首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roseolovirus, or human herpesvirus 6 (HHV-6), is a ubiquitous human pathogen infecting over 95% of the population by the age of 2 years. As with other herpesviruses, reactivation of HHV-6 can present with severe complications in immunocompromised individuals. Recent studies have highlighted the importance of herpesvirus-derived microRNAs (miRNAs) in modulating both cellular and viral gene expression. An initial report which computed the likelihood of various viruses to encode miRNAs did not predict HHV-6 miRNAs. To experimentally screen for small HHV-6-encoded RNAs, we conducted large-scale sequencing of Sup-T-1 cells lytically infected with a laboratory strain of HHV-6B. This revealed an abundant, 60- to 65-nucleotide RNA of unknown function derived from the lytic origin of replication (OriLyt) that gave rise to smaller RNA species of 18 or 19 nucleotides. In addition, we identified four pre-miRNAs whose mature forms accumulated in Argonaute 2. In contrast to the case for other betaherpesviruses, HHV-6B miRNAs are expressed from direct repeat regions (DR(L) and DR(R)) located at either side of the genome. All miRNAs are conserved in the closely related HHV-6A variant, and one of them is a seed ortholog of the human miRNA miR-582-5p. Similar to alphaherpesvirus miRNAs, they are expressed in antisense orientation relative to immediate-early open reading frames (ORFs) and thus have the potential to regulate key viral genes.  相似文献   

2.
Heterozyosity is an important feature of many plant genomes, and is related to heterosis. Sweet orange, a highly heterozygous species, is thought to have originated from an inter‐species hybrid between pummelo and mandarin. To investigate the heterozygosity of the sweet orange genome and examine how this heterozygosity affects gene expression, we characterized the genome of Valencia orange for single nucleotide variations (SNVs), small insertions and deletions (InDels) and structural variations (SVs), and determined their functional effects on protein‐coding genes and non‐coding sequences. Almost half of the genes containing large‐effect SNVs and InDels were expressed in a tissue‐specific manner. We identified 3542 large SVs (>50 bp), including deletions, insertions and inversions. Most of the 296 genes located in large‐deletion regions showed low expression levels. RNA‐Seq reads and DNA sequencing reads revealed that the alleles of 1062 genes were differentially expressed. In addition, we detected approximately 42 Mb of contigs that were not found in the reference genome of a haploid sweet orange by de novo assembly of unmapped reads, and annotated 134 protein‐coding genes within these contigs. We discuss how this heterozygosity affects the quality of genome assembly. This study advances our understanding of the genome architecture of sweet orange, and provides a global view of gene expression at heterozygous loci.  相似文献   

3.
Adaptation of viruses to their environments occurs through the acquisition of both novel single-nucleotide variants (SNV) and recombination events including insertions, deletions, and duplications. The co-occurrence of SNVs in individual viral genomes during their evolution has been well-described. However, unlike covariation of SNVs, studying the correlation between recombination events with each other or with SNVs has been hampered by their inherent genetic complexity and a lack of bioinformatic tools. Here, we expanded our previously reported CoVaMa pipeline (v0.1) to measure linkage disequilibrium between recombination events and SNVs within both short-read and long-read sequencing datasets. We demonstrate this approach using long-read nanopore sequencing data acquired from Flock House virus (FHV) serially passaged in vitro. We found SNVs that were either correlated or anti-correlated with large genomic deletions generated by nonhomologous recombination that give rise to Defective-RNAs. We also analyzed NGS data from longitudinal HIV samples derived from a patient undergoing antiretroviral therapy who proceeded to virological failure. We found correlations between insertions in the p6Gag and mutations in Gag cleavage sites. This report confirms previous findings and provides insights on novel associations between SNVs and specific recombination events within the viral genome and their role in viral evolution.  相似文献   

4.
Human herpesvirus 6 (HHV-6) is prevalent in the human population, with primary infection occurring early in life. Its predominant CD4+ T-lymphocyte tropism, its ability to activate human immunodeficiency virus type 1 (HIV-1) gene expression in vitro, and its upregulation of CD4 expression has led to speculation that HHV-6 may act as a positive cofactor in the progression of HIV infection to AIDS in individuals infected with both viruses. Previous sequencing studies of restricted regions of the 161.5-kbp genome of HHV-6 have demonstrated unequivocally that it is a member of the betaherpesvirus subgroup and have indicated that the HHV-6 genome is generally collinear with the unique long (UL) component of human cytomegalovirus (HCMV). In the work described in this report we have extended these sequencing studies by determining the primary structure of 38.5-kbp of the HHV-6 genome (genomic position 21.0 to 59.5 kbp). Within the sequenced region lie 31 open reading frames, 20 of which are homologous to positional counterparts in HCMV. Of particular significance is the identification of homologs of the HCMV UL36-38 and US22-type genes, which have been shown to encode transactivating proteins. We show that DNA sequences encoding these HHV-6 homologs were able to transactivate HIV-1 long terminal repeat-directed chloramphenicol acetyltransferase expression in cotransfection assays, thus demonstrating functional as well as structural conservation of these betaherpesvirus-specific gene products. Our data therefore confirm the close relationship between HHV-6 and HCMV and identify putative immediate-early regulatory genes of HHV-6 likely to play key roles in lytic replication and possibly also in the interactions between HHV-6 and HIV in dually infected cells.  相似文献   

5.
6.
Mayer J  Meese EU 《Genomics》2002,80(3):331-343
A substantial amount of the human genome is composed of human endogenous retroviruses (HERVs). Manifold HERV families have been identified, among them several so-called HERV-K(HML) families. Although the HERV-K(HML-2) family has been studied in detail, other HERV-K families are not as well characterized. We describe here the HERV-K HML-3 family in more detail. We estimate that there are about 140 proviral loci or remains of such per haploid genome. Most loci are severely mutated. Proviruses displaying larger deletions in gag and pol are common. A multiple alignment of 73 HERV-K(HML-3) sequences displays several potentially important differences compared with the HERVK9I sequence in Repbase. A consensus sequence with open reading frames for all retroviral genes was generated, for which intact dUTPase motifs and env gene variants with different coding capacities are observed. Phylogenetic analysis shows near-monophyly with distinction of two closely related subgroups. Proviruses formed about 36 million years ago. However, no continuous activity through primate evolution is indicated.  相似文献   

7.
BACKGROUND: Endogenous retroviruses contribute to the evolution of the host genome and can be associated with disease. Human endogenous retrovirus K (HERV-K) is related to the mouse mammary tumor virus and is present in the genomes of humans, apes and cercopithecoids (Old World monkeys). It is unknown how long ago in primate evolution the full-length HERV-K proviruses that are in the human genome today were formed. RESULTS: Ten full-length HERV-K proviruses were cloned from the human genome. Using provirus-specific probes, eight of the ten were found to be present in a genetically diverse set of humans but not in other extant hominoids. Intact preintegration sites for each of these eight proviruses were present in the apes. A ninth provirus was detected in the human, chimpanzee, bonobo and gorilla genomes, but not in the orang-utan genome. The tenth was found only in humans, chimpanzees and bonobos. Complete sequencing of six of the human-specific proviruses showed that full-length open reading frames for the retroviral protein precursors Gag-Pro-Pol or Env were each present in multiple proviruses. CONCLUSIONS: At least eight full-length HERV-K genomes that are in the human germline today integrated after humans diverged from chimpanzees. All of the viral open reading frames and cis-acting sequences necessary for HERV-K replication must have been intact during the recent time when these proviruses formed. Multiple full-length open reading frames for all HERV-K proteins are present in the human genome today.  相似文献   

8.
The combined analysis of haplotype panels with phenotype clinical cohorts is a common approach to explore the genetic architecture of human diseases. However, genetic studies are mainly based on single nucleotide variants (SNVs) and small insertions and deletions (indels). Here, we contribute to fill this gap by generating a dense haplotype map focused on the identification, characterization, and phasing of structural variants (SVs). By integrating multiple variant identification methods and Logistic Regression Models (LRMs), we present a catalogue of 35 431 441 variants, including 89 178 SVs (≥50 bp), 30 325 064 SNVs and 5 017 199 indels, across 785 Illumina high coverage (30x) whole-genomes from the Iberian GCAT Cohort, containing a median of 3.52M SNVs, 606 336 indels and 6393 SVs per individual. The haplotype panel is able to impute up to 14 360 728 SNVs/indels and 23 179 SVs, showing a 2.7-fold increase for SVs compared with available genetic variation panels. The value of this panel for SVs analysis is shown through an imputed rare Alu element located in a new locus associated with Mononeuritis of lower limb, a rare neuromuscular disease. This study represents the first deep characterization of genetic variation within the Iberian population and the first operational haplotype panel to systematically include the SVs into genome-wide genetic studies.  相似文献   

9.
10.
Differences between individual human genomes, or between human and cancer genomes, range in scale from single nucleotide variants (SNVs) through intermediate and large-scale duplications, deletions, and rearrangements of genomic segments. The latter class, called structural variants (SVs), have received considerable attention in the past several years as they are a previously under appreciated source of variation in human genomes. Much of this recent attention is the result of the availability of higher-resolution technologies for measuring these variants, including both microarray-based techniques, and more recently, high-throughput DNA sequencing. We describe the genomic technologies and computational techniques currently used to measure SVs, focusing on applications in human and cancer genomics.

What to Learn in This Chapter

  • Current knowledge about the prevalence of structural variation in human and cancer genomes.
  • Strategies for using microarray and high-throughput DNA sequencing technologies to measure structural variation.
  • Computational techniques to detect structural variants from DNA sequencing data.
This article is part of the “Translational Bioinformatics” collection for PLOS Computational Biology.
  相似文献   

11.
Human herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result, ∼70 million people harbor the genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if 1) these integrations are ancient, 2) if they still occur, and 3) whether circulating virus strains differ from integrated ones. Here, we used next-generation sequencing and mining of public human genome data sets to generate the largest and most diverse collection of circulating and integrated HHV-6 genomes studied to date. In genomes of geographically dispersed, only distantly related people, we identified clades of integrated viruses that originated from a single ancestral event, confirming this with fluorescent in situ hybridization to directly observe the integration locus. In contrast to HHV-6B, circulating and integrated HHV-6A sequences form distinct clades, arguing against ongoing integration of circulating HHV-6A or “reactivation” of integrated HHV-6A. Taken together, our study provides the first comprehensive picture of the evolution of HHV-6, and reveals that integration of heritable HHV-6 has occurred since the time of, if not before, human migrations out of Africa.  相似文献   

12.
The utility of induced pluripotent stem cells (iPSCs) as models to study diseases and as sources for cell therapy depends on the integrity of their genomes. Despite recent publications of DNA sequence variations in the iPSCs, the true scope of such changes for the entire genome is not clear. Here we report the whole-genome sequencing of three human iPSC lines derived from two cell types of an adult donor by episomal vectors. The vector sequence was undetectable in the deeply sequenced iPSC lines. We identified 1,058-1,808 heterozygous single-nucleotide variants (SNVs), but no copy-number variants, in each iPSC line. Six to twelve of these SNVs were within coding regions in each iPSC line, but ~50% of them are synonymous changes and the remaining are not selectively enriched for known genes associated with cancers. Our data thus suggest that episome-mediated reprogramming is not inherently mutagenic during integration-free iPSC induction.  相似文献   

13.
14.
ABSTRACT: BACKGROUND: The genetic background of the cynomolgus macaque (Macaca fascicularis) is made complex by the high genetic diversity, population structure, and gene introgression from the closely related rhesus macaque (Macaca mulatta). Herein we report the whole-genome sequence of a Malaysian cynomolgus macaque male with more than 40-fold coverage, which was determined using a resequencing method based on the Indian rhesus macaque genome. RESULTS: We identified approximately 9.7 million single nucleotide variants (SNVs) between the Malaysian cynomolgus and the Indian rhesus macaque genomes. Compared with humans, a smaller nonsynonymous/synonymous SNV ratio in the cynomolgus macaque suggests more effective removal of slightly deleterious mutations. Comparison of two cynomolgus (Malaysian and Vietnamese) and two rhesus (Indian and Chinese) macaque genomes, including previously published macaque genomes, suggests that Indochinese cynomolgus macaques have been more affected by gene introgression from rhesus macaques. We further identified 60 nonsynonymous SNVs that completely differentiated the cynomolgus and rhesus macaque genomes, and that could be important candidate variants for determining species-specific responses to drugs and pathogens. The demographic inference using the genome sequence data revealed that Malaysian cynomolgus macaques have experienced at least three population bottlenecks. CONCLUSIONS: This list of whole-genome SNVs will be useful for many future applications, such as an array-based genotyping system for macaque individuals. High-quality whole-genome sequencing of the cynomolgus macaque genome may aid studies on finding genetic differences that are responsible for phenotypic diversity in macaques and may help control genetic backgrounds among individuals.  相似文献   

15.
Human endogenous retroviruses (HERV) sequences account for about 8% of the human genome. Through comparative genomics and literature mining, we identified a total of 29 human-specific HERV-K insertions. We characterized them focusing on their structure and flanking sequence. The results showed that four of the human-specific HERV-K insertions deleted human genomic sequences via non-classical insertion mechanisms. Interestingly, two of the human-specific HERV-K insertion loci contained two HERV-K internals and three LTR elements, a pattern which could be explained by LTR-LTR ectopic recombination or template switching. In addition, we conducted a polymorphic test and observed that twelve out of the 29 elements are polymorphic in the human population. In conclusion, human-specific HERV-K elements have inserted into human genome since the divergence of human and chimpanzee, causing human genomic changes. Thus, we believe that human-specific HERV-K activity has contributed to the genomic divergence between humans and chimpanzees, as well as within the human population.  相似文献   

16.
Human herpesvirus 6 (HHV-6), which belongs to the betaherpesvirus subfamily and infects mainly T cells in vitro, causes acute and latent infections. Two variants of HHV-6 have been distinguished on the basis of differences in several properties. We have determined the complete DNA sequence of HHV-6 variant B (HHV-6B) strain HST, the causative agent of exanthem subitum, and compared the sequence with that of variant A strain U1102. A total of 115 potential open reading frames (ORFs) were identified within the 161,573-bp contiguous sequence of the entire HHV-6 genome, including some genes with remarkable differences in amino acid identity. All genes with <70% identity between the two variants were found to contain deleted regions when ORFs that could not be expressed were excluded from the comparison. Except in the case of U47, these differences were found in immediate-early/regulatory genes, DR2, DR7, U86/90, U89/90, and U95, which may represent characteristic differences of variants A and B. Also, we have successfully typed 14 different strains belonging to variant A or B by PCR using variant-specific primers; the results suggest that the remarkable differences observed were conserved evolutionarily as variant-specific divergence.  相似文献   

17.

Background

Characterizing large genomic variants is essential to expanding the research and clinical applications of genome sequencing. While multiple data types and methods are available to detect these structural variants (SVs), they remain less characterized than smaller variants because of SV diversity, complexity, and size. These challenges are exacerbated by the experimental and computational demands of SV analysis. Here, we characterize the SV content of a personal genome with Parliament, a publicly available consensus SV-calling infrastructure that merges multiple data types and SV detection methods.

Results

We demonstrate Parliament’s efficacy via integrated analyses of data from whole-genome array comparative genomic hybridization, short-read next-generation sequencing, long-read (Pacific BioSciences RSII), long-insert (Illumina Nextera), and whole-genome architecture (BioNano Irys) data from the personal genome of a single subject (HS1011). From this genome, Parliament identified 31,007 genomic loci between 100 bp and 1 Mbp that are inconsistent with the hg19 reference assembly. Of these loci, 9,777 are supported as putative SVs by hybrid local assembly, long-read PacBio data, or multi-source heuristics. These SVs span 59 Mbp of the reference genome (1.8%) and include 3,801 events identified only with long-read data. The HS1011 data and complete Parliament infrastructure, including a BAM-to-SV workflow, are available on the cloud-based service DNAnexus.

Conclusions

HS1011 SV analysis reveals the limits and advantages of multiple sequencing technologies, specifically the impact of long-read SV discovery. With the full Parliament infrastructure, the HS1011 data constitute a public resource for novel SV discovery, software calibration, and personal genome structural variation analysis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1479-3) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.

Background

To gain biological insights into lung metastases from hepatocellular carcinoma (HCC), we compared the whole-genome sequencing profiles of primary HCC and paired lung metastases.

Methods

We used whole-genome sequencing at 33X-43X coverage to profile somatic mutations in primary HCC (HBV+) and metachronous lung metastases (> 2 years interval).

Results

In total, 5,027-13,961 and 5,275-12,624 somatic single-nucleotide variants (SNVs) were detected in primary HCC and lung metastases, respectively. Generally, 38.88-78.49% of SNVs detected in metastases were present in primary tumors. We identified 65–221 structural variations (SVs) in primary tumors and 60–232 SVs in metastases. Comparison of these SVs shows very similar and largely overlapped mutated segments between primary and metastatic tumors. Copy number alterations between primary and metastatic pairs were also found to be closely related. Together, these preservations in genomic profiles from liver primary tumors to metachronous lung metastases indicate that the genomic features during tumorigenesis may be retained during metastasis.

Conclusions

We found very similar genomic alterations between primary and metastatic tumors, with a few mutations found specifically in lung metastases, which may explain the clinical observation that both primary and metastatic tumors are usually sensitive or resistant to the same systemic treatments.  相似文献   

20.
We have reported previously that a retroposon, containing a variable number of tandemly repeated nucleotide sequences, is present in the third intron of the human C2 gene. This element, termed SINE-R.C2, is a member of a large retroposon family derived from the endogenous retrovirus HERV-K10 and estimated to include a few thousand copies per haploid human genome. In the present study we analyzed genomic DNA from 175 humans from several ethnic groups including Americans of European and African descent, Chinese, Africans, Australians, Pacific Islanders, Japanese, and Koreans. They all contained SINE-R.C2, as indicated by Southern blotting. However, SINE-R.C2 was absent from the genome of nonhuman primates, although SINE-R-type elements were present in chimpanzees and gorillas and the HERV-K10 genome was apparently present in all primates except for New World monkeys. These results indicate that HERV-K10 was inserted into the genome after the divergence of New World monkeys; the prototype SINE-R element, after divergence of orangutans; and SINE-R.C2, after the split between humans and chimpanzees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号