首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Trends in biotechnology》2023,41(7):965-981
Mesenchymal stromal cells (MSCs) are a promising therapy for various diseases ranging from ischemic stroke to wound healing and cancer. Their therapeutic effects are mainly mediated by secretome-derived paracrine factors, with extracellular vesicles (EVs) proven to play a key role. This has led to promising research on the potential of MSC-EVs as regenerative, off-the-shelf therapeutic agents. However, the translation of MSC-EVs into the clinic is hampered by the poor scalability of their production. Recently, new advanced methods have been developed to upscale MSC cultivation and EV production yields, ranging from new cell culture devices to priming procedures. This review gives an overview of these innovative strategies for manufacturing MSC-EVs.  相似文献   

2.
The precise mechanisms that govern the commitment of CD4 T cells to become Th1 or Th2 cells in vivo are incompletely understood. Recent experiments demonstrate colocalization of the IFN-gammaR chains with the TCR during activation of naive CD4 T cells, suggesting that association of these molecules may be involved in determining lineage commitment. To test the role of IFN-gamma and its receptor in the generation of Th1 Ag-specific CD4 T cells, we analyzed mice after infection with Listeria monocytogenes or lymphocytic choriomeningitis virus. In the absence of IFN-gamma, Ag-specific CD4 T cells were generated in response to both these infections. In addition, IFN-gamma-producing (Th1) Ag-specific CD4 T cells were generated in mice lacking the ligand-binding chain of the IFN-gammaR (IFN-gammaR1-/-) or the signaling chain (IFN-gammaR2-/-). There was no increase in the number of IL-4-producing Ag-specific CD4 T cells, nor was there a decrease in the expression of T-bet in the absence of functional IFN-gamma signaling, indicating that the cells were committed Th1 cells. Thus, both chains of the IFN-gammaR are dispensable for the generation of Th1 Ag-specific CD4 T cells after infection in vivo.  相似文献   

3.
Severe injury induces detrimental changes in immune function, often leaving the host highly susceptible to developing life-threatening opportunistic infections. Advances in our understanding of how injury influences host immune responses suggest that injury causes a phenotypic imbalance in the regulation of Th1- and Th2-type immune responses. We report in this study, using a TCR transgenic CD4(+) T cell adoptive transfer approach, that injury skews T cell responses toward increased Th2-type reactivity in vivo without substantially limiting Ag-driven CD4(+) T cell expansion. The increased Th2-type response did not occur unless injured mice were immunized with specific Ag, suggesting that the phenotypic switch is Ag dependent. These findings establish that severe injury induces fundamental changes in the induction of Ag-specific CD4(+) Th cell responses favoring the development of Th2-type immune reactivity in vivo.  相似文献   

4.
Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c(+) dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c(+) DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c(+) DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c(+) DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4(+) T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4(+) T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c(+) DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.  相似文献   

5.
BACKGROUND: The generation of AML-specific T-lymphocyte responses by leukemia-derived DC has been documented by multiple investigators and is being pursued clinically. An obstacle to widespread use of this strategy is that it has not been possible to generate leukemic DC from all patients, and an alternative approach is needed if the majority of leukemia patients are to receive therapeutic vaccination in conjunction with other treatment protocols. METHODS: In the present study, we generated DC from CD14-selected monocytes isolated from healthy donor PBPC and loaded them with a total cell lysate from AML patient blasts. RESULTS: Immature in vitro-derived DC exhibited robust phagocytic activity, and mature DC demonstrated high expression of CD80, CD83, CD86 and the chemokine receptor CCR7, important for DC migration to local lymph nodes. Mature, Ag-loaded DC were used as APC for leukemia-specific cytotoxic T-lymphocyte (CTL) induction and demonstrated cytotoxic activity against leukemic targets. CTL lysis was Ag-specific, with killing of both allogeneic leukemic blasts and autologous DC loaded with allogeneic AML lysate. HLA-matched controls were not lysed in our system. DISCUSSION: These data support further research into the use of this strategy as an alternative approach to leukemia-derived DC vaccination.  相似文献   

6.
Various mammalian cells including tumor cells secrete extracellular vesicles (EVs), otherwise known as exosomes and microvesicles. EVs are nanosized bilayered proteolipids and play multiple roles in intercellular communication. Although many vesicular proteins have been identified, their functional interrelationships and the mechanisms of EV biogenesis remain unknown. By interrogating proteomic data using systems approaches, we have created a protein interaction network of human colorectal cancer cell-derived EVs which comprises 1491 interactions between 957 vesicular proteins. We discovered that EVs have well-connected clusters with several hub proteins similar to other subcellular networks. We also experimentally validated that direct protein interactions between cellular proteins may be involved in protein sorting during EV formation. Moreover, physically and functionally interconnected protein complexes form functional modules involved in EV biogenesis and functions. Specifically, we discovered that SRC signaling plays a major role in EV biogenesis, and confirmed that inhibition of SRC kinase decreased the intracellular biogenesis and cell surface release of EVs. Our study provides global insights into the cargo-sorting, biogenesis, and pathophysiological roles of these complex extracellular organelles.  相似文献   

7.
The release of extracellular vesicles, also known as outer membrane vesicles, membrane vesicles, exosomes, and microvesicles, is an evolutionarily conserved phenomenon from bacteria to eukaryotes. It has been reported that Mycobacterium tuberculosis releases extracellular vesicles harboring immunologically active molecules, and these extracellular vesicles have been suggested to be applicable in vaccine development and biomarker discovery. However, the comprehensive proteomic analysis has not been performed for M. tuberculosis extracellular vesicles. In this study, we identified a total of 287 vesicular proteins by four LC‐MS/MS analyses with high confidence. In addition, we identified several vesicular proteins associated with the virulence of M. tuberculosis. This comprehensive proteome profile will help elucidate the pathogenic mechanism of M. tuberculosis. The data have been deposited to the ProteomeXchange with identifier PXD001160 ( http://proteomecentral.proteomexchange.org/dataset/PXD001160 ).  相似文献   

8.
The occurrence and development of acute lung injury (ALI) involve a variety of pathological factors and complex mechanisms. How pulmonary cells communicate with each other and subsequently trigger an inflammatory cascade remains elusive. Extracellular vesicles (EVs) are a critical class of membrane-bound structures that have been widely investigated for their roles in pathophysiological processes, especially in immune responses and tumor progression. Most of the current knowledge of the functions of EVs is related to functions derived from viable cells (e.g., microvesicles and exosomes) or apoptotic cells (e.g., apoptotic bodies); however, there is limited understanding of the rapidly progressing inflammatory response in ALI. Herein, a comprehensive analysis of micron-sized EVs revealed a mass production of 1-5 μm pyroptotic bodies (PyrBDs) release in the early phase of ALI induced by lipopolysaccharide (LPS). Alveolar macrophages were the main source of PyrBDs in the early phase of ALI, and the formation and release of PyrBDs were dependent on caspase-1. Furthermore, PyrBDs promoted the activation of epithelial cells, induced vascular leakage and recruited neutrophils through delivery of damage-associated molecular patterns (DAMPs). Collectively, these findings suggest that PyrBDs are mainly released by macrophages in a caspase-1-dependent manner and serve as mediators of LPS-induced ALI.  相似文献   

9.
The ability of committed Th1 and Th2 cells to function in altered cytokine environments is a central issue in autoimmune and immune-mediated diseases. Therefore, it is of interest to study the ability of Th1 or Th2 cells to expand and produce cytokine reciprocal environments in vivo. Using STAT4- and STAT6-deficient mice, we studied the expansion and cytokine production of Ag-specific Th1 or Th2 cells after transfer into Th1, Th2, or wild-type recipients. Our data show that these Th1 or Th2 cells proliferated and clonally expanded normally, regardless of the in vivo cytokine environment. These data have implications for the treatment of immune-mediated diseases by immunomodulatory agents that alter the cytokine milieu in vivo.  相似文献   

10.
Isolated mitotic chromosomes are able to form complexes with phosphatidylcholine liposomes in the presence and absence of Ca2+ ions, in the latter case in the presence of polyamines. Interactions with chromosomes stimulates liposome fusion. The fusion is promoted by condensed and EDTA-decondensed chromosomes.  相似文献   

11.
Th1 and Th2 cells mutually antagonize each other's differentiation. Consequently, allergen-specific Th1 cells are believed to be able to suppress the development of Th2 cells and to prevent the development of atopic disorders. To determine whether a pre-existing Ag-specific Th1 response can affect the development of Th2 cells in vivo, we used an immunization model of Ag-pulsed murine dendritic cell (DC) transfer to induce distinct Th responses. When transferred into naive mice, Ag-pulsed CD8alpha(+) DCs induced a Th1 response and the production of IgG2a, whereas CD8alpha(-) DCs primed a Th2 response and the production of IgE. In the presence of a pre-existing Ag-specific Th2 environment due to Ag-pulsed CD8alpha(-) DC transfer, CD8alpha(+) DCs failed to prime Th1 cells. In contrast, CD8alpha(-) DCs could prime a Th2 response in the presence of a pre-existing Ag-specific Th1 environment. Moreover, exogenous IL-4 abolished the Th1-inducing potential of CD8alpha(+) DCs in vitro, but the addition of IFN-gamma did not effectively inhibit the potential of CD8alpha(-) DCs to prime IL-4-producing cells. Thus, Th1 and Th2 cells differ in their potential to inhibit the development of the other. This suggests that the early induction of allergen-specific Th1 cells before allergy sensitization will not prevent the development of atopic disorders.  相似文献   

12.
Feline infectious peritonitis virus (FIPV) may cause a lethal infection in cats. Antibody-dependent enhancement (ADE) of FIPV infection has been recognized, and cellular immunity is considered to play an important role in preventing the onset of feline infectious peritonitis. In the present study, whether or not the T helper (Th)1 epitope was present in the spike (S)2 domain was investigated, the ADE epitope being thought to be absent from this domain. Three kinds of protein derived from the C-terminal S2 domain of S protein of the FIPV KU-2 strain were developed using a baculovirus expression system. These expressed proteins were the pre-coil region which is the N-terminal side of the putative fusion protein (FP), the region from FP to the heptad repeat (HR)2 (FP-HR2) region, and the inter-helical region which is sandwiched between HR1 and HR2. The ability of three baculovirus-expressed proteins to induce Th1- and Th2-type immune responses was investigated in a mouse model. It was shown that FP-HR2 protein induced marked Th1- and Th2-type immune responses. Furthermore, 30 peptides derived from the FP-HR2 region were synthesized. Five and 16 peptides which included the Th1 and Th2 epitopes, respectively, were identified. Of these, four peptides which included both Th1 and Th2 epitopes were identified. These findings suggest that the identification of Th1 epitopes in the S2 domain of FIPV has important implications in the cat.  相似文献   

13.
Recent studies suggest that monocyte chemoattractant protein-1 (MCP-1) is involved in fibrosis through the regulation of profibrotic cytokine generation and matrix deposition. Changes in MCP-1, C-C chemokine receptor 2 (CCR2), procollagen I and III, and TGF beta were examined in fibroblasts cultured from normal lung and from nonfibrotic (i.e., Th1-type) and fibrotic (i.e., Th2-type) pulmonary granulomas. Th2-type fibroblasts generated 2-fold more MCP-1 than similar numbers of Th1-type or normal fibroblasts after 24 h in culture. Unlike normal and Th1-type fibroblasts, Th2-type fibroblasts displayed CCR2 mRNA at 24 h after IL-4 treatment. By flow cytometry, CCR2 was present on 40% of untreated Th2-type fibroblasts, whereas CCR2 was present on <20% of normal and Th1-type fibroblasts after similar treatment. IL-4 increased the number of normal fibroblasts with cell-surface CCR2 but IFN-gamma-treatment of normal and Th2-type fibroblasts significantly decreased the numbers of CCR2-positive cells in both populations. Western blot analysis showed that total CCR2 protein expression was markedly increased in untreated Th2-type fibroblasts compared with normal and Th1-type fibroblasts. IL-4 treatment enhanced CCR2 protein in Th1- and Th2-type fibroblasts whereas IFN-gamma treatment augmented CCR2 protein in normal and Th1-type fibroblasts. All three fibroblast populations exhibited MCP-1-dependent TGF-beta synthesis, but only normal and Th2-type fibroblasts showed a MCP-1 requirement for procollagen mRNA expression. Taken together, these findings suggest that lung fibroblasts are altered in their expression of MCP-1, TGF-beta, CCR2, and procollagen following their participation in pulmonary inflammatory processes, and these changes may be important during fibrosis.  相似文献   

14.

Background

Systemic infusion of mesenchymal stromal cells (MSCs) has been shown to induce acute acceleration of growth velocity in children with osteogenesis imperfecta (OI) despite minimal engraftment of infused MSCs in bones. Using an animal model of OI we have previously shown that MSC infusion stimulates chondrocyte proliferation in the growth plate and that this enhanced proliferation is also observed with infusion of MSC conditioned medium in lieu of MSCs, suggesting that bone growth is due to trophic effects of MSCs. Here we sought to identify the trophic factor secreted by MSCs that mediates this therapeutic activity.

Methods

To examine whether extracellular vesicles (EVs) released from MSCs have therapeutic activity, EVs were isolated from MSC conditioned medium by ultracentrifugation. To further characterize the trophic factor, RNA or microRNA (miRNA) within EVs was depleted by either ribonuclease (RNase) treatment or suppressing miRNA biogenesis in MSCs. The functional activity of these modified EVs was evaluated using an in vitro chondrocyte proliferation assay. Finally, bone growth was evaluated in an animal model of OI treated with EVs.

Results

We found that infusion of MSC-derived EVs stimulated chondrocyte proliferation in the growth plate, resulting in improved bone growth in a mouse model of OI. However, infusion of neither RNase-treated EVs nor miRNA-depleted EVs enhanced chondrocyte proliferation.

Conclusion

MSCs exert therapeutic effects in OI by secreting EVs containing miRNA, and EV therapy has the potential to become a novel cell-free therapy for OI that will overcome some of the current limitations in MSC therapy.  相似文献   

15.
The Th1 and Th2 preference induced by cells from the Peyer's patch (PP) and spleen (SPL) with various doses of an antigen was examined. The same splenic T cell receptor-transgenic CD4+ T cells were first incubated with PP or SPL cells in the presence of various doses of an antigen, and the cytokine response was observed after secondary stimulation. A Th2-type pattern was only obtained for primary stimulation at 10 microM of the antigen with PP cells, whereas a Th1 pattern was induced at both higher and lower concentrations. SPL cells in the presence of 0.1 to 1 microM of the antigen induced the secretion of Th2-type cytokines. Ten and 100 microM of the antigen plus SPL cells did not induce the release of a large quantity of cytokines. PP cells induced a different cytokine pattern at the antigen concentration that induced a similar level of T cell proliferation with SPL cells. Our findings suggest that the antigen-dose dependent development of Th1/Th2 cells is differentially modulated by the antigen-presentation function of cells in PP and SPL.  相似文献   

16.
17.
18.
The role of exosomes derived from endothelial cells (ECs) in the progression of atherosclerosis (AS) and inflammation remains largely unexplored. We aimed to investigate whether exosome derived from CD137‐modified ECs (CD137‐Exo) played a major role in AS and to elucidate the potential mechanism underlying the inflammatory effect. Exosomes derived from mouse brain microvascular ECs treated with agonist anti‐CD137 antibody were used to explore the effect of CD137 signalling in AS and inflammation in vitro and vivo. CD137‐Exo efficiently induced the progression of AS in ApoE?/? mice. CD137‐Exo increased the proportion of Th17 cells both in vitro and vivo. The IL‐6 contained in CD137‐Exo which is regulated by Akt and NF‐КB pathway was verified to activate Th17 cell differentiation. IL‐17 increased apoptosis, inhibited cell viability and improved lactate dehydrogenase (LDH) release in ECs subjected to inflammation induced by lipopolysaccharide (LPS). The expression of soluble intercellular adhesion molecule1 (sICAM‐1), monocyte chemoattractant protein‐1 (MCP‐1) and E‐selectin in the supernatants of ECs after IL‐17 treatment was dramatically increased. CD137‐Exo promoted the progression of AS and Th17 cell differentiation via NF‐КB pathway mediated IL‐6 expression. This finding provided a potential method to prevent local and peripheral inflammation in AS.  相似文献   

19.
Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release ‘messenger'' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial ‘apoptotic bodies'', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50–120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after hyperoxia exposure. These circulating EVs also activated systemic macrophages other than the alveolar ones. Collectively, the results show that hyperoxia-induced, lung epithelial cell-derived and caspase-3 enriched EVs activate macrophages and mediate the inflammatory lung responses involved in lung injury.Acute lung injury (ALI) and its severe form, ARDS cause significant morbidity and mortality in critically-ill patients.1 ALI often presents with extensive accumulation of activated inflammatory cells and diffuse alveolar damage (DAD) accompanied by oxidative stress.2 Lung epithelial cell damage, a prominent feature of both infectious and non-infectious lung injury, potentially has an important functional role in the pathogenesis of the overwhelming inflammation and vascular leaking involved in ALI/ARDS.3, 4 However, it remains incompletely understood how lung inflammation is initiated and propagated during the development of lung injury, particularly by non-infectious stimuli. For example, oxidative stress, such as occurs with the inspiration of a high concentration of oxygen, could lead to reactive oxygen species (ROS) production, inflammasome activation, pro-inflammatory cytokine production, neutrophil influx and lung inflammation,5, 6 resulting in severe lung injury and respiratory failure. It has been reported that the deposition of extracellular matrix (ECM) has a role in this process.7 Therefore, the cross-talk between damaged epithelial cells and lung inflammation cells during the development of non-infectious lung injury needs to be explored to properly understand the development of ALI/ARDS.Hyperoxia-induced ALI (HALI) is a well-established, non-infectious animal model that mimics human ARDS and has been used extensively by investigators to better understand the pathogenesis of this devastating syndrome.8 Oxidative stress, such as occurs with hyperoxia and its derivative ROS, can induce epithelial cell death via apoptosis, autophagic cell death, necrosis and many other pathways.9 Prolonged exposure to a high concentration of oxygen is fatal in most animal models, resulting in neutrophil influx and alveolar edema.6 However, despite the fact that mouse HALI is a good model of human ARDS, mortality in rodents often results from severe cerebral edema.6 Activated alveolar macrophage-released chemokines/cytokines are essential to neutrophil recruitment.6 That said, how the oxidative stress specifically activates alveolar macrophages has not been well elucidated. In this study, we used the mouse model of HALI to evaluate the cross-talk between damaged lung epithelial cells and alveolar macrophages during the development of HALI via epithelial cell-derived EVs.For a long time, EVs were considered membrane debris without any specific biological function.10 Recently, accumulating data have suggested that EVs are in fact crucial mediators of intercellular communications.11, 12, 13 EVs are categorized into exosomes, microvesicles and apoptotic bodies based on their origin, size and content.10 The exosome is 40–120 nm in size and is originated from the endo-lysosomal pathway, intraluminal budding or the fusion of multivesicular bodies with the cell membrane. It is characterized by holding plasma membrane proteins such as the tetraspanin (CD9, CD63, CD81 and so on) and lipid raft proteins (flotillin and caveolin-1).14 The exosome also contains mRNA and microRNA (miRNA) as well as cytoplasmic and membrane proteins. It is secreted from majority of cells, including macrophages, dendritic cells and epithelial cells among many others. Microvesicles (MVs) are 50–1000 nm in size and are originated from the outward budding of the cell membrane.10 MVs contain membrane proteins, mRNA, miRNA, non-coding RNAs and cytoplasmic proteins.10 Apoptotic bodies are significantly larger than exosomes and MVs, averaging 500–2000 nm, and are generated from the surface of apoptotic cells.10 They are characterized by a large amount of phosphatidylserine, cell organelles, nuclear fractions and certain marker proteins, such as Apaf-1.10 Both infection and toxic insults have been reported to facilitate the generation of EVs.15, 16, 17 EVs are reported to have similar cellular functions as their mother cells.10, 18 For instance, resting macrophage-originated MVs exert an anti-inflammatory effect, whereas macrophage-originated MVs are pro-inflammatory after LPS stimulation.19 Although EVs appear promising candidates for intercellular communication, their roles in lung cells, particularly in the pathogenesis of ALI, have not been reported.We hypothesized that hyperoxia-associated oxidative stress stimulates EV generation in lung epithelial cell and that epithelial cell-derived EVs facilitate the development of inflammatory lung responses after oxidative stress. We further explored the components in epithelial cell-derived EVs after hyperoxia. The underlying mechanisms by which EVs exert their pro-inflammatory effects on alveolar macrophages were also determined. To the best of our knowledge, this is the first study focusing on the role of EVs in the pathogenesis of hyperoxia-induced ALI, the intercellular cross-talk between epithelial cells and alveolar macrophages, as well as the relationship between cell death and pro-inflammatory signals.  相似文献   

20.
CD1d-restricted T cells (NKT cells) are innate memory cells activated by lipid Ags and play important roles in the initiation and regulation of the immune response. However, little is known about the trafficking patterns of these cells or the tissue compartment in which they exert their regulatory activity. In this study, we determined the chemokine receptor profile expressed by CD1d-restricted T cells found in the peripheral blood of healthy volunteers as well as CD1d-restricted T cell clones. CD1d-restricted T cells were identified by Abs recognizing the invariant Valpha24 TCR rearrangement or by binding to CD1d-Fc fusion tetramers loaded with alpha-GalCer. CD1d-restricted T cells in the peripheral blood and CD1d-restricted T cell clones expressed high levels of CXCR3, CCR5, and CCR6; intermediate levels of CXCR4 and CXCR6; and low levels of CXCR1, CCR1, CCR2, and CX(3)CR1, a receptor pattern often associated with tissue-infiltrating effector Th1 cells and CD8+ T cells. Very few of these cells expressed the lymphoid-homing receptors CCR7 or CXCR5. CCR4 was expressed predominantly on CD4+, but not on double-negative CD1d-restricted T cells, which may indicate differential trafficking patterns for these two functionally distinct subsets. CD1d-restricted T cell clones responded to chemokine ligands for CXCR1/2, CXCR3, CXCR4, CXCR6, CCR4, and CCR5 in calcium flux and/or chemotaxis assays. These data indicate that CD1d-restricted T cells express a chemokine receptor profile most similar to Th1 inflammatory homing cells and suggest that these cells perform their function in peripheral tissue sites rather than in secondary lymphoid organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号