首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new lignans, named (+)-(7′S, 7″S, 8′R, 8″R)-4, 4′, 4″-trihydroxy-3, 5′, 3″-trimethoxy-7-oxo-8-ene [8-3′, 7′-O-9″, 8′-8″, 9′-O-7″] lignoid (1) and (1S)-4-Hydroxy-3-[2-(4-hydroxy-3-methoxy-phenyl)-1-hydroxymethyl-2-oxo-ethyl]-5-methoxy-benzaldehyde (2), along with five known (37) ones, have been isolated from the 95% ethanol extract of the seeds of Herpetospermum caudigerum Wall. The structures of the new compounds, including the absolute configurations, were elucidated by spectroscopic and CD analysis. Compounds 1, 2, and 7 displayed inhibitory activities on HBsAg secretion with IC50 values of 20.5, 0.34, and 4.89 μM, while 1, 2, and 7 displayed inhibitory activities on HBeAg secretion with IC50 values of 3.54, 4.83 × 10−4, and 8.02 μM, and cytotoxicity on HepG 2.2.15 cells with CC50 values of 12.7, 2.96 × 105, and 11.4 μM, respectively.  相似文献   

2.
From the stem bark of Platycelphium voënse (Leguminosae) four new isoflavanones were isolated and characterized as (S)-5,7-dihydroxy-2′,4′-dimethoxy-3′-(3″-methylbut-2″-enyl)-isoflavanone (trivial name platyisoflavanone A), (±)-5,7,2′-trihydroxy-4′-methoxy-3′-(3″-methylbut-2″-enyl)-isoflavanone (platyisoflavanone B), 5,7-dihydroxy-4′-methoxy-2″-(2?-hydroxyisopropyl)-dihydrofurano-[4″,5″:3′,2′]-isoflavanone (platyisoflavanone C) and 5,7,2′,3″-tetrahydroxy-2″,2″-dimethyldihydropyrano-[5″,6″:3′,4′]-isoflavanone (platyisoflavanone D). In addition, the known isoflavanones, sophoraisoflavanone A and glyasperin F; the isoflavone, formononetin; two flavones, kumatakenin and isokaempferide; as well as two triterpenes, betulin and β-amyrin were identified. The structures were elucidated on the basis of spectroscopic evidence. Platyisoflavanone A showed antibacterial activity against Mycobacterium tuberculosis in the microplate alamar blue assay (MABA) with MIC = 23.7 μM, but also showed cytotoxicity (IC50 = 21.1 μM) in the vero cell test.  相似文献   

3.
The cytotoxic activities of sesquilignans, (7S,8S,7′R,8′R)- and (7R,8R,7′S,8′S)-morinol A and (7S,8S,7′S,8′S)- and (7R,8R,7′R,8′R)-morinol B were compared, showing no significant difference between stereoisomers (IC50 = 24–35 μM). As a next stage, the effect of substituents at 7, 7′, and 7″-aromatic ring on the activity was evaluated to find out the higher activity of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18 (IC50 = 6–7 μM). In the research on the structure–activity relationship of 7″-position of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18, the most potent compounds were 7,7′,7″-phenyl derivative 18 (IC50 = 6 μM) against HeLa cells. Against HL-60 cells, 7″-(4-nitrophenyl)-7,7′-phenyl derivative 33 and 7″-hexyl-7,7′-phenyl derivative 37 (IC50 = 5 μM) showed highest activity. We discovered the compounds showed four to sevenfold potent activity than that of natural (7S,8S,7′R,8′R)-morinol A. It was also confirmed that the 7′-benzylic hydroxy group have an important role for exhibiting activity, on the other hand, the resonance system of cinnamyl structure is not crucial for the potent activity.  相似文献   

4.
Bioassay-guided fractionation of the roots of Anneslea fragrans var. lanceolata led to the isolation of four dihydrochalcone glucosides, davidigenin-2′-O-(6″-O-4″′-hydroxybenzoyl)-β-glucoside (1), davidigenin-2′-O-(2″-O-4″′-hydroxybenzoyl)-β-glucoside (2), davidigenin-2′-O-(3″-O-4″′-hydroxybenzoyl)-β-glucoside (3), and davidigenin-2′-O-(6″-O-syringoyl)-β-glucoside (4), and 13 known compounds. The structures were identified by means of spectroscopic analysis. Davidigenin-2′-O-(6″-O-syringoyl)-β-glucoside (4), 1-O-3,4-dimethoxy-5-hydroxyphenyl-6-O-(3,5-di-O-methylgalloyl)-β-glucopyranoside (5), lyoniresinol (10), and syringic acid (13) showed ABTS [2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] cation radical scavenging activity, with SC50 values of 52.6 ± 5.5, 26.0 ± 0.7, 6.0 ± 0.2, and 27.5 ± 0.6 μg/mL in 20 min, respectively. Lyoniresinol (10), isofraxidin (12), and syringic acid (13) also showed DPPH [1,1-diphenyl-2-picrylhydrazyl] radical scavenging activity, with SC50 values of 8.4 ± 1.8, 51.6 ± 2.2, and 4.3 ± 0.7 μg/mL in 30 min, respectively.  相似文献   

5.
A new ellagitannin, agritannin (1), a new flavone glycoside, agriflavone (2), and another flavone glycoside with spectroscopic data reported for the first time, kaempferol-3-O-[(S)-3-hydroxy-3-methylglutaryl (1→6)]-β-d-glucoside (3), along with 16 known compounds were isolated from the aerial parts of Agrimonia pilosa Ledeb. These compounds were evaluated for PTP1B inhibitory activity. Among them, compounds 9 and 18 displayed potential inhibitory activity against PTP1B with IC50 values of 7.14 ± 1.75 and 7.73 ± 0.24 μM, respectively. In addition, compound 1 showed significant inhibitory effect with an IC50 value of 17.03 ± 0.09 μM. Furthermore, these compounds were tested in AChE inhibitory assays. Most of them were found to have moderate inhibitory effects, with IC50 values ranging from 60.20 ± 1.09 to 92.85 ± 1.12 μM. Except compounds 3, 8, and 18 were inactive.  相似文献   

6.
Tephrosia vogelii Hook. f. (Leguminosae) is being promoted as a pest control and soil enrichment agent for poorly-resourced small-scale farmers in southern and eastern Africa. This study examined plants being cultivated by farmers and found two chemotypes. Chemotype 1 (C1) contained rotenoids, including deguelin, rotenone, sarcolobine, tephrosin and α-toxicarol, required for pest control efficacy. Rotenoids were absent from chemotype 2 (C2), which was characterised by prenylated flavanones, including the previously unrecorded examples (2S)-5,7-dimethoxy-8-(3-hydroxy-3-methylbut-1Z-enyl)flavanone, (2S)-5,7-dimethoxy-8-(3-methylbut-1,3-dienyl)flavanone, (2S)-4′-hydroxy-5-methoxy-6″,6″-dimethylpyrano[2″,3″:7,8]flavanone, (2S)-5-methoxy-6″,6″-dimethyl-4″,5″-dihydrocyclopropa[4″,5″]furano[2″,3″:7,8]flavanone, (2S)-7-hydroxy-5-methoxy-8-prenylflavanone, and (2R,3R)-3-hydroxy-5-methoxy-6″,6″-dimethylpyrano[2″,3″:7,8]flavanone. The known compounds (2S)-5-methoxy-6″,6″-dimethylpyrano[2″,3″:7,8]flavanone (obovatin 5-methyl ether) and 5,7-dimethoxy-8-(3-hydroxy-3-methylbut-1Z-enyl)flavone (Z-tephrostachin) were also found in C2. This chemotype, although designated Tephrosia candida DC. in collections originating from the World Agroforestry Centre (ICRAF), was confirmed to be T. vogelii on the basis of morphological comparison with verified herbarium specimens and DNA sequence analysis. Sampling from 13 locations in Malawi where farmers cultivate Tephrosia species for insecticidal use indicated that almost 1 in 4 plants were T. vogelii C2, and so were unsuitable for this application. Leaf material sourced from a herbarium specimen of T. candida contained most of the flavanones found in T. vogelii C2, but no rotenoids. However, the profile of flavonol glycosides was different to that of T. vogelii C1 and C2, with 6-hydroxy-kaempferol 6-methyl ether as the predominant aglycone rather than kaempferol and quercetin. The structures of four unrecorded flavonol glycosides present in T. candida were determined using cryoprobe NMR spectroscopy and MS as the 3-O-α-rhamnopyranosyl(1  6)-β-galactopyranoside-7-O-α-rhamnopyranoside, 3-O-α-rhamnopyranosyl(1  2)[α-rhamnopyranosyl(1  6)]-β-galactopyranoside, 3-O-α-rhamnopyranosyl(1  2)[α-rhamnopyranosyl(1  6)]-β-galactopyranoside-7-O-α-rhamnopyranoside, and 3-O-α-rhamnopyranosyl(1  2)[(3-O-E-feruloyl)-α-rhamnopyranosyl(1  6)]-β-galactopyranosides of 6-hydroxykaempferol 6-methyl ether. Tentative structures for a further 37 flavonol glycosides of T. candida were assigned by LC–MS/MS. The correct chemotype of T. vogelii (i.e. C1) needs to be promoted for use by farmers in pest control applications.  相似文献   

7.
8.
Three new aromatic compounds, identified as 1-(3′,4′-methylenedioxy-phenyl)-10-(3″-hydroxyphenyl)-decane (1), 1-(3′,4′-methylenedioxy-phenyl)-12-(3″-hydroxyphenyl)-dodecane (2), and 1-(3′,4′-methylenedioxy-phenyl)-12-(3″-hydroxyphenyl)-6Z-dodecylene (3), along with six known compounds (4–9) were isolated from the 95% EtOH extract of Homalomena occulta. Their structures were elucidated by chemical and spectral methods Compounds 4–9 were isolated for the first time from this plant. Compounds 1–3 exhibited inhibitory activity against BACE1, with IC50 values of 0.82–1.09 μmol/L.  相似文献   

9.
New oxazolinyl derivatives of [17(20)E]-pregna-5,17(20)-diene: 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,5′-dihydro-1′,3′-oxazole 1 and 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,4′-dimethyl-4′,5′-dihydro-1′,3′-oxazole 2 were evaluated as potential CYP17A1 inhibitors in comparison with 17-(pyridin-3-yl)androsta-5,16-dien-3β-ol 3 (abiraterone). Differential absorption spectra of human recombinant CYP17A1 in the presence of compound 1 (λmax = 422 nm, λmin = 386 nm) and compound 2 (λmax = 416 nm) indicated significant differences in enzyme/inhibitors complexes. CYP17A1 activity was measured using electrochemical methods. Inhibitory activity of compound 1 was comparable with abiraterone 3 (IC50 = 0.9 ± 0.1 μM, and IC50 = 1.3 ± 0.1 μM, for compounds 1 and 3, respectively), while compound 2 was found to be weaker inhibitor (IC50 = 13 ± 1 μM). Docking of aforementioned compounds to CYP17A1 revealed that steroid fragments of compound 1 and abiraterone 3 occupied close positions; oxazoline cycle of compound 1 was coordinated with heme iron similarly to pyridine cycle of abiraterone 3. Configuration of substituents at 17(20) double bond in preferred docked position corresponded to Z-isomers of compounds 1 and 2. Presence of 4′-substituents in oxazoline ring of compound 2 prevents coordination of oxazoline nitrogen with heme iron and worsens its docking score in comparison with compound 1. These data indicate that oxazolinyl derivative of [17(20)E]-pregna-5,17(20)-diene 1 (rather than 4′,4′-dimethyl derivative 2) may be considered as potential CYP17A1 inhibitor and template for development of new compounds affecting growth and proliferation of prostate cancer cells.  相似文献   

10.
Three new iridoid glycosides, 6″-O-trans-caffeoylgenipin gentiobioside (1), genipin 1-O-β-d-apiofuranosyl (1→6)-β-d-glucopyranoside (2), genipin 1-O-α-d-xylopyranosyl (1→6)-β-d-glucopyranoside (3), three new monocyclic monoterpenoids, jasminoside R (4), jasminoside S (5), jasminoside T (6), together with nine known iridoid glycosides (715) and three crocetin glycosides (1618), were isolated from the fruit of Gardenia jasminoides. Their chemical structures were established mainly by 1D and 2D NMR techniques and mass spectrometry. Inhibitory effects of the isolated compounds on nitric oxide production in lipopolysaccaride-activated macrophages were evaluated. Compounds 8 and 18 showed strong inhibitory activity on NO production with IC50 values of 11.14 ± 0.67 and 5.99 ± 0.54 μM, respectively.  相似文献   

11.
Two new 3-hydroxyisoflavanones, (S)-3,4′,5-trihydroxy-2′,7-dimethoxy-3′-prenylisoflavanone (trivial name kenusanone F 7-methyl ether) and (S)-3,5-dihydroxy-2′,7-dimethoxy-2″,2″-dimethylpyrano[5″,6″:3′,4′]isoflavanone (trivial name sophoronol-7-methyl ether) along with two known compounds (dalbergin and formononetin) were isolated from the stem bark of Dalbergia melanoxylon. The structures were elucidated using spectroscopic techniques. Kenusanone F 7-methyl ether showed activity against Mycobacterium tuberculosis, whereas both of the new compounds were inactive against the malaria parasite Plasmodium falciparum at 10 μg/ml. Docking studies showed that the new compounds kenusanone F 7-methyl ether and sophoronol-7-methyl ether have high affinity for the M. tuberculosis drug target INHA.  相似文献   

12.
Six new compounds including two oleanane-type triterpenoid saponins (1, 2) and four C-glycosyl flavones (36), along with a known saponin (7), three di-C-glycosyl flavones (810) and a glycosyl auronol (11), were isolated from the stem bark of Erythrina abyssinica Lam. The structures of the new compounds, identified as 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-galactopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (1), 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (2), 6-C-β-glucopyranosyl-8-C-β-quinovopyranosyl apigenin (3), 6-C-β-quinovopyranosyl-8-C-β-glucopyranosyl apigenin (4), 8-C-[6″-O-α-l-rhamnopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (5) and 8-C-[6″-O-β-d-xylopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (6), were determined by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and acid hydrolysis. These new compounds together with the known saponins 7 were evaluated for their cytotoxic activity against MCF-7 (estrogen dependent) and MDA-MB-231 (estrogen independent) cell lines. The new saponin 2 exhibited the highest cytotoxic activity among tested compounds, exerting a selective inhibitory effect against the proliferation of MCF-7 cells, with lower IC50 value (12.90 μM) than that of the positive control, resveratrol (13.91 μM). Structure–activity relationship of these compounds is also discussed.  相似文献   

13.
Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6′-hydroxyhex-3′-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC50 value of 2.095 ± 0.77 µM compare to standard sorbinil (IC50 = 3.14 ± 0.02 µM). Moreover, the compound (1) also showed multifolds higher activity (IC50 = 0.783 ± 0.07 µM) against AKR1A1 as compared to standard valproic acid (IC50 = 57.4 ± 0.89 µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC50 = 4.324 ± 1.25 µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases.  相似文献   

14.
Bioassay-guided fractionation of the EtOAc extract of the root of Erythrina addisoniae (Leguminosae) resulted in the isolation of four new (14), along with 2 known prenylated isoflavonoids (56). The structures of the isolates were assigned on the basis of spectroscopic data analysis, focusing on interpretation of 1D and 2D NMR, and MS data. All the isolates were evaluated for their inhibitory effects on protein tyrosine phosphatase 1B (PTP1B), as well as their growth inhibition on MCF7, adriamycin-resistant MCF7 (MCF7/ADR), and MDA-MB-231 breast cancer cell lines. Compounds which exhibited PTP1B inhibitory activity (IC50 values ranging from 4.6 ± 0.3 to 24.2 ± 2.1 μM) showed potential cytotoxic activity (IC50 values ranging from 3.97 ± 0.17 to 11.4 ± 1.9 μM). Taken together, our data suggest that prenylated isoflavonoids, especially the isoflavone-type skeleton could be considered as new lead compounds against breast cancer via PTP1B inhibition.  相似文献   

15.
Two new dammarane saponins, 2α,3β,12β-trihydroxydammar-20(22),24-diene-3-O-[β-d-glucopyranoxyl(1→2)-β-d-6″-O-acetylglucopyranoside (1, namely damulin C) and 2α,3β,12β-trihydroxydammar-20(21),24-diene-3-O-[β-d-glucopyranoxyl(1→2)-β-d-6″-O-acetylglucopyranoside (2, namely damulin D), were isolated from the ethanol extract of Gynostemma pentaphyllum, which had been heat processed by steaming at 125 °C. The NMR spectroscopic data of the novel saponins were completely assigned by using a combination of 2D NMR experiments including 1H–1H COSY, HSQC, and HMBC. Their cytotoxic activities of human liver adenocarcinoma HepG2 cells were evaluated in vitro. They showed cytotoxicities against HepG2 cell line with IC50 of 40 ± 0.7 and 38 ± 0.5 μg/ml, respectively.  相似文献   

16.
Neuraminidase (NA) is one of the key surface proteins of the influenza virus, which is an important target for anti-influenza therapy. In the present study, bioassay-guided fractionation led to isolation of two new compounds, rhamnetin-3-O-β-d-glucuronide-6″-methyl ester (1) and rhamnazin-3-O-β-d-glucuronide-6″-methyl ester (2), along with seventeen known compounds (3-19), from the MeOH extract of Flos Caryophylli using in vitro NA inhibition assay. These isolated compounds exhibited significantly inhibitory effects on the NA with IC50 values ranging from 8.4 to 94.1 μM and were found to protect MDCK cells from A (H1N1) influenza infections (EC50 = 1.5–84.7 μM) with very low cytotoxicity to the host cells (CC50 = 374.3–1266.9 μM)), with selective index (SI) ranging from 7 to 297. The primary structure-relationships of these isolates were also discussed.  相似文献   

17.
Natural o-dihydroxyisoflavone (ODI) derivatives with variable hydroxyl substituent at the aromatic ring of isoflavone and three known isoflavones were isolated from five-year-old Korean fermented soybean paste (Doenjang) and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells comparing with other known isoflavones, 7,8,4′-trihydroxyisoflavone (1) and 7,3′,4′-trihydroxyisoflavone (2) inhibited tyrosinase by 50% at a concentration of 11.21 ± 0.8 μM and 5.23 ± 0.6 μM (IC50), respectively, whereas, 6,7,4′-trihydroxyisoflavone (3), daidzein (4), glycitein (5) and genistein (6) showed very low inhibition activity. Furthermore, those compounds significantly suppressed the cellular melanin formation by 50% at a concentration of 12.23 ± 0.7 μM (1), 7.83 ± 0.7 μM (2), and 57.83 ± 0.5(6) and show more activity than arbutin. But, compounds 3, 4, and 5 showed lower inhibition activity. This study shows that the position of hydroxyl substituent at the aromatic ring of isoflavone plays an important role in the intracellular regulation of melanin formation in cell-based assay system.  相似文献   

18.
Two new ursane-type triterpene saponins, 3-O-β-d-glucopyranosyl(1  3)-[α-l-rhamnopyranosyl(1  2)]-α-l-arabinopyranosylurs-12,19(29)-dien-28-oic acid 28-O-α-l-rhamnopyranosyl(1  2)-β-d-glucopyranosyl ester (1) and 3-O-β-d-glucopyranosyl(1  3)-[α-l-rhamnopyranosyl(1  2)]-α-l-arabinopyranosyl-19α,20α-dihydroxyurs-12-en-28-oic acid 28-O-α-l-rhamnopyranosyl(1  2)-β-d-glucopyranosyl ester (2), along with thirteen known triterpene saponins were isolated from the n-BuOH part of the MeOH extraction of the leaves of Ilex kudingcha C.J. Tseng (also called “Ku-Ding-Cha”). The structures of new compounds were elucidated on the basis of detailed spectroscopic analysis, including HR-ESI-TOF-MS, 1D and 2D-NMR experiments, and by acid hydrolysis. All the compounds were screened for antiplatelet aggregation activity in vitro, and compounds 1, 2, 3, 7, 12 and 15 showed significant inhibition of platelet aggregation induced by ADP (5 μM) with IC50 values of 14.7 ± 3.7, 11.3 ± 2.5, 17.4 ± 4.6, 20.5 ± 3.1, 8.1 ± 1.5 and 18.9 ± 4.2 μM, respectively.  相似文献   

19.
An aqueous acetone extract from the fruit of Alpinia galanga (Zingiberaceae) demonstrated inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells (IC50 = 7.3 μg/mL). Through bioassay-guided separation of the extract, a new 7-O-9′-linked neolignan, named galanganol D diacetate (1), was isolated along with 16 known compounds including 14 phenylpropanoids (215). The structure of 1, including its absolute stereochemistry in the C-7 position, was elucidated by means of extensive NMR analysis and total synthesis. Among the isolates, 1 (IC50 = 2.5 μM), 1′S-1′-acetoxychavicol acetate (2, 5.0 μM), and 1′S-1′-acetoxyeugenol acetate (3, 5.6 μM) exhibited a relatively potent inhibitory effect without notable cytotoxicity at effective concentrations. The following structural requirements were suggested to enhance the inhibitory activity of phenylpropanoids on melanogenesis: (i) compounds with 4-acetoxy group exhibit higher activity than those with 4-hydroxy group; (ii) 3-methoxy group dose not affect the activity; (iii) acetylation of the 1′-hydroxy moiety enhances the activity; and (iv) phenylpropanoid dimers with the 7-O-9′-linked neolignan skeleton exhibited higher activity than those with the corresponding monomer. Their respective enantiomers [1′ (IC50 = 1.9 μM) and 2′ (4.5 μM)] and racemic mixtures [(±)-1 (2.2 μM) and (±)-2 (4.4 μM)] were found to exhibit melanogenesis inhibitory activities equivalent to those of the naturally occurring optical active compounds (1 and 2). Furthermore, the active compounds 13 inhibited tyrosinase, tyrosine-related protein (TRP)-1, and TRP-2 mRNA expressions, which could be the mechanism of melanogenesis inhibitory activity.  相似文献   

20.
Two l-nucleosides, l-3′-amino-3′-deoxy-N6-dimethyladenosine (l-3′-ADMdA) 1, previously synthesized in our laboratory, and the novel l-3′-amino-3′-deoxy-N6-methyladenosine-5′-N-methyluronamide (l-3′-AM-MECA) 2 were evaluated in an ischemia/reperfusion model on Langendorff perfused mouse heart. l-3′-ADMdA 1 was found to enhance functional recovery from ischemia (32.2 ± 3.7 cm H2O/s % rate pressure product, compared to 21.3 ± 1.4 for the control and 30.7 ± 3.4 for adenosine) and increase the time to onset of ischemic contracture (14.5 ± 0.9 min, compared to 10.5 ± 1.0 min for the control and 13.6 ± 0.6 min for adenosine) comparable to adenosine. Consistent with the functional recovery data, decreased infarction area was seen in the case of 1 (19.1 ± 8.4, compared to 40.5 ± 7.2% for the control and 11.5 ± 2.1% for adenosine). In contrast, l-3′-AM-MECA 2 did not show significant functional recovery, increased onset of contracture, nor decreased infarction area compared to control. Unlike adenosine, neither 1 nor 2 induced cardiac standstill in mouse heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号