首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Previously, a phase-variable epitope was detected in the virulent wild-type strain RC1 of Legionella pneumophila serogroup 1 subgroup OLDA using a lipopolysaccharide-specific monoclonal antibody, mAb 2625 [Lüneberg, E., Z?hringer, U., Knirel, Y. A., Steinmann, D., Hartmann, M., Steinmetz, I., Rohde, M., Kohl, J. & Frosch, M. (1998) J.Exp. Med. 188, 49-60]. In the present study, an isogenic mutant strain, termed 5215, was constructed by deletion of genes involved in the biosynthesis of the mAb 2625 epitope. Mutant 5215 was as virulent as the parental wild-type RC1 but did not bind mAb 2625. The two strains showed no difference in the core oligosaccharide and lipid A but in the O-chain polysaccharide structure, which is a homopolymer of 5-acetimidoylamino-7-acetamido-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic acid (a derivative of legionaminic acid). NMR spectroscopic studies revealed a hitherto unknown modification of bacterial polysaccharides in the wild-type strain, namely N-methylation of the 5-acetimidoylamino group on a single legionaminic acid residue that is located, most likely, proximal to the core oligosaccharide. Two major N-methylated substituents, the (N,N-dimethylacetimidoyl)amino and acetimidoyl(N-methyl) amino groups, could be allocated to the long- and middle-chain O-polysaccharide species, respectively. N-Methylation of legionaminic acid that was absent from the isogenic mutant 5215 and from the spontaneous phase variant 811, correlated with the presence of the mAb 2625 epitope.  相似文献   

2.
A putative gene encoding an O-acetyl transferase, lag-1, is involved in biosynthesis of the O-polysaccharide (polylegionaminic acid) in some Legionella pneumophila serogroup 1 strains. To study the effect of the presence and absence of the gene on the O-polysaccharide O-acetylation, lag-1 from strain Philadelphia 1 was expressed in trans in the naturally lag-1-negative OLDA strain RC1, and immunoblot analysis revealed that the lag-1-encoded O-acetyl transferase is active. O-Polysaccharides of different size were prepared from the lipopolysaccharides of wild-type and transformant strains by mild acid degradation followed by gel-permeation chromatography. Using NMR spectroscopy and MALDI-TOF mass spectrometry, it was found that O-acetylation of the first three legionaminic acid residues next to the core occurs in the short-chain O-polysaccharide (<10 sugars) from both strains. Hence, there is another O-acetyl transferase encoded by a gene different from lag-1. In the longer-chain O-polysaccharide, a legionaminic acid residue proximal to the core is N-methylated and could be further 8-O-acetylated in the lag-1-dependent manner. Only strains expressing a functional lag-1 gene were recognized in Western blot analysis by monoclonal antibody 3/1 requiring 8-O-acetylated polylegionaminic acid for binding. The highly O-acetylated outer core region of the lipopolysaccharide is involved in the epitope of another serogroup 1-specific monoclonal antibody termed LPS-1. The O-acetylation pattern of the L. pneumophila serogroup 1 core oligosaccharide was revised using MALDI-TOF mass spectrometry. lag-1-independent O-acetylation of the core and short-chain O-polysaccharide was found to be a common feature of L. pneumophila serogroup 1 strains. The biological importance of conserved lag-1-independent and variable lag-1-dependent O-acetylation is discussed.  相似文献   

3.
Enantiomerically pure N-methylated diketopiperazines (DKP) can be obtained by treating a N-methylated resin-bound dipeptide with 20% piperidine in dimethylformamide via a process known as cyclative release. N-methylated resin-bound dipeptides can be formed from N-methylated precursors or N-methylation can be selectively performed on the resin. When on-resin N-methylation was performed on the C-terminal side of the dipeptide, diastereomers were formed. Yet the cyclative release is shown to be a stereoselective process, as seen using preformed N-methylated amino acids. The procedure was also applied to synthesize the pseudodiketopiperazine cyclo(Phepsi[CH2NH]Leu). When comparing nonmethylated, monomethylated and bismethylated derivatives, we find that N-methylation results in a dramatic increase in solubility.  相似文献   

4.
Mucin glycoproteins on breast cancer cells carry shortened carbohydrate chains. These partially deglycosylated mucin 1 (MUC-1) structures are recognized by the monoclonal antibody SM3, which is being tested for its diagnostic utility. We used NMR spectroscopy to analyze the binding mode and the binding epitope of peptide and glycopeptide antigens to the SM3 antibody. The pentapeptide PDTRP and the glycopentapeptide PDT(O-alpha-D-GalNAc)RP are known ligands of the monoclonal antibody. The 3D structures of the ligands in the bound conformation were determined by analyzing trNOESY build-up rates. The peptide was found to adopt an extended conformation that fits into the binding pocket of the antibody. The binding epitopes of the ligands were determined by saturation transfer difference (STD) NMR spectroscopy. The peptide's epitope is predominantly located in the N-terminal PDT segment whereas the C-terminal RP segment has fewer interactions with the protein. In contrast, the glycopeptide is interacting with SM3 utilizing all its amino acids. Pro1 shows the strongest binding effect that slightly decays towards Pro5. The GalNAc residue interacts mainly via the N-acetyl residue while the other protons show less interactions similar to that of Pro5. The glycopeptide in the bound state also has an extended conformation of the peptide with the carbohydrate oriented towards the N-terminus. Docking studies showed that peptide and glycopeptide fit the binding pocket of the mAb SM3 very well.  相似文献   

5.
The VP8* subunit of rotavirus spike protein VP4 contains a sialic acid (Sia)-binding domain important for host cell attachment and infection. In this study, the binding epitope of the N-acetylneuraminic acid (Neu5Ac) derivatives has been characterized by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. From this STD NMR data, it is proposed that the VP8* core recognizes an identical binding epitope in both methyl alpha-D-N-acetylneuraminide (Neu5Acalpha2Me) and the disaccharide methyl S-(alpha-D-N-acetylneuraminosyl)-(2-->6)-6-thio-beta-D-galactopyranoside (Neu5Ac-alpha(2,6)-S-Galbeta1Me). In the VP8*-disaccharide complex, the Neu5Ac moiety contributes to the majority of interaction with the protein, whereas the galactose moiety is solvent-exposed. Molecular dynamics calculations of the VP8*-disaccharide complex indicated that the galactose moiety is unable to adopt a conformation that is in close proximity to the protein surface. STD NMR experiments with methyl 9-O-acetyl-alpha-D-N-acetylneuraminide (Neu5,9Ac(2)alpha2Me) in complex with rhesus rotavirus (RRV) VP8* revealed that both the N-acetamide and 9-O-acetate moieties are in close proximity to the Sia-binding domain, with the N-acetamide's methyl group being saturated to a larger extent, indicating a closer association with the protein. RRV VP8* does not appear to significantly recognize the unsaturated Neu5Ac derivative [2-deoxy-2,3-didehydro-D-N-acetylneuraminic acid (Neu5Ac2en)]. Molecular modeling of the protein-Neu5Ac2en complex indicates that key interactions between the protein and the unsaturated Neu5Ac derivative when compared with Neu5Acalpha2Me would not be sustained. Neu5Acalpha2Me, Neu5Ac-alpha(2,6)-S-Galbeta1Me, Neu5,9Ac(2)alpha2Me, and Neu5Ac2en inhibited rotavirus infection of MA104 cells by 61%, 35%, 30%, and 0%, respectively, at 10 mM concentration. NMR spectroscopic, molecular modeling, and infectivity inhibition results are in excellent agreement and provide valuable information for the design of inhibitors of rotavirus infection.  相似文献   

6.
Glycosylation of Campylobacter flagellin is required for the biogenesis of a functional flagella filament. Recently, we used a targeted metabolomics approach using mass spectrometry and NMR to identify changes in the metabolic profile of wild type and mutants in the flagellar glycosylation locus, characterize novel metabolites, and assign function to genes to define the pseudaminic acid biosynthetic pathway in Campylobacter jejuni 81-176 (McNally, D. J., Hui, J. P., Aubry, A. J., Mui, K. K., Guerry, P., Brisson, J. R., Logan, S. M., and Soo, E. C. (2006) J. Biol. Chem. 281, 18489-18498). In this study, we use a similar approach to further define the glycome and metabolomic complement of nucleotide-activated sugars in Campylobacter coli VC167. Herein we demonstrate that, in addition to CMP-pseudaminic acid, C. coli VC167 also produces two structurally distinct nucleotide-activated nonulosonate sugars that were observed as negative ions at m/z 637 and m/z 651 (CMP-315 and CMP-329). Hydrophilic interaction liquid chromatography-mass spectrometry yielded suitable amounts of the pure sugar nucleotides for NMR spectroscopy using a cold probe. Structural analysis in conjunction with molecular modeling identified the sugar moieties as acetamidino and N-methylacetimidoyl derivatives of legionaminic acid (Leg5Am7Ac and Leg5AmNMe7Ac). Targeted metabolomic analyses of isogenic mutants established a role for the ptmA-F genes and defined two new ptm genes in this locus as legionaminic acid biosynthetic enzymes. This is the first report of legionaminic acid in Campylobacter sp. and the first report of legionaminic acid derivatives as modifications on a protein.  相似文献   

7.
Peptides characterized by single or multiple N-methylated, C(alpha)-trisubstituted (e.g., protein) amino acids are of great interest in medicinal chemistry. Several naturally occurring peptides, remarkably stable to enzymatic attacks, are based on N-methylated residues. The classical conditions (CH(3)I/Ag(2)O in DMF, 24 h, room temperature) for N-methylation of the peptide function are useful tools for distinguishing solvent exposed from intramolecularly H-bonded -CO-NH- groups in peptides. In this work we have extended this reaction to N(alpha)-acylated, linear peptides based exclusively on helicogenic C(alpha)-tetrasubstituted alpha-amino acids, e.g., Aib (alpha-aminoisobutyric acid) or (alphaMe)Nva (C(alpha)-methyl norvaline) residues. Under the experimental conditions used, only amide monomethylation (on the N-terminal, acylated, residue) takes place. Methylation of internal peptide groups linking two C(alpha)-tetrasubstituted residues was not observed. Our FT-IR absorption, NMR, and X-ray diffraction investigations support the view that the beta-turn and 3(10)-helical conformations preferred by the original peptides are not dramatically perturbed in the derivatives monomethylated at position 1. In particular, the tertiary amide bonds are trans. Conversely, the packing modes in the crystals are strongly influenced by the reduction of the number of H-bonding donors. The MeXxx-Xxx peptide bond is readily disrupted under mild acidic conditions.  相似文献   

8.
A complex between sialyl Lewisx (alpha-D-Neu5Ac-[2-->3]- beta-D-Gal-[1-->4]-[alpha-L-Fuc-(1-->3)]-beta-D-GlcNAc-O-[CH2]8 COOMe) and E-selectin was studied using saturation transfer difference (STD) nuclear magnetic resonance (NMR) experiments. These experiments allow the identification of the binding epitope of a ligand at atomic resolution. A semiquantitative analysis of STD total correlation spectroscopy spectra provides clear evidence that the galactose residue receives the largest saturation transfer. The protons H4 and H6 of the galactose residue are in especially close contact to the amino acids of the E-selectin binding pocket. The fucose residue also receives a significant saturation transfer. The GlcNAc and Neu5Ac residues, with the exception of H3 and H3' of Neu5Ac, were found to interact weakly with the protein surface. These findings are in excellent agreement with a recently published X-ray structure and with the earlier findings from syntheses and activity assays. To further characterize the binding pocket of E-selectin, an inhibitory peptide, Ac-TWDQLWDLMK-CONH2, was synthesized and the binding to E-selectin studied utilizing transfer nuclear Overhauser effect spectroscopy (trNOESY) experiments. Finally, competitive trNOESY experiments were performed, showing that the synthetic peptide is a competitive inhibitor of sialyl Lewisx.  相似文献   

9.
P3 is a mouse monoclonal antibody (mAb) that binds to several NeuGc- containing gangliosides. It also reacts with antigens expressed in human breast tumors (Vazquez et al. (1995) Hybridoma , 14, 551-556). In this work, the binding specificity of P3 has been characterized in more detail using a panel of glycolipids that included several disialylated gangliosides and several chemical derivatives of NeuGc-GM3. The carboxyl group and the nitrogen function of sialic acid were found to play important roles in the antibody binding, whereas the glycerol tail appears to be nonrelevant. Molecular modeling was used to analyze the binding data, including the finding that P3 selectively recognizes the internal NeuGc in GD3. For this purpose, conformational studies of GD3 were performed using molecular dynamics. It was concluded that sialic acid binds the P3 antibody through its upper face (the one on which the carboxyl group is exposed) and the C4-C5 side of the sugar ring, whereas none or very little contact between the galactose residue and the protein is evident. Conformational analysis of GD3 revealed that, despite the large flexibility of the NeuGcalpha8NeuGc linkage, the P3 binding epitope on the external sialic acid is not well exposed for any of the possible conformations this linkage can adopt, whereas the internal sialic acid presents the epitope in a proper way for several of these conformations. As a final result, a coherent picture of the epitope that fits the wide binding data was obtained.   相似文献   

10.
Phage peptide libraries constitute powerful tools for themapping of epitopes recognized by monoclonal antibodies (mAbs).Using screening of phage displayed random peptide libraries wehave characterized the binding epitopes of three mAbs directedagainst the surface envelope glycoprotein (gp46) of the humanT-cell leukemia virus type I (HTLV-I). Two phage libraries,displaying random heptapeptides with or without flankingcysteine residues, were screened for binding to mAbs 7G5D8, DB4and 4F5F6. The SSSSTPL consensus sequence isolated fromconstrained heptapeptide library defines the epitope recognizedby DB4 mAb and corresponds to the exact region 249–252 of thevirus sequence. The APPMLPH consensus sequence isolated fromnon constrained heptapeptide library defines the epitoperecognized by 7G5D8 mAb and corresponds to the region 187–193with a single amino acid substitution, methionine to leucine atposition 190. The third consensus sequence LYWPHD isolated fromconstrained heptapeptide library defines the epitope recognizedby 4F5F6 mAb. It corresponds to an epitope without directequivalence with the virus sequence. The data presented hereshowed that 7G5D8 and DB4 mAbs are raised against linearepitopes while 4F5F6 mAb recognized a continuous topographic epitope.  相似文献   

11.
Summary Phage peptide libraries constitute powerful tools for the mapping of epitopes recognized by monoclonal antibodies (mAbs). Using screening of phage displayed random peptide libraries we have characterized the binding epitopes of three mAbs directed against the surface envelope glycoprotein (gp46) of the human T-cell leukemia virus type I (HTLV-I). Two phage libraries, displaying random heptapeptides with or without flanking cysteine residues, were screened for binding to mAbs 7G5D8, DB4 and 4F5F6. The SSSSTPL consensus sequence isolated from constrained heptapeptide library defines the epitope recognized by DB4 mAb and corresponds to the exact region 249–252 of the virus sequence. The APPMLPH consensus sequence isolated from non constrained heptapeptide library defines the epitope recognized by 7G5D8 mAb and corresponds to the region 187–193 with a single amino acid substitution, methionine to leucine at position 190. The third consensus sequence LYWPHD isolated from constrained heptapeptide library defines the epitope recognized by 4F5F6 mAb. It corresponds to an epitope without direct equivalence with the virus sequence. The data presented here showed that 7G5D8 and DB4 mAbs are raised against linear epitopes while 4F5F6 mAb recognized a continoous topographic epitope.  相似文献   

12.
Abstract Site-directed mutagenesis of the lamB gene was used to introduce individual cysteine substitutions at 20 sites in two regions (surface loops L7 and L8) of LamB protein significant in antibody recognition. Characterisation of cysteine mutants involved immunoblotting with three surface-specific monoclonal antibodies (mAb72, mAb302, mAb347) before and after incubation with thiol-specific reagents. In contrast to an earlier study that showed no amino acid changes affecting recognition by all three antibodies, changes at six amino acids were found to influence a common core epitope. These core sites included one residue (T336) in the predicted loop L7 containing amino acids 329–342 and four (Y379, N387, N389, K392, F398) in the large surface loop involving residues 370–412. Individual antibodies made additional but distinct contacts within the two studied regions, with mAb347 binding the most different and affected by seven substitutions in the 328–338 regions. The lamB mutants were also tested for phage λ receptor activity and starch binding before and after thiol modification and were useful in extending previous maps of these ligand binding sites.  相似文献   

13.
14.
The siglecs are a family of I-type lectins binding to sialic acids on the cell surface. Sialoadhesin (siglec-1) is expressed at much higher levels in inflammatory macrophages and specifically binds to alpha-2,3-sialylated N-acetyl lactosamine residues of glycan chains. The terminal disaccharide alpha-D-Neu5Ac-(2-->3)-beta-D-Gal is thought to be the main epitope recognized by sialoadhesin. To understand the basis of this biological recognition reaction we combined NMR experiments with a molecular modeling study. We employed saturation transfer difference (STD) NMR experiments to characterize the binding epitope of alpha-2,3-sialylated lactose, alpha-D-Neu5Ac-(2-->3)-beta-D-Gal-(1-->4)-D-Glc 1 to sialoadhesin at atomic resolution. The experimental results were compared to a computational docking model and to X-ray data of a complex of sialyl lactose and sialoadhesin. The data reveal that sialoadhesin mainly recognizes the N-acetyl neuraminic acid and a small part of the galactose moiety of 1. The crystal structure of a complex of sialoadhesin with sialyl lactose 1 was used as a basis for a modeling study using the FlexiDock algorithm. The model generated was very similar to the original crystal structure. Therefore, the X-ray data were used to predict theoretical STD values utilizing the CORCEMA-STD protocol. The good agreement between experimental and theoretical STD values indicates that a combined modeling/STD NMR approach yields a reliable structural model for the complex of sialoadhesin with alpha-D-Neu5Ac-(2-->3)-beta-D-Gal-(1-->4)-D-Glc 1 in aqueous solution.  相似文献   

15.
The interaction of the P-beta-Cat(19-44) peptide, a 26 amino acid peptide (K(19)AAVSHWQQQSYLDpSGIHpSGATTTAP(44)) that mimics the phosphorylated beta-Catenin antigen, has been studied with its monoclonal antibody BC-22, by transferred nuclear Overhauser effect NMR spectroscopy (TRNOESY) and saturation transfer difference NMR (STD NMR) spectroscopy. This antibody is specific to diphosphorylated beta-Catenin and does not react with the non-phosphorylated protein. Phosphorylation of beta-Catenin at sites Ser33 and Ser37 on the DSGXXS motif is required for the interaction of beta-Catenin with the ubiquitin ligase SCF(beta-TrCP). beta-TrCP is involved in the ubiquitination and proteasome targeting of the oncogenic protein beta-Catenin, the accumulation of which has been implicated in various human cancers. The three-dimensional structure of the P-beta-Cat(19-44) in the bound conformation was determined by TRNOESY NMR experiments; the peptide adopts a compact structure in the presence of mAb with formation of turns around Trp25 and Gln26, with a tight bend created by the DpS(33)GIHpS(37) motif; the peptide residues (D32-pS37) forming this bend are recognized by the antibody as demonstrated by STD NMR experiments. STD NMR studies provide evidence for the existence of a conformational epitope containing tandem repeats of phosphoserine motifs. The peptide's epitope is predominantly located in the large bend and in the N-terminal segment, implicating bidentate association. These findings are in excellent agreement with a recently published NMR structure required for the interaction of beta-Catenin with the SCF(beta-TrCP) protein.  相似文献   

16.
Four monoclonal antibodies (mAb) to non-human primate hemoglobin referred to as Cap-4, Cap-5, Rh-2, and Rh-4, and two mAb to human hemoglobin, referred to as H-1 and H-3 were isolated and were partially characterized. Binding studies with these mAb on a panel of hemoglobins and isolated alpha and beta globin chains revealed a unique reactivity pattern for each mAb. Amino acid sequence analysis of the antigens used to generate the binding data suggests that the specific recognition of certain hemoglobin antigens by each mAb is controlled by the presence of a particular amino acid at a specific position within the epitope. The use of synthetic peptides as antigens confirmed this observation for five of the mAb. No synthetic peptides were tested with the sixth mAb, Rh-2. The amino acids required for binding of mAb Cap-4, Cap-5, Rh-4, and Rh-2 to hemoglobin are alanine at beta 5, threonine at beta 13, glutamine at beta 125, and leucine at alpha 68. The non-human primate hemoglobin antibodies require a specific amino acid that is not present in human hemoglobin. The amino acid required for binding of Cap-4, Cap-5, and Rh-4 could arise by a single base change in the beta globin gene, whereas the amino acid required for Rh-2 binding would only occur if two base changes occurred. Thus these mAb are candidate probes for a somatic cell mutation assay on the basis of the detection of peripheral blood red cells that possess single amino acid substituted hemoglobin as a result of single base substitutions in the globin genes of precursor cells.  相似文献   

17.
The localization of opsonic and tissue-cross-reactive epitopes within the amino terminus of type 1 streptococcal M protein was investigated by using murine mAb raised against synthetic peptides of type 1 M protein. Two mAb (IIIA2 and IIIB8) reacted with epitopes located within amino acid residues 1-12 of type 1 M protein. These antibodies opsonized type 1 streptococci and did not cross-react with human kidney and heart tissue. Another mAb (IC7) reacted with mesangial cells of renal glomeruli and human myocardium. The cross-reactive epitope of mAb IC7 was localized to position 13-19, indicating that it is not the same epitope as the previously described vimentin-cross-reactive epitope at position 23-26 of type 1 M protein. In Western blots of mesangial cell and myocardial proteins, mAb IC7 cross-reacted with a 43-kDa protein. Neither vimentin nor actin inhibited the binding of mAb IC7 to the cross-reactive protein, as determined by Western blot or immunofluorescence inhibition tests. These results provide evidence that type 1 M protein contains at least one autoimmune epitope shared with both human glomeruli and myocardium.  相似文献   

18.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), encoded by nonstructural protein 5B (NS5B), is absolutely essential for the viral replication. Here we describe the development, characterization, and functional properties of the panel of monoclonal antibodies (mAbs) and specifically describe the mechanism of action of two mAbs inhibiting the NS5B RdRp activity. These mAbs recognize and bind to distinct linear epitopes in the fingers subdomain of NS5B. The mAb 8B2 binds the N-terminal epitope of the NS5B and inhibits both primer-dependent and de novo RNA synthesis. mAb 8B2 selectively inhibits elongation of RNA chains and enhances the RNA template binding by NS5B. In contrast, mAb 7G8 binds the epitope that contains motif G conserved in viral RdRps and inhibits only primer-dependent RNA synthesis by specifically targeting the initiation of RNA synthesis, while not interfering with the binding of template RNA by NS5B. To reveal the importance of the residues of mAb 7G8 epitope for the initiation of RNA synthesis, we performed site-directed mutagenesis and extensively characterized the functionality of the HCV RdRp motif G. Comparison of the mutation effects in both in vitro primer-dependent RdRp assay and cellular transient replication assay suggested that mAb 7G8 epitope amino acid residues are involved in the interaction of template-primer or template with HCV RdRp. The data presented here allowed us to describe the functionality of the epitopes of mAbs 8B2 and 7G8 in the HCV RdRp activity and suggest that the epitopes recognized by these mAbs may be useful targets for antiviral drugs.  相似文献   

19.
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is a member of the genus Arterivirus within the family Arteriviridae. N and GP3 proteins are the immunodominance regions of the PRRSV viral proteins. To identify the B-cell linear antigenic epitopes within HP-PRRSV N and GP3 proteins, two monoclonal antibodies (mAbs) against N and GP3 proteins were generated and characterized, designated as 3D7 and 1F10 respectively. The mAb 3D7 recognized only HuN4-F112 not the corresponding virulent strain (HuN4-F5). It also recognized two other commercial vaccines (JXA1-R and TJM-F92), but not two other HP-PRRSV strains (HNZJJ-F1 and HLJMZ-F2). The B-cell epitope recognized by the mAb 3D7 was localized to N protein amino acids 7–33. Western blot showed that the only difference amino acid between HuN4-F112-N and HuN4-F5-N did not change the mAb 3D7 recognization to N protein. The epitope targeted by the mAb 1F10 was mapped by truncated proteins. We found a new epitope (68-76aa) can be recognized by the mAb. However, the epitope could not be recognized by the positive sera, suggesting the epitope could not induce antibody in pigs. These results should extend our understanding of the antigenic structure of the N protein and antigen-antibody reactions of the GP3 protein in different species.  相似文献   

20.
Peptides containing N(alpha)-methylamino acids exhibit interesting therapeutic profiles and are increasingly recognized as potentially useful therapeutics. Unfortunately, their synthesis is hampered by the high price and nonavailability of many N(alpha)-methylamino acids. An efficient and practical three-step procedure for selective N-methylation of peptides on solid support is described. The procedure was based on the well known solid-phase N-methylation of N(alpha)-arylsulfonyl peptides, which was improved by using dimethylsulfate and the less expensive DBU as base. Every step of the procedure, amine activation by an o-nitrobenzenesulfonyl group, selective N-methylation and removal of the sulfonamide group, was optimized in respect of time and economy. The described optimized three-step procedure is performed in 35 min without solvent changes, instead of 3 h. Tripeptides (Fmoc-Phe-MeXaa-Leu-OH) containing N-methylated common amino acids were also prepared using the optimized procedure to demonstrate its compatibility with these amino acids. The described procedure allows an efficient synthesis of N(alpha)-methylamino acid containing peptides in a very short time using Fmoc solid-phase peptide synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号