首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The levels of cysteine (Cys), γ-glutamylcysteine (γEC), and glutathione (GSH) were measured in the endosperms, scutella, roots, and shoots of maize (Zea mays L.) seedlings. GSH was the major thiol in roots, shoots, and scutella, Cys predominated in endosperms. The endosperm, scutellum, and functional phloem translocation were required for maintenance of GSH pools in roots and shoots of 6-day-old seedlings. Exposure of roots to 3 micromolar Cd, besides causing a decline in GSH, caused an accumulation of γEC, as if the activity of GSH synthetase was reduced in vivo. [35S]Cys injected into endosperms of seedlings was partly metabolized to [35S]sulfate. The scutella absorbed both [35S]sulfate and [35S]Cys and transformed 68 to 87% of the radioactivity into [35S]GSH. [35S]GSH was translocated to roots and shoots in proportion to the tissue fresh weight. Taken together, the data supported the hypothesis that Cys from the endosperm is absorbed by the scutellum and used to synthesize GSH for transfer through the phloem to the root and shoot. The estimated flux of GSH to the roots was 35 to 60 nanomoles per gram per hour, which totally accounted for the small gain in GSH in roots between days 6 and 7. For Cd-treated roots the GSH influx was similar, yet the GSH pool did not recover to control levels within 24 hours. The estimated flux of GSH to the entire shoot was like that to the roots; however, it was low (11-13 nanomoles per gram per hour) to the first leaf and high (76-135 nanomoles per gram per hour) to the second and younger leaves.  相似文献   

2.
The effect of lanthanum on the metabolism of ascorbate (AsA) and glutathione (GSH) in the leaves of maize seedlings under cadmium stress was investigated. The findings showed that Cd remarkably increased electrolyte leakage (EL), the activities of ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase (MDHAR), glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and γ-glutamylcysteine synthetase, and the content of reduced AsA, reduced GSH, total AsA, total GSH, malondialdehyde (MDA), and Cd, compared with control. However, Cd significantly decreased the dry biomass of roots and shoots. Treatment with La + Cd evidently increased the activities of above enzymes except MDHAR, the content of reduced AsA, reduced GSH, total AsA and total GSH, and the dry biomass of roots and shoots, compared with Cd stress alone. Meanwhile, treatment with La + Cd remarkably decreased EL and the content of Cd and MDA compared with Cd stress alone. Our results suggested that La could be used as a regulator to improve the Cd tolerance of maize for its role in the alleviation of Cd-induced oxidative damage by regulating the metabolism of AsA and GSH.  相似文献   

3.
4.
To support the key role of glutathione (GSH) in the mechanisms of tolerance and accumulation of arsenic in plants, this work examines the impact of several effectors of GSH synthesis or action in the response of maize (Zea mays L.) to arsenic. Maize was exposed in hydroponics to iso-toxic rates of 150 μM arsenate or 75 μM arsenite for 9 days and GSH effectors, flurazole (an herbicide safener), l-buthionine-sulfoximine (BSO, a known inhibitor of GSH biosynthesis), and dimercaptosuccinate (DMS) and dimercaptopropanesulfonate (DMPS) (two thiols able to displace GSH from arsenite-GSH complexes) were assayed. The main responses of plants to arsenic exposure consisted of a biomass reduction (fresh weight basis) of about 50%, an increase of non-protein thiol (NPTs) levels (especially in the GSH precursor γ-glutamylcysteine and the phytochelatins PC? and PC?) in roots, with little effect in shoots, and an accumulation of between 600 and 1000 ppm of As (dry weight basis) in roots with very little translocation to shoots. Growth inhibition caused by arsenic was partially or completely reversed in plants co-treated with flurazole and arsenate or arsenite, respectively, highly exacerbated in plants co-treated with BSO, and not modified in plants co-treated with DMS or DMPS. These responses correlated well with an increase of both NPTs levels in roots and glutathione transferase activity in roots and shoots due to flurazole treatment, the decrease of NPTs levels in roots caused by BSO and the lack of effect on NPT levels caused by both DMS and DMPS. Regarding to arsenic accumulation in roots, it was not modified by flurazole, highly reduced by BSO, and increased between 2.5- and 4.0-fold by DMS and DMPS. Therefore, tolerance and accumulation of arsenic by maize could be manipulated pharmacologically by chemical effectors of GSH.  相似文献   

5.
6.
By incubating explants from Actinidia arguta seedlings on a nutrient medium supplemented with 20 to 30 micromolar N6-(Δ2-isopentenyl)adenine (i6Ade) and then measuring zeatin (io6Ade) accumulation in tissues, the distribution of i6Ade hydroxylase activities in whole plants could be determined. Based on analyses with three entire plants, it is estimated that, as an organ system, roots contain approximately 68% of the plant's hydroxylase, while stems and leaves account for about 26% and 6%, respectively, of the total activity. Depending on the part of the root examined, hydroxylase activities ranged from 20 to 148 nanomoles io6Ade accumulated per gram fresh weight per 24 hours of incubation. Stem activities ranged from 17 to 165 nanomoles per gram fresh weight per 24 hours with the lowest activities being found at the tip. Leaf activities were substantially lower (1-10 nanomoles per leaf depending on position) than either root or stem.  相似文献   

7.
Maize plants (Zea mays L. cv. Honeycomb F-1) were grown on quartz sand containing amounts of Cd or Cu which resulted in comparable internal contents in the roots. Fresh and dry weights and the content of Cd or Cu were measured in roots and shoots after eight weeks. In addition, cysteine, γ-glutamylcysteine (γEC), glutathione (GSH) and the thiols in heavy-metal-binding peptides (HMBPs) were determined in the roots. At low internal contents, Cd and Cu inhibited root growth to the same extent. Inhibition by Cu was enhanced, however, at high internal contents, indicating that Cu was more toxic than Cd. Separation of extracts from roots of Cd- and Cutreated plants on a Sephadex G-50 column resulted in HMBP complexes with relative molecular masses (Mrs) of 6200 and 7300, respectively. Separation of these HMBP-complexes using HPLC resulted in a distinct pattern of thiol compounds for each heavy metal. The accumulation of HMBPs was linearly dependent on the content of Cd at all values examined. In Cu-treated roots, HMBP accumulation was linearly dependent on the internal Cu content only up to 7.1 μmol·g?1 dry weight. At internal contents which caused an enhanced inhibition of root growth, no further significant increase in the HMBP content was detected. At these internal Cu contents an increased transport of Cu to the shoot was measured. This result indicates that HMBPs are involved in reducing heavy-metal transport from roots to shoots.  相似文献   

8.
We investigated the responses of phytochelatins (PCs), glutathione (GSH) and other non-protein thiols in Cd hyperaccumulator Arabis paniculata after Cd exposure. Applying γ-glutamylcysteine synthetase (γ-ECS) inhibitor, l-buthionine-sulfoximine (BSO), the roles of PCs in Cd tolerance and Cd accumulation in A. paniculata were evaluated. Plants were exposed to four Cd concentrations (0, 50, 100 and 250 μM) for different times (2w or 3w) with and without BSO. Overall, Cd exposure had little impact on plant biomass after 2w or 3w of growth except at the highest Cd level. A. paniculata tolerated ≤100 μM Cd with up to 1127 mg kg?1 Cd in the shoots and 5624 mg kg?1 Cd in the roots after 3w of Cd exposure. Cd exposure induced formation of PCs and three unknown thiols in the roots, but none were detected in the shoots. BSO had no significant effect on Cd sensitivity in plants though it reduced Cd accumulation in the roots. In addition, the molar ratio of PCs:Cd, which ranged from 0.7 to 1.3 after exposing to 50–100 μM Cd without BSO in the roots, was close to the value expected for PC-mediated Cd sequestration in plants. Those data indicate that GSH and PCs did not contribute to Cd tolerance in the shoots and Cd transport from the root to shoot in A. paniculata, but they may play an important role in Cd accumulation and Cd complexation in the roots of A. paniculata.  相似文献   

9.
Free space iron pools in roots: generation and mobilization   总被引:21,自引:9,他引:12  
A rapid and simple method for the determination of a ferric iron pool in the free space of roots is described. Formation of this pool depended on the source of iron in the nutrient solution. During growth in water culture at pH 5 to 6 with Fe-ethylenediaminetetraacetate, a free space pool of 500 to 1000 nanomoles Fe per gram fresh weight was formed in the roots of bean (Phaseolus vulgaris L. var. Prélude), maize (Zea mays L. var. Capella), and chlorophytum (Chlorophytum comosum [Thunb.] Jacques). No significant pool (less than 100 nanomoles per gram fresh weight) was formed with ferrioxamine. Upon impending Fe deficiency, bean and chlorophytum were able to mobilize this pool. Fe-deficient bean plants mobilized iron from the free space iron pool of another plant in the same vessel.  相似文献   

10.
The intracellular location of enzymes involved in the synthesis of the ureides, allantoin and allantoic acid, was investigated in nodules of Glycine max L. Merr. Cellular organelles were separated on isopycnic sucrose density gradients. Xanthine dehydrogenase activity (270 nanomoles per min per gram fresh weight) was totally soluble, whereas approximately 15% of the total uricase and catalase activities (1 and 2000 micromoles per minute per gram fresh weight, respectively) was in the fraction containing intact peroxisomes. Allantoinase activity (680 nanomoles per minute per gram fresh weight) was associated with the microsomal fraction, which apparently originates from the endoplasmic reticulum.  相似文献   

11.
Inhibition of glutathione synthesis reduces chilling tolerance in maize   总被引:8,自引:0,他引:8  
 The role of glutathione (GSH) in protecting plants from chilling injury was analyzed in seedlings of a chilling-tolerant maize (Zea mays L.) genotype using buthionine sulfoximine (BSO), a specific inhibitor of γ-glutamylcysteine (γEC) synthetase, the first enzyme of GSH synthesis. At 25 °C, 1 mM BSO significantly increased cysteine and reduced GSH content and GSH reductase (GR: EC 1.6.4.2) activity, but interestingly affected neither fresh weight nor dry weight nor relative injury. Application of BSO up to 1 mM during chilling at 5 °C reduced the fresh and dry weights of shoots and roots and increased relative injury from 10 to almost 40%. Buthionine sulfoximine also induced a decrease in GR activity of 90 and 40% in roots and shoots, respectively. Addition of GSH or γEC together with BSO to the nutrient solution protected the seedlings from the BSO effect by increasing the levels of GSH and GR activity in roots and shoots. During chilling, the level of abscisic acid increased both in controls and BSO-treated seedlings and decreased after chilling in roots and shoots of the controls and in the roots of BSO-treated seedlings, but increased in their shoots. Taken together, our results show that BSO did not reduce chilling tolerance of the maize genotype analyzed by inhibiting abscisic acid accumulation but by establishing a low level of GSH, which also induced a decrease in GR activity. Received: 9 November 1999 / Accepted: 17 February 2000  相似文献   

12.
Fresh weight, protein, cysteine, [gamma]-glutamylcysteine, glutathione, and the extractable activity of the enzymes of glutathione biosynthesis, [gamma]-glutamylcysteine synthetase (EC 6.3.2.2) and glutathione synthetase (EC 6.3.2.3), were measured in roots, scutella, endosperms, and shoots of 3-, 7-, and 11-d-old maize (Zea mays L. cv LG 9) seedlings. In 3-d-old seedlings, the scutella represented 14% of the seedling fresh weight, containing 43% of total protein and 63 and 55% of the activity of [gamma]-glutamylcysteine synthetase and glutathione synthetase, respectively; in 11-d-old seedlings, the corresponding values were 4.5% for fresh weight, 8.0% for protein content, and 14 and 20% for the enzyme activities. The highest concentrations of thiols were found for cysteine (0.27 mM) in the roots, for glutathione (4.4 mM) in the shoots, and for [gamma]-glutamylcysteine (13 [mu]M) in the scutella of 3-d-old seedlings. The enzyme activities of roots were localized in subcellular fractions after sucrose density gradient centrifugation. Nearly half of the [gamma]-glutamylcysteine synthetase activity was detected in the root proplastids of 4-d-old seedlings, whereas <10% of the glutathione synthetase activity was localized in this organelle. Our results demonstrate the importance of scutella in glutathione synthesis in the early stage of seedling development. Unlike chloroplasts, root plastids show only a small proportion of glutathione synthetase activity.  相似文献   

13.
During the transition of tobacco (Nicotiana tabacum) pith tissue to callus tissue, there were changes in the composition of the soluble amino acid pools, in the distribution of amino acids between pool and protein, and in the synthesis, accumulation, and degradation of proteins. The size of the leucine pool decreased from 90 nanomoles per gram fresh weight in fresh pith to 20 nanomoles in 24-hour cultured pith, followed by a return to 90 nmoles in pith cultured longer than 5 days. The latter value is the same as that reported for exponentially growing callus cells. Many other pool amino acids changed as dramatically. However, they always approached callus levels after 5 days of culturing. The total amino acid content of pith tissue (the sum of both pool and protein) remained unchanged during culturing. The value for total amino acid content (34 to 42 nanomoles per gram fresh weight) was also similar to that found in callus. The distribution of amino acids between pool and protein did change during culturing. The transition of pith tissue with 88% of its total amino acids free in the soluble pool to callus with 92% of its amino acids in protein was further characterized by changes in protein metabolism. Both protein synthesis and accumulation increased over the first 50 hours in culture to a maximum rate of 45 milligrams protein synthesized gram protein−1 hour−1. After 50 hours in culture, the rate of protein accumulation decreased to equal the rate of fresh weight accumulation (10 mg g−1 hour−1). However, protein synthesis continued at a high rate for several days, suggesting protein degradation was turned on by this time. By 5 days protein synthesis had decreased to a rate similar to that of callus.  相似文献   

14.
A high Cd-tolerant dark septate endophyte (DSE), Exophiala pisciphila, was inoculated into maize (Zea mays L.) roots under Cd stress. The Cd content, enzymes activity and thiol compound content relevant to glutathione (GSH) metabolism in maize leaves were analyzed. The Cd content in maize shoots increased with increasing Cd stress, but the DSE significantly reduced the Cd content at the 40?mg/kg Cd treatment. Cd stress increased the enzyme activity of glutathione reductase (GR), glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px) as well as the thiol compound contents of sulfur, thiols (-SH) and oxidized glutathione (GSSG). The content of reduced GSH and the GSH/GSSG ratio reached a peak at the 5?mg/kg Cd treatment but then decreased with increasing Cd stress. Furthermore, the DSE significantly enhanced the GR and GSH-Px activity and increased the contents of -SH and GSH under low Cd stress (5 and 10?mg/kg), but decreased the γ-glutamylcysteine synthetase and GST activity under high Cd stress (20 and 40?mg/kg). Highly positive correlations between the Cd content with enzymes activity and enzymes activity with thiol compound content were observed. Results indicated that DSE played a role in activating GSH metabolism in maize leaves under Cd stress.  相似文献   

15.
In this study, the effect of cadmium (Cd) uptake and concentration on some growth and biochemical responses were investigated in Malva parviflora under Cd treatments including 0, 10, 50 and 100 µM. The shoots and roots were able to accumulate Cd. However, increased Cd dose led to a considerable Cd content in the roots. Cd stress decreased growth, increased lipid peroxidation and also enhanced proline and ascorbic acid contents in both shoots and roots. Chlorophyll and carotenoid contents decreased in the plants with the increasing Cd concentration. While the activities of catalase (CAT) and superoxide dismutase (SOD) increased in the shoots under different Cd doses, these activities decreased in the roots as compared to the control. Both shoots and roots demonstrated a significant increase in guaiacol peroxidase activity in response to Cd stress. Contrary to the aboveground parts, the roots subjected to Cd doses showed a rise in protein content. Despite higher Cd content in the roots, it seems that CAT and SOD do not play a key role in detoxification of Cd-induced oxidative stress. These findings confirm that reduced biomass and growth under Cd stress can be due to an increase in oxidative stress and a decrease in photosynthetic pigment content. The present study clearly indicates that the shoots and roots exploit different tolerance behaviors to alleviate Cd-induced oxidative stress in M. parviflora.  相似文献   

16.
Salicylic acid (SA) may accelerate the cell death of cadmium-stressed roots to avoid cadmium (Cd) uptake by plants or may play positive roles in protecting the stressed roots from Cd-induced damage. To test these hypotheses, we performed a series of split-root hydroponic experiments with one-half of rice (Oryza sativa L. cv. Jiahua 1) roots exposed to 50 microM Cd and the other half not exposed. The objectives were to elucidate the effects of SA pretreatment on the time-dependent changes of H(2)O(2) levels in roots, antioxidant defense system in different organs, root cell death and the dynamic distribution of Cd in the plants. In the split-root system, a higher Cd uptake rate was observed in the Cd-stressed portions of roots compared with the treatment with the whole roots exposed to Cd. Furthermore, an appreciable amount of Cd was translocated from the Cd-exposed roots to the unexposed roots and trace amounts of Cd were released into the external solution. The split-root method also caused the two root portions to respond differently to Cd stress. The activities of major antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; and catalase, CAT) were significantly suppressed in the Cd-treated roots, hence leading to H(2)O(2) burst, lipid peroxidation, cell death and growth inhibition. By contrast, in the non-Cd-treated roots, the activities of enzymes (SOD, CAT, and POD) and root growth were persistently stimulated during the experimental period. The H(2)O(2) accumulation and lipid peroxidation were also induced in the non-Cd-treated roots, but they were significantly lower than those of the Cd-treated roots. The concentrations of glutathione (GSH) and non-protein thiols (NPT) in the Cd-treated roots were significantly higher than those of the untreated roots. SA pretreatment elevated enzymatic and non-enzymatic antioxidants, and the concentrations of GSH and NPT in roots and shoots, hence leading to alleviation of the oxidative damage as indicated by the lowered H(2)O(2) and MDA levels. Furthermore, SA pretreatment mitigated the Cd-induced growth inhibition in both roots and shoots and increased transpiration compared with non-SA-pretreatment under Cd exposure. It is concluded that Cd can be partly transferred from the Cd-exposed roots to Cd-unexposed roots and that cell death can be accelerated in the Cd-stressed roots in response to Cd stress. The SA-enhanced Cd tolerance in rice can be attributed to SA-elevated enzymatic and non-enzymatic antioxidants and NPT, and to SA-regulated Cd uptake, transport and distribution in plant organs.  相似文献   

17.
Rubber particles isolated from guayule (Parthenium argentatum Gray) stem homogenates contain a polyprenyl transferase which catalyzes the polymerization of isopentenyl pyrophosphate into polyisoprene. The polymerization reaction is stimulated with the addition of an allylic pyrophosphate initiator and forms a polymer of polyisoprene with a molecular weight distribution from 103 to 107. The polymerization reaction in crude stem homogenates is not affected by the addition of an initiator probably due to the high activity of isopentenyl pyrophosphate isomerase furnishing saturating levels of dimethylallyl pyrophosphate. Polyisoprene formation in stems of guayule plants exposed to cold winter temperatures increased from 15.4 milligrams per gram dry weight in October to 24.5 milligrams per gram dry weight in January and increased from 16.2 to 38.1 milligrams per gram dry weight in the same period by additionally treating the plants with 5000 ppm of 2-(3,4-dichlorophenoxy)triethylamine. The rate of polymerization of isopentenyl pyrophosphate into polyisoprene in stem homogenates of the cold treated plants increased from 12.1 nanomoles per hour per gram fresh weight in October to 144.3 nanomoles per hour per gram fresh weight in January and increased from 17.7 to 446.8 nanomoles per hour per gram fresh weight in the same period by additionally treating the plants with 5000 ppm of 2-(3,4-dichlorophenoxy)triethylamine. These results show that the increase in polyprenyl transferase activity partially accounts for the increase in polyisoprene synthesis in guayule plants exposed to low temperature and treated with 2-(3,4-dichlorophenoxy)triethylamine.  相似文献   

18.
While growing in the field, plants may encounter several different forms of abiotic stress simultaneously, rather than a single stress. In this study, we investigated the effects of calcium (Ca) deficiency on cadmium (Cd) toxicity in rice seedlings. Calcium deficiency alone decreased the length, fresh and dry weight, and the Ca concentration in shoots and roots. Also, the content of glutathione (GSH), the ratio of GSH/oxidized glutathione, and the activity of catalase were lower in Ca-deficient leaves compared to control leaves. Exogenous Cd caused a decrease in the contents of chlorophyll and protein, and induced oxidative stress. Based on these stress indicators, we found that Ca deficiency enhanced Cd toxicity in rice seedlings. Under exogenous Cd application, internal Cd concentrations were higher in Ca-deficient shoots and roots than in the respective controls. Moreover, we observed that Ca deficiency decreased heat-shock (HS) induced expression of HS protein genes Oshsp17.3, Oshsp17.7, and Oshsp18.0 in leaves thereby weakening the protection system and increasing Cd stress. In conclusion, Ca deficiency enhances Cd toxicity, and Ca may be required for HS response in rice seedlings.  相似文献   

19.
Harris MJ  Dugger WM 《Plant physiology》1986,82(4):1164-1166
The levels of abscisic acid (ABA) and alkaline-hydrolyzable ABA-conjugate (putatively identified as the glucosyl ester, abscisyl-β-d-glucopyranoside) were determined by enzyme immunoassay in the organs of developing navel orange (Citrus sinensis [L.] Osbeck cv Washington) flowers. Although both compounds were detected in every tissue, developmentally related differences between organs in the total and relative contents were observed. The highest ABA levels were observed in the stigma/style shortly after anthesis (11.5 ± 0.6 nanomoles ABA per gram fresh weight and 4.8 ± 0.6 nanomoles ABA-conjugate per gram fresh weight); whereas, the highest ABA-conjugate levels were observed at the same time in the floral disc (hypogynous disc plus calyx; 3.5 ± 0.1 nmol nanomols ABA per gram fresh weight and 11.8 ± 0.9 nanomoles ABA-conjugate per gram fresh weight). These results suggest that differences in ABA content reflect tissue-specific variation in the facility for ABA conjugation. Increased ABA levels were observed in the stigma/style near anthesis; however, a relationship with pollination is discounted, since `Washington' navel orange flowers are male sterile and devoid of pollen.  相似文献   

20.
Cysteine, γ-glutamylcysteine, and glutathione and the extractable activity of the enzymes of glutathione biosynthesis, γ-glutamylcysteine synthetase (EC 6.3.2.2) and glutathione synthetase (EC 6.3.2.3), were measured in roots and leaves of maize seedlings (Zea mays L. cv LG 9) exposed to CdCl2 concentrations up to 200 micromolar. At 50 micromolar Cd2+, γ-glutamylcysteine contents increased continuously during 4 days up to 21-fold and eightfold of the control in roots and leaves, respectively. Even at 0.5 micromolar Cd2+, the concentration of γ-glutamylcysteine in the roots was significantly higher than in the control. At 5 micromolar and higher Cd2+ concentrations, a significant increase in γ-glutamylcysteine synthetase activity was measured in the roots, whereas in the leaves this enzyme activity was enhanced only at 200 micromolar Cd2+. Labeling of isolated roots with [35S]sulfate showed that both sulfate assimilation and glutathione synthesis were increased by Cd. The accumulation of γ-glutamylcysteine in the roots did not affect the root exudation rate of this compound. Our results indicate that maize roots are at least in part autonomous in providing the additional thiols required for phytochelatin synthesis induced by Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号