首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  相似文献   

2.
The heterotrimeric G‐protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G‐protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G‐protein associates with heptahelical G‐protein‐coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G‐protein effectors and scaffold proteins, we screened a set of proteins from the G‐protein complex using two‐hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G‐protein interactome. Within this core, over half of the interactions comprising two‐thirds of the nodes were retested and validated as genuine in planta. Co‐expression analysis in combination with phenotyping of loss‐of‐function mutations in a set of core interactome genes revealed a novel role for G‐proteins in regulating cell wall modification.  相似文献   

3.
Heterochromatin protein 1 (HP1) has first been described in Drosophila as an essential component of constitutive heterochromatin required for stable epigenetic gene silencing. Less is known about the three mammalian HP1 isotypes CBX1, CBX3 and CBX5. Here, we applied a tandem affinity purification approach coupled with tandem mass spectrometry methodologies in order to identify interacting partners of the mammalian HP1 isotypes. Our analysis identified with high confidence about 30–40 proteins co-eluted with CBX1 and CBX3, and around 10 with CBX5 including a number of novel HP1-binding partners. Our data also suggest that HP1 family members are mainly associated with a single partner or within small protein complexes composed of limited numbers of components. Finally, we showed that slight binding preferences might exist between HP1 family members.  相似文献   

4.
The biological significance of RBCC (N-terminal RING finger/B-box/coiled coil) proteins is increasingly being appreciated following demonstrated roles in disease pathogenesis, tumorigenesis, and retroviral protective activity. Found in all multicellular eukaryotes, RBCC proteins are involved in a vast array of intracellular functions; but as a general rule, they appear to function as part of large protein complexes and possess ubiquitin-protein isopeptide ligase activity. Those members characterized to date have diverse C-terminal domain compositions and equally diverse subcellular localizations and functions. Using a bioinformatics approach, we have identified some new RBCC proteins that help define a subfamily that shares an identical domain arrangement (MID1, MID2, TRIM9, TNL, TRIM36, and TRIFIC). Significantly, we show that all analyzed members of this subfamily associate with the microtubule cytoskeleton, suggesting that subcellular compartmentalization is determined by the unique domain architecture, which may in turn reflect basic functional similarities. We also report a new motif called the COS box, which is found within these proteins, the MURF family, and a distantly related non-RBCC microtubule-binding protein. Notably, we demonstrate that mutations in the COS box abolish microtubule binding ability, whereas its incorporation into a nonmicrotubule-binding RBCC protein redirects it to microtubule structures. Further bioinformatics investigation permitted subclassification of the entire human RBCC complement into nine subfamilies based on their varied C-terminal domain compositions. This classification schema may aid the understanding of the molecular function of members of each subgroup and their potential involvement in both basic cellular processes and human disease.  相似文献   

5.
RUNX family proteins are critical regulators of lineage differentiation during development. The high prevalence of RUNX mutation/epigenetic inactivation in human cancer indicates a causative role for dysfunctional RUNX in carcinogenesis. This is supported by well-documented evidence of functional interaction of RUNX with components of major oncogenic or tumor suppressive signaling pathways such as TGFβ and Wnt. Here, we explore the binding partners of RUNX3 proteins to further define the scope of RUNX3 function. Using a mass spectrometry-based approach, we found that RUNX3 binds to centrosomal protein rootletin. This led us to uncover the presence of RUNX proteins at the centrosome. Our findings suggest a potential function for RUNX3 during mitosis.  相似文献   

6.
7.
To study the roles of intracellular factors in neuronal morphogenesis, we used the mosaic analysis with a repressible cell marker (MARCM) technique to visualize identifiable single multiple dendritic (MD) neurons in living Drosophila larvae. We found that individual neurons in the peripheral nervous system (PNS) developed clear morphological polarity and diverse dendritic branching patterns in larval stages. Each MD neuron in the same dorsal cluster developed a unique dendritic field, suggesting that they have specific physiological functions. Single-neuron analysis revealed that Flamingo did not affect the general dendritic branching patterns in postmitotic neurons. Instead, Flamingo limited the extension of one or more dorsal dendrites without grossly affecting lateral branches. The dendritic overextension phenotype was partially conferred by the precocious initiation of dorsal dendrites in flamingo mutant embryos. In addition, Flamingo is required cell autonomously to promote axonal growth and to prevent premature axonal branching of PNS neurons. Our molecular analysis also indicated that the amino acid sequence near the first EGF motif is important for the proper localization and function of Flamingo. These results demonstrate that Flamingo plays a role in early neuronal differentiation and exerts specific effects on dendrites and axons.  相似文献   

8.
The cytoskeleton is the major intracellular structure that determines the morphology of a neuron. Thus, mechanisms that ensure a precisely regulated assembly of cytoskeletal elements in time and space have an important role in the development from a morphologically simple neuronal precursor cell to a complex polarized neuron that can establish contacts to several hundreds of other cells. Here, cytoskeletal mechanisms that underlie the formation of neurites, directed elongation and stabilization of neuronal processes are summarized. It has become evident that different cytoskeletal elements are highly crosslinked with each other by several classes of specific linker proteins. Of these, microtubule-associated proteins (MAPs) appear to have an important role in connecting the microtubule skeleton to other cytoskeletal filaments and plasma membrane components during neuronal morphogenesis. Future experiments will have to elucidate the function and the regulation of the neuronal cytoskeleton in an authentic nervous system environment during development. Recent approaches are discussed at the end of this article.  相似文献   

9.
The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine‐tune motor activity in time and space. These motor–adaptor–cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling‐based proteomics strategy to map the interactome of the unique minus end‐directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6‐adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG‐Induced F‐actin for Tethering) complex that controls endosome positioning and motility through RHO‐driven actin polymerisation; and the DISP (DOCK7‐Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes.  相似文献   

10.
B-Raf links a variety of extracellular stimuli downstream of cell surface receptors, constituting a determining factor in the ability of neurons to activate ERK. A detailed study of the B-Raf interactome is necessary to clarify the intricacy of B-Raf-dependent signal transduction. We used a mouse hippocampal cell line (HT22) that expresses B-Raf at high levels, to identify B-Raf associated proteins under endogenous expression conditions, avoiding artificial interactions from overexpression studies. We used stringent procedures to co-immunoprecipitate proteins that specifically associate with endogenous B-Raf with the help of gel electrophoresis separation and off-line LC-MALDI-MS/MS proteomic analysis. Our stringent protein identification criteria allowed confident identification of B-Raf interacting proteins under non-stimulating conditions. The presence of previously reported B-Raf interactors among the list of proteins identified confirms the quality of proteomic data. We identified tubulin and actin as B-Raf interactors for the first time, among structural and accessory proteins of cell cytoskeleton, molecular chaperones (Hsc70, GRP78), and cellular components involved in aspects of mRNA metabolism and translation. Interactions were validated in HT22 cells and in the neuronal cell line Neuro-2a providing further evidence that the identified proteins are B-Raf interactors, which constitute a basis for understanding MAPK pathway regulation in neurons.  相似文献   

11.
The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila   总被引:1,自引:0,他引:1  
The diversity of neuronal cells, especially in the size and shape of their dendritic and axonal arborizations, is a striking feature of the mature nervous system. Dendritic branching is a complex process, and the underlying signaling mechanisms remain to be further defined at the mechanistic level. Here we report the identification of shrub mutations that increased dendritic branching. Single-cell clones of shrub mutant dendritic arborization (DA) sensory neurons in Drosophila larvae showed ectopic dendritic and axonal branching, indicating a cell-autonomous function for shrub in neuronal morphogenesis. shrub encodes an evolutionarily conserved coiled-coil protein homologous to the yeast protein Snf7, a key component in the ESCRT-III (endosomal sorting complex required for transport) complex that is involved in the formation of endosomal compartments known as multivesicular bodies (MVBs). We found that mouse orthologs could substitute for Shrub in mutant Drosophila embryos and that loss of Shrub function caused abnormal distribution of several early or late endosomal markers in DA sensory neurons. Our findings demonstrate that the novel coiled-coil protein Shrub functions in the endosomal pathway and plays an essential role in neuronal morphogenesis.  相似文献   

12.
Candida albicans CDC4 is nonessential and plays a role in suppressing filamentous growth, in contrast to its evolutionary counterparts involved in the G1-S transition of the cell cycle. Genetic epistasis analysis has indicated that proteins besides Sol1 are targets of C. albicans Cdc4. Moreover, no formal evidence suggests that C. albicans Cdc4 functions through the ubiquitin E3 ligase of the Skp1-Cul1/Cdc53-F-box complex. To elucidate the role of C. albicans CDC4, C. albicans Cdc4-associated proteins were sought by affinity purification. A 6×His epitope-tagged C. albicans Cdc4 expressed from Escherichia coli was used in affinity purifications with the cell lysate of C. albicans cdc4 homozygous null mutant. Candida albicans Cdc4 and its associated proteins were resolved by SDS-PAGE and visualized by silver staining. The candidate proteins were recovered and trypsin-digested to generate MALDI-TOF spectra profiles, which were used to search against those of known proteins in the database to reveal their identities. Two out of four proteins encoded by GPH1 and THR1 genes were further verified to interact with C. albicans Cdc4 using a yeast two-hybrid assay. We conclude that in vitro affinity purification using C. albicans Cdc4 generated from E. coli as the bait and proteins from cell lysate of C. albicans cdc4 homozygous null mutant as a source of prey permit the identification of novel proteins that physically interact and functionally associate with C. albicans Cdc4.  相似文献   

13.
Plasmid-encoded bacterial R67 dihydrofolate reductase (DHFR) is a NADPH-dependent enzyme unrelated to chromosomal DHFR in amino acid sequence and structure. R67 DHFR is insensitive to the bacterial drug trimethoprim in contrast to chromosomal DHFR. The crystal structure of Q67H mutant of R67 DHFR bound to NADP(+) has been determined at 1.15 angstroms resolution. The cofactor assumes an extended conformation with the nicotinamide ring bound near the center of the active site pore, the ribose and pyrophosphate group (PP(i)) extending toward the outer pore. The ribonicotinamide exhibits anti conformation as in chromosomal DHFR complexes. The relative orientation between the PP(i) and the nicotinamide ribose differs from that observed in chromosomal DHFR-NADP(+) complexes. The coenzyme displays symmetrical binding mode with several water-mediated hydrogen bonds with the protein besides ionic, stacking, and van der Waals interactions. The structure provides a molecular basis for the observed stoichiometry and cooperativity in ligand binding. The ternary model based on the present structure and the previous R67 DHFR-folate complex provides insight into the catalytic mechanism and indicates that the relative orientation of the reactants in plasmid DHFR is different from that seen in chromosomal DHFRs.  相似文献   

14.
15.
16.
17.
18.
Axon outgrowth and pathfinding occurs through a complex series of interacting biochemical signaling pathways that regulate the motility of neuronal growth cones. Over the past 30 years, Paul Letourneau and his students have explored the molecular basis of growth cone motility and have contributed immensely to this field. In celebration of his 65th birthday, this essay is written in gratitude for Paul's many contributions and training.  相似文献   

19.
Dynamic control of neuronal morphogenesis by rho signaling   总被引:1,自引:0,他引:1  
Polarization of the neuronal cell body and initiation of the first neuritic process represent the starting point of a series of dynamic metamorphic events by which the newly acquired identity of a group of neurons can be translated into a morphologically complex web of three-dimensional neuronal circuit. Despite the critical importance of these events, little is known about the molecular signaling mechanisms that either regulate the temporal sequence of these steps or ensure the accuracy and the spatial consistency of the resulting circuits. In this review, based on recent findings from our group and others, we present a working model on how the initial events in neuronal morphogenesis in the CNS may be controlled by multiple Rho pathways.  相似文献   

20.
Dynamics of behaviour during neuronal morphogenesis in culture   总被引:1,自引:0,他引:1  
We report a developmental sequence in the type and frequency of behaviours of neurons differentiating in vitro. We characterised these changes with extensive analysis of time-lapse sequences from both the continuing cell line pheochromocytoma PC12 and primary mixed cell culture of cat and mouse central nervous system. PC12 cells activated by nerve growth factor (NGF) differentiate in a uniform and synchronous manner. This allowed the first quantification of changes in different neuron behaviours during morphogenesis. Shortly after NGF activation, PC12 cells are highly labile in morphology and exhibit a large variety of morphological behaviours. During the first week of differentiation, the frequency of these behaviours declines, and gross morphology becomes more stable. The frequency of neurite initiation after 1 week in NGF is one-seventh what it was after 2 days in NGF. Over the same period, neurite retraction declines to one-third, and somal migration ceases altogether. Growth-cone activity does not decline during development. These behaviour changes correlate with published data on the differentiation of the neurite cytoskeleton. A qualitatively similar ontogeny was noted in the differentiation of CNS neurons in mixed cell culture. Major differences occur in the relative timing of changes in behaviours. Mature, stable morphology is not detected in these cultures until 7 weeks in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号