-d-xylopyranosyloleanolic acid 28-O-β-d-glucopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  6)]-β-d-glucopyranosyl-(1  6)-β-d-glucopyranosyl ester, 3-O-β-d-xylopyranosylechinocystic acid 28-O-β-d-glucopyranosyl-(1  2)-β-d-glucopyranosyl-(1  6)-β-d-glucopyranosyl ester, 3-O-β-d-xylopyranosylechinocystic acid 28-O-β-d-glucopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  6)]-β-d-glucopyranosyl-(1  6)-β-d-glucopyranosyl ester by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. To the best of our knowledge this is the first phytochemical report on A. gracilis, and echinocystic acid saponins were encountered for the first time in Caryophyllaceae family.  相似文献   

2.
A new complex triterpenoid saponin was isolated from the stem bark of Samanea saman by using chromatographic methods. Its structure was established as 3-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]-2,23-dihydroxy-(2β,3β,4α)-olean-12-en-28-oic acid O-β-d-glucopyranosyl-(1  3)-O-[O-β-d-glucopyranosyl-(1  4)]-O-6-deoxy-α-l-mannopyranosyl-(1  2)-6-O-[4-O-[(2E,6S)-2,6-dimethyl-1-oxo-2,7-octadienyl]-6-deoxy-α-l-mannopyranosyl)oxy]-β-d-glucopyranosyl ester (1). Structural elucidation was performed using detailed analyses of 1H and 13C NMR spectra including 2D NMR spectroscopic techniques and chemical conversions. The haemolytic activity of the saponin was evaluated using in vitro assays, and its adjuvant potential on the cellular immune response against ovalbumin antigen was investigated using in vivo models.  相似文献   

3.
A phytochemical analysis of Dianthus erinaceus Boiss. var. erinaceus (Caryophyllaceae) has led to the isolation of two novel triterpenoid saponins, containing an oleane type skeleton, named dianosides K and L (1, 2), along with six known triterpenoid saponins (3–8). On the basis of chemical and spectrometric data, the structures of the new compounds were elucidated as 3-O-[β-d-glucopyranosyl (1  3)]–[β-d-glucopyranosyl (1  6)]-β-d-glucopyranosyl-olean-12-ene-23α,28-β–dioic acid 28-O-β-d-glucopyranosyl ester (1) and 3-O-[β-d-glucopyranosyl (1  3)]–[β-d-glucopyranosyl(1  6)]-β-d-glucopyranosyl-olean-12-ene-23α,28-β-dioic acid 28-O-α-l-mannopyranosyl (1  6)-β-d-glucopyranosyl ester (2). All isolated natural compounds were structurally characterized by 1D- (1H, 13C, DEPT); 2D- (COSY, HMQC, HMBC) NMR and HR-ESI/MS methods. The antimicrobial activity of compounds 1 and 2 were tested against four Gram-negative, three Gram-positive bacteria and the yeast Candida albicans by the MIC method.  相似文献   

4.
A bioassay-guided phytochemical analysis of the triterpene saponins from under ground parts of Gypsophila arrostii var. nebulosa allowed the isolation of two triterpene saponins; nebuloside A, B based on gypsogenin and quillaic acid aglycone. Two new oleanane type triterpenoid saponins (nebuloside A, B) and three known saponins (13) were isolated from the root bark of Gypsophila arrostii var. nebulosa. The structures of the two new compounds were elucidated as 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyl quillaic acid 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside A) and 3-O-β-d-xylopyranosyl-(1→3)-[β-d-galactopyranosyl(1→3)-β-d-galactopyranosyl-(1→2)]-β-d-glucuronopyranosyl gypsogenin 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside B), on the basis of extensive spectral analysis and chemical evidence. Nebuloside A and B showed toxicity enhancing properties on saporin a type-I RIP without causing toxicity by themselves at 15 μg/mL.  相似文献   

5.
Three new cycloartane-type triterpene glycosides were isolated from the roots of Astragalus schottianus Boiss. Their structures were established as 20(R),25-epoxy-3-O-β-d-xylopyranosyl-24-O-β-d-glucopyranosyl-3β,6α,16β,24α-tetrahydroxycycloartane (1), 20(R),25-epoxy-3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl-24-O-β-d-glucopyranosyl-3β,6α,16β,24α-tetrahydroxycycloartane (2), 3-O-β-d-xylopyranosyl-3β,6α,16β,20(S),24(S),25-hexahydroxycycloartane (3) by the extensive use of 1D and 2D-NMR techniques and mass spectrometry.  相似文献   

6.
Two new penterpenoid saponins, hemsloside-Ma4 (1) hemsloside-Ma5 (2), and a new diterpenoid glycoside, hemsloside-Ma6 (3), were isolated from the rhizomes of Hemsleya chinensis. By detailed analysis of the NMR spectra and chemical methods, the structures of new compounds were determined to be 3-O-β-l-arabinopyranosyl-(1  3)-O-(6′-methyl ester)-β-d-glucuropyranosyl-oleanolic acid-28-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside (1), 3-O-β-l-arabinopyranosyl-(1  3)-O-(6′-methyl ester)-β-d-glucuropyranosyl-oleanolic acid-28-O-β-d-xylopyranosyl-(1  6)-O-β-d-glucopy-ranoside (2), and 13ϵ-hydroxylabda-8(17), 14-dien-18-oic acid-18-O-α-l-rhamnopyranosyl-(1  2)-O-β-d-glucopyranosyl-(1  4)-O-α-l-rhamnopyranoside (3). Diterpenoid-type compound (3) was isolated from Hemsleya genus for the first time.  相似文献   

7.
A new triterpenoid saponin named bafouoside C 3-O-β-d-glucopyranosyl-(1  4)-[β-d-galactopyranosyl-(1  2)]-β-d-glucuronopyranosyloleanolic acid 28-O-β-d-glucopyranosyl ester; (1), together with five known compounds 3-O-β-d-galactopyranosyl-(1  2)-β-d-glucuronopyranosyloleanolic acid (2), 23-hydroxyursolic acid (3), 28-O-α-l-rhamnopyranosyl-(1  4)-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranosyl-23-hydroxyursolic acid (4), 3-O-β-d-glucopyranosyl-23-hydroxyursolic acid (5), and 3-O-α-l-arabinopyranosyl-23-hydroxyursolic acid (6), were isolated from the roots of Cussonia bancoensis Aubrev. & Pellegr. Their structures were established on the basis of 1D- and 2D NMR data, mass spectrometry and chemical methods. The NMR data of the known compounds, as far as we know, are herein reported for the first time in CD3OD. Compound 3 exhibited a weak cytotoxic activity against MDA-MB 231 human breast adenocarcinoma, A375 human malignant melanoma, and HCT116 human colon carcinoma cell lines.  相似文献   

8.
Two new steroidal saponins, 25(R)-3β [(O-β-d-glucopyranosyl-(1  3)-β-d-glucopyranosyl-(1  2)-O-[β-d-xylopyranosyl-(1  3)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranosyl)oxy]-5α, 15β, 22R, 25R-spirostan-3,15-diol (1, named parquispiroside) and 25R-26-[(β-d-glucopyranosyl)Oxy]-(3β [(O-β-d-glucopyranosyl-(1  3)-β-d-glucopyranosyl-(1  2)-O-[β-d-xylopyranosyl-(1  3)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranosyl)oxy], 5α, 15β, 22R, 25R)-furostane-3,15,22-triol (2, named parquifuroside), along with the known saponins, capsicoside D (3) and 22-OMe-capsicoside D (4) and the known glycoside, benzyl primeveroside (5), were isolated from the leaves of Cestrum parqui. The structures of these compounds were elucidated by careful analysis of 1D and 2D NMR spectra and ESIMS data. Parquispiroside (1) exhibited moderate inhibition of Hela, HepG2, U87, and MCF7 cell lines with IC50 values in the range of 3.3–14.1 μM.  相似文献   

9.
Two new ursane-type triterpene saponins, 3-O-β-d-glucopyranosyl(1  3)-[α-l-rhamnopyranosyl(1  2)]-α-l-arabinopyranosylurs-12,19(29)-dien-28-oic acid 28-O-α-l-rhamnopyranosyl(1  2)-β-d-glucopyranosyl ester (1) and 3-O-β-d-glucopyranosyl(1  3)-[α-l-rhamnopyranosyl(1  2)]-α-l-arabinopyranosyl-19α,20α-dihydroxyurs-12-en-28-oic acid 28-O-α-l-rhamnopyranosyl(1  2)-β-d-glucopyranosyl ester (2), along with thirteen known triterpene saponins were isolated from the n-BuOH part of the MeOH extraction of the leaves of Ilex kudingcha C.J. Tseng (also called “Ku-Ding-Cha”). The structures of new compounds were elucidated on the basis of detailed spectroscopic analysis, including HR-ESI-TOF-MS, 1D and 2D-NMR experiments, and by acid hydrolysis. All the compounds were screened for antiplatelet aggregation activity in vitro, and compounds 1, 2, 3, 7, 12 and 15 showed significant inhibition of platelet aggregation induced by ADP (5 μM) with IC50 values of 14.7 ± 3.7, 11.3 ± 2.5, 17.4 ± 4.6, 20.5 ± 3.1, 8.1 ± 1.5 and 18.9 ± 4.2 μM, respectively.  相似文献   

10.
3,28-Di-O-rhamnosylated oleanolic acid saponins, mimicking components of Chinese folk medicine Di Wu, have been designed and synthesized. One-pot glycosylation and ‘inverse procedure’ technologies have been applied thus significantly simplifying the preparation of desired saponins. The cytotoxic activity of compounds 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl]oleanolic acid 28-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester (3), 3-O-[α-l-rhamnopyranosyl]oleanolic acid 28-O-[α-l-rhamnopyranosyl- (1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester (4), 3-O-[α-l-rhamnopyranosyl]oleanolic acid 28-O-[α-l-rhamnopyranosyl] ester (5), and 3-O-[α-l-rhamnopyranosyl]oleanolic acid 28-O-[6-O-(α-l-rhamnopyranosyl)hexyl] ester (6) was preliminarily evaluated against HL-60 human promyelocytic leukemia cells. The natural saponin 3 and designed saponin 4 exhibited comparable moderate cytotoxic activity under our testing conditions.  相似文献   

11.
Five new steroidal saponins were isolated from the fruits of Tribulus terrestris. Their structures were fully established by spectroscopic and chemical analysis as (23S,25S)-5α-spirostane-24-one-3β,23-diol-3-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  4)]-β-d-galactopyranoside} (1), (24S,25S)-5α-spirostane-3β,24-diol-3-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  4)]-β-d-galactopyranoside} (2), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-2α,3β,22α,26-tetraol-3-O-{β-d-glucopyranosyl-(1  2)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranoside} (3), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-20(22)-en-2α,3β,26-triol-3-O-{β-d-glucopyranosyl-(1  2)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranoside} (4), and 26-O-β-d-glucopyranosyl-(25S)-5α-furostan-12-one-22-methoxy-3β,26-diol-3-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  4)]-β-d-galactopyranoside} (5). The isolated compounds were evaluated for cytostatic activity against HL-60 cells.  相似文献   

12.
Three new polyhydroxytriterpenoid derivatives, 23-O-neochebuloylarjungenin 28-O-β-d-glycopyranosyl ester (1), 23-O-4′-epi-neochebuloylarjungenin (2), and 23-O-galloylpinfaenoic acid 28-O-β-d-glucopyranosyl ester (17) were isolated from the fruits of Terminalia chebula Retz. along with fourteen known ones. Their structures were elucidated by 1D and 2D NMR spectroscopic data and acid hydrolysis. After evaluating for Baker’s yeast α-glucosidase, rat intestinal α-glucosidase, and porcine pancreatic α-amylase inhibitory activities of all the isolated compounds, 23-O-galloylarjunolic acid (11, IC50 21.7 μM) and 23-O-galloylarjunolic acid 28-O-β-d-glucopyranosyl ester (12, IC50 64.2 μM) showed potent inhibitory activities against Baker’s yeast α-glucosidase compared to the positive control, acarbose (IC50 174.0 μM). However, all the tested compounds except for the positive control, acarbose, had no or only weak inhibitory activity against rat intestinal α-glucosidase and porcine pancreatic α-amylase.  相似文献   

13.
Two new acylated triterpenoid saponins named pendulaosides A and B as well as the known phenolic compounds methyl gallate, gallic acid, 1,2,3,6-tera-O-galloyl-β-d-glucose and 1,2,3,4,6-penta-O-galloyl-β-d-glucose, were isolated from the seeds of Harpullia pendula. The structures of pendulaosides A and B were determined using extensive 1D and 2D NMR analysis and mass spectrometry as well as acid hydrolysis, as 3-O-β-d-glucopyranosyl-(1→2)-[α-L-arabinofuranosyl-(1→3)]-β-d-glucuronopyranosyl-22-O-angeloyl-3β,16α,22α,24β,28-pentahydroxylolean-12-ene and 3-O-β-d-glucopyranosyl-(1→2)-[α-L-arabinofuranosyl-(1→3)]-β-d-glucuronopyranosyl-16-O-(2-methylbutyroyl)-3β,16α,22α,24β,28-pentahydroxylolean-12-ene, respectively. To the best of our knowledge the two triterpene parts 22-O-angeloyl-3β,16α,22α,24β,28-pentahydroxylolean-12-ene and16-O-(2-methylbutyroyl)-3β,16α,22α,24β,28-pentahydroxylolean-12-ene have never been characterized before. The two isolated saponins were assayed for their in-vitro cytotoxic activity against the three human tumor cell lines HepG2, MCF7 and PC3. The results showed that pendulaoside A exhibited moderate activity on PC3 cell line with IC50value equal to 13.0 μM and weak activity on HepG2 cell line with IC50 value equal to 41.0 μM. Pendulaoside B proved to be inactive against the three used cell lines.  相似文献   

14.
《Phytochemistry》1986,25(6):1419-1422
Two new triterpene glycosides isolated from the root bark Guettarda angelica were proven to be quinovic acid-3β-O-[β-d-glucopyranosyl-(1 → 3)-α-l-rhamnopyranoside] and quinovic acid-3β-O-β-d-glucopyranosyl-(28 → 1)-β-d-glucopyranosyl ester. In addition quinovic acid and two known glycoside derivatives (quinovic acid-3β-O-β-d-glucopyranoside and quinovic acid-3β-O-α-l-rhamnopyranoside) were isolated. The structures were elucidated by spectroscopic analysis of the peracetyl methyl ester derivatives.  相似文献   

15.
Three new oleanane-type saponins, leptocarposide B-D (13), were isolated from the whole plant of Ludwigia leptocarpa (Nutt.) Hara, together with ten known compounds 4–13.The structures of these compounds were determined by interpretation of their spectral data, mainly HR-TOFESIMS, 1D-NMR (1H, 13C) and 2D-NMR (1H–1H COSY, HSQC, HMBC, and NOESY), and by comparison with the literature data. The structures of the new compounds were established as 28-O-β-d-xylopyranosyl-(1  4)-α-l-rhamnopyranosyl-(1  2)-[α-l-arabinopyranosyl-(1  3)]-4-O-(3′-hydroxybutanoyloxy-3-hydroxybutanoyloxy)-β-d-fucopyranosyl zanhic acid (1); 3-O-β-d-glucopyranosyl-28-O-β-d-xylopyranosyl-(1  4)-α-l-rhamnopyranosyl-(1  2)-4-O-(3′-hydroxybutanoyloxy-3-hydroxybutanoyloxy)-β-d-fucopyranosyl medicagenic acid (2); 3-O-β-d-glucopyranosyl-(1  4)-β-d-glucopyranosyl-28-O-β-d-xylopyranosyl-(1  4)-α-l-rhamnopyranosyl-(1  2)-[α-l- arabinopyranosyl-(1  3)]-4-O-(3′-hydroxybutanoyloxy-3-hydroxybutanoyloxy)-β-d-fucopyranosyl zanhic acid (3).  相似文献   

16.
The two purple-membrane glycolipids O-β-d-glucopyranosyl- and O-β-d-galactopyranosyl-(1→6)-O-α-d-mannopyranosyl-(1→2)-O-α-d-glucopyranosyl-(1→1)-2, 3-di-O-phytanyl-sn-glycerol were prepared by coupling O-(2,3,4-tri-O-acetyl-α-d-mannopyranosyl)-(1→2)-O-(3,4,6-tri-O-acetyl-α-d-glucopyranosyl)-(1→1)-2, 3-di-O-phytanyl-sn-glycerol (9) with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide or 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide, respectively, followed by deacetylation. The glycolipid sulfate O-(β-d-glucopyranosyl 3-sulfate)-(1→6)-O-α-d-mannopyranosyl-(1→2)-O-α-d-glucopyranosyl-(1→1)-2,3-di-O-phytanyl-sn-glycerol was prepared by coupling of 9 with 2,4,6-tri-O-acetyl-3-O-trichloroethyloxycarbonyl-α-d-glucopyranosyl bromide in the presence of Hg(CN)2/HgBr2 followed by selective removal of the 3?-trichloroethyloxycarbonyl group, sulfation of HO-3?, and deacetylation. The suitably protected key-intermediate 9 could be prepared by two distinct approaches.  相似文献   

17.
Four new oleanane-type triterpenoid saponins, schefflesides I–L (14), were isolated from the aerial parts of Schefflera kwangsiensis. Their structures were established as oleanolic acid 3-O-β-d-glucopyranosyl (1  2) [α-l-arabinopyranosyl (1  4)]-β-d-(6-O-methyl) glucuronopyranoside (1), 22α-hydroxyoleanolic acid 3-O-α-l-arabinopyranosyl (1  4)-β-d-glucuronopyranoside (2), hederagenin 3-O-α-l-arabinopyranosyl (1  4)-β-d-glucuronopyranoside (3) and oleanolic acid 28-O-β-d-glucopyranosyl (1  2)-β-d-glucuronopyranosyl ester (4) by spectroscopic analyses (HRESIMS, 1D and 2D NMR) and chemical methods.  相似文献   

18.
Six new compounds including two oleanane-type triterpenoid saponins (1, 2) and four C-glycosyl flavones (36), along with a known saponin (7), three di-C-glycosyl flavones (810) and a glycosyl auronol (11), were isolated from the stem bark of Erythrina abyssinica Lam. The structures of the new compounds, identified as 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-galactopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (1), 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (2), 6-C-β-glucopyranosyl-8-C-β-quinovopyranosyl apigenin (3), 6-C-β-quinovopyranosyl-8-C-β-glucopyranosyl apigenin (4), 8-C-[6″-O-α-l-rhamnopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (5) and 8-C-[6″-O-β-d-xylopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (6), were determined by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and acid hydrolysis. These new compounds together with the known saponins 7 were evaluated for their cytotoxic activity against MCF-7 (estrogen dependent) and MDA-MB-231 (estrogen independent) cell lines. The new saponin 2 exhibited the highest cytotoxic activity among tested compounds, exerting a selective inhibitory effect against the proliferation of MCF-7 cells, with lower IC50 value (12.90 μM) than that of the positive control, resveratrol (13.91 μM). Structure–activity relationship of these compounds is also discussed.  相似文献   

19.
Six new cycloartane-type triterpene glycosides named 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R),25-pentahydroxycycloartane (1), 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R)-tetrahydroxy-25-dehydrocycloartane (2), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (3), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-butoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (4), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (5), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-23α-methoxy-16β,23(R)-epoxy-4,25,26,27-tetranorcycloartane (6), in addition to three known secondary metabolites consisting of another cycloartane triterpene glycoside and two flavonol glycosides, were isolated from the aerial parts of Astragalus gombo Coss. & Dur. (Fabaceae). The structures of the isolated compounds were established by spectroscopic methods, including 1D and 2D-NMR, mass spectrometry and comparison with literature data.  相似文献   

20.
In the search of natural compounds inhibiting methane production in ruminants three novel steroidal saponins have been isolated from the aerial parts of Helleborus viridis L. Their structures have been established based on spectral analyses as: (25R)-26-O-β-d-glucopyranosyl-5β-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside, (25R)-26-O-β-d-glucopyranosyl-5α-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetraol 1-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  3)]-6-O-acetoxy-β-d-glucopyranoside}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号