首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Insulin regulates glucose transport in muscle and adipose tissue by triggering the translocation of a facilitative glucose transporter, GLUT4, from an intracellular compartment to the cell surface. It has previously been suggested that GLUT4 is segregated between endosomes, the trans-Golgi network (TGN), and a postendosomal storage compartment. The aim of the present study was to isolate the GLUT4 storage compartment in order to determine the relationship of this compartment to other organelles, its components, and its presence in different cell types. A crude intracellular membrane fraction was prepared from 3T3-L1 adipocytes and subjected to iodixanol equilibrium sedimentation analysis. Two distinct GLUT4-containing vesicle peaks were resolved by this procedure. The lighter of the two peaks (peak 2) was comprised of two overlapping peaks: peak 2b contained recycling endosomal markers such as the transferrin receptor (TfR), cellubrevin, and Rab4, and peak 2a was enriched in TGN markers (syntaxin 6, the cation-dependent mannose 6-phosphate receptor, sortilin, and sialyltransferase). Peak 1 contained a significant proportion of GLUT4 with a smaller but significant amount of cellubrevin and relatively little TfR. In agreement with these data, internalized transferrin (Tf) accumulated in peak 2 but not peak 1. There was a quantitatively greater loss of GLUT4 from peak 1 than from peak 2 in response to insulin stimulation. These data, combined with the observation that GLUT4 became more sensitive to ablation with Tf-horseradish peroxidase following insulin treatment, suggest that the vesicles enriched in peak 1 are highly insulin responsive. Iodixanol gradient analysis of membranes isolated from other cell types indicated that a substantial proportion of GLUT4 was targeted to peak 1 in skeletal muscle, whereas in CHO cells most of the GLUT4 was targeted to peak 2. These results indicate that in insulin-sensitive cells GLUT4 is targeted to a subpopulation of vesicles that appear, based on their protein composition, to be a derivative of the endosome. We suggest that the biogenesis of this compartment may mediate withdrawal of GLUT4 from the recycling system and provide the basis for the marked insulin responsiveness of GLUT4 that is unique to muscle and adipocytes.  相似文献   

2.
Insulin stimulates the movement of two glucose transporter isoforms (GLUT1 and GLUT4) to the plasma membrane (PM) in adipocytes. To study this process we have prepared highly purified PM fragments by gently sonicating 3T3-L1 adipocytes grown on glass coverslips. Using confocal laser immunofluorescence microscopy we observed increased PM labeling for GLUT1 (2.3-fold) and GLUT4 (eightfold) after insulin treatment in intact cells. EM immunolabeling of PM fragments indicated that in the nonstimulated state GLUT4 was mainly localized to flat clathrin lattices. Whereas GLUT4 labeling of clathrin lattices was only slightly increased after insulin treatment, labeling of uncoated PM regions was markedly increased with insulin. These data suggest that GLUT4 recycles from the cell surface both in the presence and absence of insulin. In streptolysin-O permeabilized adipocytes, insulin, and GTP gamma S increased PM levels of GLUT4 to a similar extent as observed with insulin in intact cells. In the absence of an exogenous ATP source the magnitude of these effects was considerably reduced. Removal of ATP per se caused a significant increase in cell surface levels of GLUT4 suggesting that ATP may be required for intracellular sequestration of these transporters. When insulin and GTP gamma S were added together, in the presence of ATP, PM GLUT4 levels were similar to levels observed when either insulin or GTP gamma S was added individually. Addition of GTP gamma S was able to overcome this ATP dependence of insulin-stimulated GLUT4 movement. GTP gamma S had no effect on constitutive secretion of adipsin in permeabilized cells. In addition, there was no effect of insulin or GTP gamma S on GLUT4 movement to the PM in noninsulin sensitive streptolysin-O-permeabilized 3T3-L1 fibroblasts overexpressing GLUT4. We conclude that the insulin-stimulated movement of GLUT4 to the cell surface in adipocytes may require ATP early in the insulin signaling pathway and a GTP-binding protein(s) at a later step(s). We propose that the association of GLUT4 with clathrin lattices may be important in maintaining the exclusive intracellular location of this transporter in the absence of insulin.  相似文献   

3.
Insulin causes translocation of glucose transporter 4 (GLUT4) to the membrane of muscle and fat cells, a process requiring Akt activation. Two Rab-GTPase-activating proteins (Rab-GAP), AS160 and TBC1D1, were identified as Akt substrates. AS160 phosphorylation is required for insulin-stimulated GLUT4 translocation, but the participation of TBC1D1 on muscle cell GLUT4 is unknown. Moreover, there is controversy as to the AS160/TBC1D1 target Rabs in fat and muscle cells, and Rab effectors are unknown. Here we examined the effect of knockdown of AS160, TBC1D1, and Rabs 8A, 8B, 10, and 14 (in vitro substrates of AS160 and TBC1D1 Rab-GAP activities) on insulin-induced GLUT4 translocation in L6 muscle cells. Silencing AS160 or TBC1D1 increased surface GLUT4 in unstimulated cells but did not prevent insulin-induced GLUT4 translocation. Knockdown of Rab8A and Rab14, but not of Rab8B or Rab10, inhibited insulin-induced GLUT4 translocation. Furthermore, silencing Rab8A or Rab14 but not Rab8B or Rab10 restored the basal-state intracellular retention of GLUT4 impaired by AS160 or TBC1D1 knockdown. Lastly, overexpression of a fragment of myosin Vb, a recently identified Rab8A-interacting protein, inhibited insulin-induced GLUT4 translocation and altered the subcellular distribution of GTP-loaded Rab8A. These results support a model whereby AS160, Rab8A, and myosin Vb are required for insulin-induced GLUT4 translocation in muscle cells, potentially as part of a linear signaling cascade. glucose transporter 4; insulin signaling; Rab guanosine 5'-triphosphatases; Rab-guanosine 5'-triphosphatase-activating protein; myosin Vb  相似文献   

4.
Insulin treatment of fat cells results in the translocation of the insulin-responsive glucose transporter type 4, GLUT4, from intracellular compartments to the plasma membrane. However, the precise nature of these intracellular GLUT4-carrying compartments is debated. To resolve the nature of these compartments, we have performed an extensive morphological analysis of GLUT4-containing compartments, using a novel immunocytochemical technique enabling high labeling efficiency and 3-D resolution of cytoplasmic rims isolated from rat epididymal adipocytes. In basal cells, GLUT4 was localized to three morphologically distinct intracellular structures: small vesicles, tubules, and vacuoles. In response to insulin the increase of GLUT4 at the cell surface was compensated by a decrease in small vesicles, whereas the amount in tubules and vacuoles was unchanged. Under basal conditions, many small GLUT4 positive vesicles also contained IRAP (88%) and the v-SNARE, VAMP2 (57%) but not markers of sorting endosomes (EEA1), late endosomes, or lysosomes (lgp120). A largely distinct population of GLUT4 vesicles (56%) contained the cation-dependent mannose 6-phosphate receptor (CD-MPR), a marker protein that shuttles between endosomes and the trans-Golgi network (TGN). In response to insulin, GLUT4 was recruited both from VAMP2 and CD-MPR positive vesicles. However, while the concentration of GLUT4 in the remaining VAMP2-positive vesicles was unchanged, the concentration of GLUT4 in CD-MPR-positive vesicles decreased. Taken together, we provide morphological evidence indicating that, in response to insulin, GLUT4 is recruited to the plasma membrane by fusion of preexisting VAMP2-carrying vesicles as well as by sorting from the dynamic endosomal-TGN system.  相似文献   

5.
Insulin-responsive GLUT4 (glucose transporter 4) translocation plays a major role in regulating glucose uptake in adipose tissue and muscle. Whether or not there is a specialized secretory GSV (GLUT4 storage vesicle) pool, and more importantly how GSVs are translocated to the PM (plasma membrane) under insulin stimulation is still under debate. In the present study, we systematically analyzed the dynamics of a large number of single GLUT4-containing vesicles in 3T3-L1 adipocytes by TIRFM (total internal reflection fluorescence microscopy). We found that GLUT4-containing vesicles can be classified into three groups according to their mobility, namely vertical, stable, and lateral GLUT4-containing vesicles. Among these groups, vertical GLUT4-containing vesicles exclude transferrin receptors and move towards the PM specifically in response to insulin stimulation, while stable and lateral GLUT4-containing vesicles contain transferrin receptors and show no insulin responsiveness. These data demonstrate that vertical GLUT4-containing vesicles correspond to specialized secretory GSVs, which approach the PM directly and bypass the constitutive recycling pathway. Contributed equally to this work Supported by the National Natural Science Foundation of China (Grant Nos. 30470448 and 30130230), the National key Basic Research Program of China (Grant No. 2004CB720000), the Knowledge Innovative Program of The Chinese Academy of Sciences (Grant Nos. KSCX2-SW-224 and Y2004018), the Li Foundation and the Sinogerman Scientific Center.  相似文献   

6.
Insulin stimulates glucose uptake in muscle and adipose cells by mobilizing intracellular membrane vesicles containing GLUT4 glucose transporter proteins to the plasma membrane. Here we show in live cultured adipocytes that intracellular membranes containing GLUT4-yellow fluorescent protein (YFP) move along tubulin-cyan fluorescent protein-labeled microtubules in response to insulin by a mechanism that is insensitive to the phosphatidylinositol 3 (PI3)-kinase inhibitor wortmannin. Insulin increased by several fold the observed frequencies, but not velocities, of long-range movements of GLUT4-YFP on microtubules, both away from and towards the perinuclear region. Genomics screens show conventional kinesin KIF5B is highly expressed in adipocytes and this kinesin is partially co-localized with perinuclear GLUT4. Dominant-negative mutants of conventional kinesin light chain blocked outward GLUT4 vesicle movements and translocation of exofacial Myc-tagged GLUT4-green fluorescent protein to the plasma membrane in response to insulin. These data reveal that insulin signaling targets the engagement or initiates the movement of GLUT4-containing membranes on microtubules via conventional kinesin through a PI3-kinase-independent mechanism. This insulin signaling pathway regulating KIF5B function appears to be required for GLUT4 translocation to the plasma membrane.  相似文献   

7.
Insulin maintains whole body blood glucose homeostasis, in part, by regulating the amount of the GLUT4 glucose transporter on the cell surface of fat and muscle cells. Insulin induces the redistribution of GLUT4 from intracellular compartments to the plasma membrane, by stimulating a large increase in exocytosis and a smaller inhibition of endocytosis. A considerable amount is known about the molecular events of insulin signaling and the complex itinerary of GLUT4 trafficking, but less is known about how insulin signaling is transmitted to GLUT4 trafficking. Here, we show that the AS160 RabGAP, a substrate of Akt, is required for insulin stimulation of GLUT4 exocytosis. A dominant-inhibitory mutant of AS160 blocks insulin stimulation of exocytosis at a step before the fusion of GLUT4-containing vesicles with the plasma membrane. This mutant, however, does not block insulin-induced inhibition of GLUT4 endocytosis. These data support a model in which insulin signaling to the exocytosis machinery (AS160 dependent) is distinct from its signaling to the internalization machinery (AS160 independent).  相似文献   

8.
Glucose transport in adipose cells is regulated by changing the distribution of glucose transporter 4 (GLUT4) between the cell interior and the plasma membrane (PM). Insulin shifts this distribution by augmenting the rate of exocytosis of specialized GLUT4 vesicles. We applied time-lapse total internal reflection fluorescence microscopy to dissect intermediates of this GLUT4 translocation in rat adipose cells in primary culture. Without insulin, GLUT4 vesicles rapidly moved along a microtubule network covering the entire PM, periodically stopping, most often just briefly, by loosely tethering to the PM. Insulin halted this traffic by tightly tethering vesicles to the PM where they formed clusters and slowly fused to the PM. This slow release of GLUT4 determined the overall increase of the PM GLUT4. Thus, insulin initially recruits GLUT4 sequestered in mobile vesicles near the PM. It is likely that the primary mechanism of insulin action in GLUT4 translocation is to stimulate tethering and fusion of trafficking vesicles to specific fusion sites in the PM.  相似文献   

9.
Insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane in muscle and fat cells depends on the phosphatidylinositide 3-kinase/Akt pathway. The downstream target AS160/TBC1D4 is phosphorylated upon insulin stimulation and contains a TBC domain (Tre-2/Bub2/Cdc16) that is present in most Rab guanosine triphosphatase-activating proteins. TBC1D4 associates with GLUT4-containing membranes under basal conditions and dissociates from membranes with insulin. Here we show that the association of TBC1D4 with membranes is required for its inhibitory action on GLUT4 translocation under basal conditions. Whereas the insulin-dependent dissociation of TBC1D4 from membranes was not required for GLUT4 translocation, its phosphorylation was essential. Many agonists that stimulate GLUT4 translocation failed to trigger TBC1D4 translocation to the cytosol, but in most cases these agonists stimulated TBC1D4 phosphorylation at T642, and their effects on GLUT4 translocation were inhibited by overexpression of the TBC1D4 phosphorylation mutant (TBC1D4-4P). We postulate that TBC1D4 acts to impede GLUT4 translocation by disarming a Rab protein found on GLUT4-containing-membranes and that phosphorylation of TBC1D4 per se is sufficient to overcome this effect, allowing GLUT4 translocation to the cell surface to proceed.  相似文献   

10.
Development of a 'static retention' property of GLUT4, the insulin-responsive glucose transporter, has emerged as being essential for achieving its maximal insulin-induced surface exposure. Herein, employing quantum-dot-based nanometrology of intracellular GLUT4 behavior, we reveal the molecular basis of its systematization endowed upon adipogenic differentiation of 3T3L1 cells. Specifically, (i) the endosomes-to-trans-Golgi network (TGN) retrieval system specialized for GLUT4 develops in response to sortilin expression, which requires an intricately balanced interplay among retromers, golgin-97 and syntaxin-6, the housekeeping vesicle trafficking machinery. (ii) The Golgin-97-localizing subdomain of the differentiated TGN apparently serves as an intermediate transit route by which GLUT4 can further proceed to the stationary GLUT4 storage compartment. (iii) AS160/Tbc1d4 then renders the 'static retention' property insulin responsive, i.e. insulin liberates GLUT4 from the static state only in the presence of functional AS160/Tbc1d4. (iv) Moreover, sortilin malfunction and the resulting GLUT4 sorting defects along with retarded TGN function might be etiologically related to insulin resistance. Together, these observations provide a conceptual framework for understanding maturation/retardation of the insulin-responsive GLUT4 trafficking system that relies on the specialized subdomain of differentiated TGN.  相似文献   

11.
Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localization of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.  相似文献   

12.
The protein kinase B(β) (Akt2) pathway is known to?mediate insulin-stimulated glucose transport through increasing glucose transporter GLUT4 translocation from intracellular stores to the plasma membrane (PM). Combining quantitative phosphoproteomics with RNAi-based functional analyses, we show that a previously uncharacterized 138?kDa C2 domain-containing phosphoprotein (CDP138) is a substrate for Akt2, and is required for optimal insulin-stimulated glucose transport, GLUT4 translocation, and fusion of GLUT4 vesicles with the PM in live adipocytes. The purified C2 domain is capable of binding Ca(2+) and lipid membranes. CDP138 mutants lacking the Ca(2+)-binding sites in the C2 domain or Akt2 phosphorylation site S197 inhibit insulin-stimulated GLUT4 insertion into the PM, a rate-limiting step of GLUT4 translocation. Interestingly, CDP138 is dynamically associated with the PM and GLUT4-containing vesicles in response to insulin stimulation. Together, these results suggest that CDP138 is a key molecule linking the Akt2 pathway to the regulation of GLUT4 vesicle-PM fusion.  相似文献   

13.
A major consequence of insulin binding its receptor on fat and muscle cells is translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the cell surface where it serves to clear glucose from the bloodstream. Sorting of GLUT4 into its insulin‐sensitive store requires the GGA [Golgi‐localized, γ‐ear‐containing, ADP ribosylation factor (ARF)‐binding] adaptor proteins, but the signal on GLUT4 to direct this sorting step is unknown. Here, we have identified a role for ubiquitination of GLUT4 in this process. We demonstrate that GLUT4 is ubiquitinated in 3T3‐L1 adipocytes, and that a ubiquitin‐resistant version fails to translocate to the cell surface of these cells in response to insulin. Our data support a model in which ubiquitination acts as a signal for the trafficking of GLUT4 from the endosomal/trans‐Golgi network (TGN) system into its intracellular storage compartment, from where it is mobilized to the cell surface in response to insulin.  相似文献   

14.
Insulin stimulates translocation of GLUT4 from an intracellular compartment to the plasma membrane in adipocytes. As a significant amount of GLUT4 is localised to the TGN, independently of the biosynthetic pathway, one possibility is that trafficking via the TGN is important in either intracellular sequestration or insulin-dependent movement to the cell surface. In this study we have used immuno-electron microscopy to show that GLUT4 is localised to AP-1 vesicles in the TGN region in 3T3-L1 adipocytes. To dissect the role of this trafficking pathway we used brefeldin A (BFA) to disrupt AP-1 association with membranes. Despite a reorganisation of GLUT4 compartments following BFA treatment, the intracellular sequestration of GLUT4, and its insulin-dependent movement to the cell surface, was unaffected. BFA increased the half time of reversal of insulin-stimulated glucose transport from 17 to 30 min but did not prevent complete reversal. Furthermore, following reversal re-stimulation of glucose transport activity by insulin was not compromised. We conclude that under basal conditions GLUT4 cycles between the TGN and endosomes via the AP-1 pathway. However, neither this pathway, nor any other BFA-sensitive pathway, appears to play a major role in insulin-dependent recruitment of GLUT4 to the cell surface.  相似文献   

15.
Upon binding and activating its cell-surface receptor, insulin triggers signaling cascades that regulate many cellular processes. Regarding glucose homeostasis, insulin suppresses hepatic glucose production and increases glucose transport into muscle and adipose tissues. At the cellular level, glucose uptake results from the insulin-stimulated translocation of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane. Although the signaling molecules that function proximal to the activated insulin receptor have been well characterized, it is not known how the distal insulin-signaling cascade interfaces with and mobilizes GLUT4-containing compartments. Recently, several candidate signaling molecules, including AS160, PIKfyve and synip, have been identified that might provide functional links between the insulin signaling cascade and GLUT4 compartments. Future work will focus on delineating the precise GLUT4 trafficking steps regulated by these molecules.  相似文献   

16.
Insulin stimulates the translocation of glucose transporter GLUT4 from intracellular vesicles to the plasma membrane (PM). This involves multiple steps as well as multiple intracellular compartments. The Ser/Thr kinase Akt has been implicated in this process, but its precise role is ill defined. To begin to dissect the role of Akt in these different steps, we employed a low-temperature block. Upon incubation of 3T3-L1 adipocytes at 19 C, GLUT4 accumulated in small peripheral vesicles with a slight increase in PM labeling concomitant with reduced trans-Golgi network labeling. Although insulin-dependent translocation of GLUT4 to the PM was impaired at 19 C, we still observed movement of vesicles toward the surface. Strikingly, insulin-stimulated Akt activity, but not phosphatidylinositol 3 kinase activity, was blocked at 19 C. Consistent with a multistep process in GLUT4 trafficking, insulin-stimulated GLUT4 translocation could be primed by treating cells with insulin at 19 C, whereas this was not the case for Akt activation. These data implicate two insulin-regulated steps in GLUT4 translocation: 1) redistribution of GLUT4 vesicles toward the cell cortex-this process is Akt-independent and is not blocked at 19 C; and 2) docking and/or fusion of GLUT4 vesicles with the PM-this process may be the major Akt-dependent step in the insulin regulation of glucose transport.  相似文献   

17.
Insulin activates glucose transport by promoting translocation of the insulin-sensitive fat/muscle-specific glucose transporter GLUT4 from an intracellular storage compartment to the cell surface. Here we report that an optimal insulin effect on glucose uptake in 3T3-L1 adipocytes is dependent upon expression of both PIKfyve, the sole enzyme for PtdIns 3,5-P(2) biosynthesis, and the PIKfyve activator, ArPIKfyve. Small-interfering RNAs that selectively ablated PIKfyve or ArPIKfyve in this cell type depleted the PtdIns 3,5-P(2) pool and reduced insulin-activated glucose uptake to a comparable degree. Combined loss of PIKfyve and ArPIKfyve caused further PtdIns 3,5-P(2) ablation that correlated with greater attenuation in insulin responsiveness. Loss of PIKfyve-ArPIKfyve reduced insulin-stimulated Akt phosphorylation and the cell surface accumulation of GLUT4 or IRAP, but not GLUT1-containing vesicles without affecting overall expression of these proteins. ArPIKfyve and PIKfyve were found to physically associate in 3T3-L1 adipocytes and this was insulin independent. In vitro labeling of membranes isolated from basal or insulin-stimulated 3T3-L1 adipocytes documented substantial insulin-dependent increases of PtdIns 3,5-P(2) production on intracellular membranes. Together, the data demonstrate for the first time a physical association between functionally related PIKfyve and ArPIKfyve in 3T3-L1 adipocytes and indicate that the novel ArPIKfyve-PIKfyve-PtdIns 3,5-P(2) pathway is physiologically linked to insulin-activated GLUT4 translocation and glucose transport.  相似文献   

18.
Foley K  Boguslavsky S  Klip A 《Biochemistry》2011,50(15):3048-3061
Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and other stimuli, which result in 2-10-fold increases in the surface level of GLUT4. Insulin-derived signals promote translocation of GLUT4 to the PM from a specialized compartment termed GLUT4 storage vesicles (GSV). Much effort has been devoted to the characterization of the intracellular compartments and dynamics of GLUT4 cycling and to the signals by which GLUT4 is sorted into, and recruited from, GSV. This review summarizes our understanding of intracellular GLUT4 traffic during its internalization from the membrane, its slow, constitutive recycling, and its regulated exocytosis in response to insulin. In spite of specific differences in GLUT4 dynamic behavior in adipose and muscle cells, the generalities of its endocytic and exocytic itineraries are consistent and an array of regulatory proteins that regulate each vesicular traffic event emerges from these cell systems.  相似文献   

19.
The estrogen binding to specific extranuclear receptors (ER) activates several intracellular pathways that are activated by insulin as well. Moreover, insulin and estradiol (E2) influence cardiac energy substrates, blood glucose and free fatty acids (FFAs), and both hormones exert cardio-beneficial effects. In view of these facts, we suggest that cross-talk between their signaling pathways might have an important role in regulation of cardiac energy substrate transport. Ovariectomized rats were treated with insulin, estradiol (E2), or their combination 20, 30, or 40?min before analysis of blood glucose and FFA level, as well as cardiac plasma membranes (PM) and low density microsomes (LDM) content of glucose (GLUT4 and GLUT1) and FFA (CD36) transporters. Insulin, given alone, or in combination with E2, decreased plasma glucose level at all time points, but did not influence FFA level, while E2 treatment itself did not change glucose and FFA concentration. Insulin increased PM GLUT4 and GLUT1 content 30 and 40?min after treatment and the increases were partially accompanied by decrease in transporter LDM content. E2 increased PM content and decreased LDM content only of GLUT4 at 30?min. Insulin generally, and E2 at 20?min increased CD36 content in PM fraction. Both hormones decreased CD36 LDM content 20?min after administration. Effect of combined treatment mostly did not differ from single hormone treatment, but occasionally, particularly in distribution of GLUT4, combined treatment emphasized single hormone effect, suggesting that insulin and E2 act synergistically in regulation of energy substrate transporters in cardiac tissue.  相似文献   

20.
Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen 1 protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of the trans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号