首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Winner E  Zhang JW  Proctor M  Yu J 《生理学报》2005,57(6):689-695
钠钾泵抑制剂——哇巴因能引起气道内慢适应感受器异相发放,表现为冲动在正常时的吸气相发放,呼气相终止转变为在呼气相发放,吸气相终止。我们推测异相发放由过度兴奋所致,如果假设正确,那么降低气道压力从而减少对感受器刺激,将能防止异相发放。本工作在麻醉、开胸、机械通气(在呼气末附加3cm水柱的正压)的家兔中记录颈迷走神经中慢适应感受器的单位放电,向感受野注射微量哇巴因(1μmol/L,20μ1),可观察到感受器活动发生变化。感受器放电经历紧张性发放、异相发放、以及不规则发放三个时期,随后放电终止,进入静息状态。在紧张期,感受器呈持续发放,冲动频率随肺部通气变化的波动幅度明显减小。在异相发放期,感受器活动出现突然发放(呼气相)与终止(吸气相),其冲动快速转换于高频发放和静止之间。此时,若撤除呼气末正压而减少气道内压力,感受器活动恢复正常,即冲动频率于气管压峰值时为最高,在呼气相减少或终止。在不规则期,感受器通常处于静止状态,时而出现突发高频冲动,且与呼吸周期无关。可以设想:在吸气相,感受器受到牵拉,引起钠、钙等阳离子内流,产生感受器电位。正常时,由于激活钠泵,将钠离子泵出细胞,使感受器电位回复。当钠泵受到抑制后,钠外流受阻,感受器电位加大。在异相发放期,肺充气时牵拉感受器,进一步增加感受器电位,当它超越了产生动作电位的活动范围后,则感受器因过度去极化而失去兴奋性。  相似文献   

2.
In anesthetized, artificially ventilated rabbits with vagus nerve section, release from 10 consecutive hyperinflations (inflation volume = 3 tidal volume) caused an inhibition of the slowly adapting pulmonary stretch receptor (SAR) activity for 16-22 sec. Intravenous administration of tetraethylammonium (TEA, 10 and 20 mg/kg), a K+ channel blocker, did not significantly alter either basal SAR discharge or tracheal pressure (PT). Although TEA treatment at 10.0 mg/kg had no significant effect on the magnitude and duration of inhibited SAR activity seen after release from hyperinflation, the increasing dose of this K+ channel blocker up to 20 mg/kg inhibited these effects of the receptor activity but this inhibition was small. The Na+ -K+ ATPase inhibitor ouabain (5 and 10 microg/kg) that had no significant effect on SAR activity and P(T) in the control abolished or attenuated the inhibitory action of SARs in a dose-dependent manner. Furthermore, the changes in dynamic lung compliance (Cdyn) and P(T) in response to post-hyperinflation were not significantly influenced by pretreatment with either TEA or ouabain. These results suggest that the inhibitory action of receptors seen during post-hyperinflation corresponded with the induction of slow afterhyperpolarization (sAHP), and that the mechanism of generating the sAHP of SARs is mainly mediated by the activation of Na+ -K+ pump activity.  相似文献   

3.
Pulmonary sensory receptors are the initiating sites for lung reflexes; however, little is known about their structure, especially the relationship between the structure and function of these receptors. Using a novel approach (combining electrophysiological and morphological techniques), we examined the structures of the typical slowly adapting pulmonary stretch receptors (SARs) located in the lung periphery. We recorded SAR activities in the cervical vagus nerve, identified the receptive field, dissected the SARs in blocks, fixed and processed these blocks for immunohistochemical staining using anti-Na+/K+-ATPase, and examined the blocks under a confocal microscope. These SAR structures have multiple endings that have terminal knobs. Some structures that are located in the airway walls have terminal knobs buried in smooth muscle. Others are in the most peripheral part of the lung, and their terminal knobs have no obvious relation to smooth muscle, suggesting that muscle contraction may not be a direct factor for SAR activation.  相似文献   

4.
The inhibitory effect of CO2 on slowly adapting pulmonary stretch receptors (SARs) was examined before and after administration of ouabain, a Na+-K+ ATPase inhibitor, and flecainide, a Na+ channel blocker. The experiments were performed in anesthetized, artificially ventilated rabbits after vagus nerve section. CO2 inhalation (maximal tracheal CO2 concentration ranging from 9.2 % to 10.4%) for about 60 sec decreased the receptor activity during both inflation and deflation. The magnitude of decreased SAR activity during deflation was greater than that seen during inflation. Administration of ouabain (25 microg/kg) initially stimulated SAR activities during inflation and deflation, and after 20 min, the SAR response was still kept excitatory in both inflation and deflation phases. Under these conditions, CO2 inhalation inhibited SAR activities during inflation and deflation. Flecainide treatment (3 mg/kg) that abolished veratridine (30 microg/kg)-induced SAR excitation had no significant effect on the inhibitory responses of SAR activity to CO2. These results suggest that the inhibitory effect of CO2 occurs when ouabain results in intracellular Na+ concentration ([Na+]i) increases in the SAR endings, and that CO2-induced SAR inhibition may not be related to the reduction of influx of Na+ through voltage-gated Na+ channels.  相似文献   

5.
The inhibitory effect of CO(2) on deflationary slowly adapting pulmonary stretch receptors (deflationary SARs) was investigated before and after administration of acetazolamide, a carbonic anhydrase (CA) inhibitor, or 4-aminopyridine (4-AP), a K(+) channel blocker, in anesthetized, artificially ventilated rats after unilateral vagotomy. CO(2) inhalation (maximum tracheal CO(2) concentration ranging from 9 to 12%) for approximately 60 s decreased the impulse activity of deflationary SARs but had no significant effect on tracheal pressure (P(T)) as an index of bronchomotor tone. Acetazolamide treatment (20 mg/kg) diminished the inhibitory response of deflationary SARs to CO(2) inhalation. 4-AP (0.7 and 2.0 mg/kg) dose-dependently attenuated the decrease in deflationary SAR activity induced by CO(2) inhalation. When comparing the maximum attenuation due to 4-AP (2.0 mg/kg) and acetazolamide (20 mg/kg) in CO(2)-induced deflationary SAR inhibition, blockade of K(+) channels had a more pronounced effect. These results suggest that inhibition of deflationary SARs by CO(2) inhalation may be largely mediated by the stimulating action of 4-AP-sensitive K(+) currents in the nerve terminals of the receptors.  相似文献   

6.
Summary In isolated receptors the impulse frequency following step stretches had a highly significant correlation with both muscle length and tension; any deviations from linearity were in opposite directions, impulse frequency rising more quickly than linearly with length and more slowly than linearly with tension. The impulse frequency decayed according to a power function of time from application of a step increase in length. A transfer function was derived and used to predict responses to sinusoidal and constant velocity stretches. The experimental data generally agreed with predictions. The deviations that were found could be accounted for by considering quantitatively any non-linearity between frequency and length, the adaptation of the impulse frequency to constant currents, the all-or-none nature of the action potential, and the viscous forces present during dynamic stretch. The approximately linear relationship between impulse frequency and muscle length and muscle tension is discussed. Muscle tension appears to be the more direct causal agent of impulse generation. Possible physical bases for the transfer function are also considered.  相似文献   

7.
The effects of pulmonary lymphatic obstruction and pulmonary venous congestion on the activities of slowly adapting receptors (SAR) and rapidly adapting receptors (RAR) of the airways were examined in anaesthetized, artificially ventilated dogs. In 11 out of 12 RAR (12 dogs) examined, pulmonary lymphatic obstruction for a period of 20 min produced a sustained significant increase in activity without a significant change in peak airway pressure and dynamic compliance. The activity remained significantly elevated even after the pulmonary lymphatic obstruction was released. This stimulus was without effect on the SAR (n = 5 dogs). Pulmonary venous congestion alone increased the RAR activity (n = 7 dogs) significantly without producing significant changes in airway mechanics. Lymphatic obstruction, when superimposed upon congestion, did not produce a further significant increase in activity. In four dogs the effect of pulmonary venous congestion (left atrial pressure increased from 7.6 +/- 1.7 to 16.3 +/- 2.7 mmHg) (1 mmHg = 133.3 Pa) on pulmonary lymphatic flow was examined. The procedure caused a significant increase in lymph flow. These results suggest that in the dog, the RAR activity is influenced by changes in the pulmonary extravascular space.  相似文献   

8.
9.
Matsumoto S  Ikeda M  Nishikawa T 《Life sciences》2000,67(18):2167-2175
The excitatory responses of slowly adapting pulmonary stretch receptor (SAR) activity to hyperinflation (inflation volume = 3 tidal volumes) for approximately 10 respiratory cycles were examined before and after administration of flecainide, a Na+ channel blocker, and 4-aminoprydine (4-AP), a K+ channel blocker. The experiments were performed in anesthetized, artificially ventilated rats after unilateral vagotomy. During hyperinflation the SARs increased their activity during inflation and decreased their discharge during deflation. The magnitude of increased SAR activity during inflation became more prominent as compared to that of decreased receptor activity during deflation. Flecainide treatment (6 mg/kg) that was sufficient to block veratridine (50 microg/kg)-induced SAR stimulation did not significantly alter the excitatory response of SAR activity to hyperinflation. Subsequent administration of 3 mg/kg flecainide (a total dose, 9 mg/kg) resulted in a greater inhibition of hyperinflation-induced SAR stimulation. Although administration of 4-AP (2 mg/kg) usually stimulated SAR activity, particularly in the deflation phase, in the control ventilation, 4-AP treatment had no significant effect on hyperinflation-induced SAR stimulation. These results suggest that the excitatory effect of hyperinflation on SAR activity may not be involved in the activation of either flecainide-sensitive Na+ channels or 4-AP-sensitive K+ channels.  相似文献   

10.
Inhibitory responses of slowly adapting pulmonary stretch receptor (SAR) activity to CO(2) inhalation (maximal tracheal CO(2) concentration ranging from 9.5 to 12.5%) for approximately 60 s were examined before and after administration of acetazolamide (a carbonic anhydrase inhibitor) or 4-aminopyridine (4-AP, a K(+) channel blocker). The experiments were performed in 35 anesthetized, artificially ventilated rats after unilateral vagotomy. Sixty-eight of eighty-four SARs were inhibited by CO(2) inhalation. The SAR inhibition was attenuated by pretreatment with either acetazolamide (20 mg/kg, n = 10) or 4-AP (0.7 and 2.0 mg/kg, n = 10). In other series of experiments, stainings to show the existence of carbonic anhydrase (CA) enzymatic reaction were not found in the smooth muscle of either extrapulmonary or intrapulmonary bronchi. Protein gene product 9.5 (PGP 9.5)-immunoreactive SAR terminals to form leaflike extensions were found in the bronchioles at different diameters and were smooth-muscle-related receptors. But in the same sections, CA isozyme II-like (erythrocyte CA) immunoreactive SAR terminals were not identified. These results suggest that CO(2)-induced inhibition of SARs may be involved in the CA-dependent CO(2) hydration in addition to the activation of 4-AP sensitive K(+) currents.  相似文献   

11.
Summary Electrophysiological experiments showed that a tetrodotoxin (TTX) sensitive slowly inactivating Na+ current contributed to the excitability of the sensory neuron (SN1) that innervates the slow receptor muscle in the abdominal muscle receptor (MR1) of crayfish, Procambarus clarkii. Following either tetraethylammonium (TEA) blockage of the K+ delayed rectifier currents or exposure to high temperature, a depolarizing plateau potential was evoked by the slow Na+ current. Ca++ substitution by other divalent cations had no effect on the plateau potential, demonstrating that Ca++ is not involved in plateau potential genesis. Simultaneous intrasomatic and extraaxonic recordings coupled with 4-aminopyridine (4-AP) exposure indicated that the slowly inactivating Na+ current is primarily somatic, and does not contribute significantly to spiking.Abbreviations 4-AP 4-aminopyridine - HAP hyperpolarizing after-potential - MR1 slowly adapting muscle receptor organ - SR1 sensory neuron of MR1 - TEA tetraethylammonium - TTX tetrodotoxin  相似文献   

12.
Discrete sequence analysis methods were applied to study spike-trains generated by the isolated neuron of the slowly adapting stretch receptor organ. Calculation of the algorithmic complexity and block entropies of digitized individual spike-train forms allowed us to distinguish different classes of neural behavior. While some spike-trains exhibited significant structure, others displayed diverse degrees of randomness. The sequences recorded during the stimulated portions of the intermittent and walk-through forms, differed considerably from their randomly shuffled surrogates. Informational and grammar complexity measures (in two, four and eight-letter alphabets), tell us things about the structure of spike-trains that are not obtained with conventional spike analysis. Comparison of the conditional entropies for the digitized signals showed that the method distinguishes between different stimulated conditions. Additionally, comparison of the different stimulated conditions with their corresponding surrogates showed that, both, conditional entropies and complexities were significantly different for the two groups. Although the original and the randomly shuffled sequences had the same distribution and average firing rate, their complexity values were different. The results obtained with both measures of sequence structure were quite consistent.  相似文献   

13.
The effects of K+ channel blockers, such as 4-aminoprydine (4-AP) and tetraethylammonium (TEA), on the excitatory responses of rapidly adapting pulmonary stretch receptor (RAR) activity to hyperinflation (inflation volume=3 tidal volumes) were investigated in anesthetized, artificially ventilated rabbits after vagus nerve section. The changes in the RAR adaptation index (AI) produced by constant-pressure (approximately 30 cmH2O, 29.7+/-0.2 cmH2O) inflation of the lungs were also examined before and after pretreatment with 4-AP and TEA. The administration of 4-AP (0.7 and 2.0 mg/kg) potentiated hyperinflation-induced RAR stimulation in a dose-dependent manner. During hyperinflation after 2.0 mg/kg 4-AP administration the discharge of RARs showed a relatively regular firing pattern in both inflation and deflation phases. The RAR AI values during constant-pressure inflation of the lungs were significantly reduced by 4-AP treatment (2.0 mg/kg). TEA treatment (2.0 and 7.0 mg/kg) did not significantly alter either the excitatory response of RAR activity to hyperinflation or the RAR AI values seen during constant-pressure inflation of the lungs. These results suggest that during hyperinflation in in vivo experiments on rabbits, RARs may be maintained at a lower activity by opening the 4-AP-sensitive K+ channels on the receptor endings, which can determine accommodation of the receptor discharge.  相似文献   

14.
The slowly adapting stretch receptor of the crayfish is inhibited via the large accessory neuron both by reflex activation of this inhibitory interneuron from the stretch receptor itself (autogenic inhibition) and by activation of the interneuron from stretch receptors in other abdominal segments (neighbourinhibition). Neighbour-inhibition increases proportionally with the increase in impulse frequency in the large accessory neuron produced by activity in neighbouring receptors and largely independently of the level of excitation in the stretch receptor itself. A simple model based on intracellular recordings from the receptor neuron predicts this behaviour fairly accurately. In this model each receptor impulse is followed by an IPSP after a delay proportional to the uninhibited interspike interval of the receptor (autogenic inhibition). The other IPSP's arrive randomly distributed in time (neighbour-inhibition). An alternative model in which all IPSP's arrive randomly produces similar results. This latter model can be modified to fit other neuronal systems.  相似文献   

15.
These experiments in the slowly adapting stretch receptor of crayfish test the effects of brief length perturbations (i.e., pulses) when presented in isolation at different constant elongations or superimposed on trapezoidal stretches of different amplitudes. Within "in vivo" lengths, during static responses, perturbations reduced firing rates to below control values and, in extreme cases, could silence the receptor. This effect, or "down-step," was sustained, occurred above a threshold pulse amplitude and background stretch, and increased with both stimulus characteristics, but was not present during dynamic responses. Beyond "in vivo" lengths, and in a few cases within those limits but close to the extremes, the receptor was silent but perturbations could restore activity. Lengthening pulses were more effective than shortening ones in generating after-effects. Perturbations change, during indefinitively long periods, the receptor's length or static sensitivity acting as a negative feedback which tends to maintain the discharge rate within fixed values. Perturbations disclose marked nonlinearities, which suggest that the classical view of a proportional control in the reflex loop in which the receptor participates may not operate in natural conditions.  相似文献   

16.
K A Hubel  K S Renquist 《Life sciences》1988,42(18):1781-1788
Ouabain, when added to fluid bathing rabbit ileal mucosa mounted in a flux chamber, transiently increases short circuit current, implying a paradoxical secretory response. To determine the cause of this change, we studied unidirectional fluxes of 36Cl and 23Na and the effects of ion substitution, of reduced Ca concentration, verapamil, tetrodotoxin and atropine. Ouabain 0.1 mM, transiently increased the serosal to mucosal flux of Cl and Na, increased Isc and PD and reduced ion conductance. The Isc response to ouabain was diminished by reducing the bath fluid concentration of Cl, of Ca, and by adding verapamil. Tetrodotoxin both delayed and reduced the maximal Isc response; atropine had no effect. We conclude that ouabain acts by releasing a neurotransmitter of unknown identity and by increasing the serosal to mucosal flux of Cl.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号