共查询到20条相似文献,搜索用时 0 毫秒
1.
Evidence that oestrogen exerts an equivalent negative feedback action on LH secretion in male and female ferrets 总被引:1,自引:0,他引:1
Gonadally intact male ferrets in breeding condition, which received an aromatase inhibitor, 1,4,6-androstatriene-3,17-dione (ATD) s.c. in Silastic capsules, had significantly more LH pulses and higher mean LH concentrations in plasma than did control males implanted with empty capsules. Aromatase activity in the hypothalamus + preoptic area and temporal lobe was strongly suppressed by ATD treatment whereas circulating concentrations of testosterone and oestradiol were not affected. These results suggest that oestradiol, formed via neural aromatization of circulating testosterone, contributes to the feedback regulation of LH secretion in breeding male ferrets just as oestradiol of ovarian origin controls LH secretion in females. No sex difference was observed in the rate at which mean plasma LH concentrations rose after the removal from gonadectomized ferrets of s.c. Silastic capsules containing oestradiol. Daily s.c. injections of oestradiol in oil caused an equivalent, dose-dependent inhibition of LH pulse frequency and mean LH concentrations in plasma of male and female ferrets. These findings suggest that the negative feedback control of pulsatile LH secretion by oestrogen is not sexually differentiated in this reflexly ovulating species. The ferret appears to differ from spontaneously ovulating mammalian species in which the female is generally more sensitive than the male to the inhibitory feedback action of oestradiol on LH secretion. 相似文献
2.
Hashizume T Horiuchi M Nonaka S Kasuya E Kojima M Hosoda H Kangawa K 《Regulatory peptides》2005,126(1-2):61-65
Ghrelin, a novel endogenous growth hormone (GH) secretagogue, has been shown to exert very potent and specific GH-releasing activity in rats and humans. However, little is known about its GH-releasing activity and endocrine effects in domestic animals. To clarify the effect of ghrelin on GH secretion in vivo in ruminants, plasma GH responses to intra-arterial and intra-hypothalamic injections of rat ghrelin (rGhrelin) were examined in goats and cattle. The intra-arterial injection of 1 microg/kg BW of rGhrelin in ovariectomized goats failed to stimulate GH release, however, a dosage of 3 microg/kg BW significantly increased plasma GH concentrations (P<0.05). GH levels peaked at 15 min after the injection, then decreased to basal concentrations within 1 h after the injection. However, the secretory response to 3 microg/kg BW of rGhrelin was weaker than that of growth hormone-releasing hormone (GHRH) (0.25 microg/kg BW) (P<0.05). An infusion of 10 nmol of ghrelin into the medial basal hypothalamus (arcuate nucleus) significantly stimulated the release of GH in male calves (P<0.05). GH levels began to rise just after the infusions and peaked at 10 min, then decreased to the basal concentrations within 1 h after the injection. The present results show that ghrelin stimulates GH release in ruminants. 相似文献
3.
Farhy LS Veldhuis JD 《American journal of physiology. Regulatory, integrative and comparative physiology》2005,288(6):R1649-R1663
Ghrelin is a native ligand for the growth hormone secretagogue (GHS) receptor that stimulates pulsatile GH secretion markedly. At present, no formal construct exists to unify ensemble effects of ghrelin, GH-releasing hormone (GHRH), somatostatin (SRIF), and GH feedback. To model such interactions, we have assumed that ghrelin can stimulate pituitary GH secretion directly, antagonize inhibition of pituitary GH release by SRIF, oppose suppression of GHRH neurons in the arcuate nucleus (ArC) by SRIF, and induce GHRH secretion from ArC. The dynamics of such connectivity yield self-renewable GH pulse patterns mirroring those in the adult male and female rat and explicate the following key experimental observations. 1) Constant GHS infusion stimulates pulsatile GH secretion. 2) GHS and GHRH display synergy in vivo. 3) A systemic pulse of GHS stimulates GH secretion in the female rat at any time and in the male more during a spontaneous peak than during a trough. 4) Transgenetic silencing of the neuronal GHS receptor blunts GH pulses in the female. 5) Intracerebroventricular administration of GHS induces GH secretion. The minimal construct of GHS-GHRH-SRIF-GH interactions should aid in integrating physiological data, testing regulatory hypotheses, and forecasting innovative experiments. 相似文献
4.
Lund TD Munson DJ Haldy ME Setchell KD Lephart ED Handa RJ 《Biology of reproduction》2004,70(4):1188-1195
Equol (7-hydroxy-3[4'hydroxyphenyl]-chroman) is the major metabolite of the phytoestrogen daidzein, one of the main isoflavones found abundantly in soybeans and soy foods. Equol may be an important biologically active molecule based on recent studies demonstrating that equol can modulate reproductive function. In this study, we examined the effects of equol on prostate growth and LH secretion and determined some of the mechanisms by which it might act. Administration of equol to intact male rats for 4-7 days reduced ventral prostate and epididymal weight and increased circulating LH levels. Using binding assays, we determined that equol specifically binds 5alpha-dihydrotestosterone (DHT), but not testosterone, dehydroepiandrosterone, or estrogen with high affinity. Equol does not bind the prostatic androgen receptor, and has a modest affinity for recombinant estrogen receptor (ER) beta, and no affinity for ERalpha. In castrated male rats treated with DHT, concomitant treatment with equol blocked DHT's trophic effects on the ventral prostate gland growth and inhibitory feedback effects on plasma LH levels without changes in circulating DHT. Therefore, equol can bind circulating DHT and sequester it from the androgen receptor, thus altering growth and physiological hormone responses that are regulated by androgens. These data suggest a novel model to explain equol's biological properties. The significance of equol's ability to specifically bind and sequester DHT from the androgen receptor have important ramifications in health and disease and may indicate a broad and important usage for equol in the treatment of androgen-mediated pathologies. 相似文献
5.
G. Morel P. Chavassieux B. Barenton P. M. Dubois P. J. Meunier G. Boivin 《Cell and tissue research》1993,273(2):279-286
In order to determine whether growth hormone (GH) exerts a direct effect on osteoblasts, in vitro and in vivo immunocytological studies were carried out on newborn rat calvaria and a clonal osteoblast-like cell line (MC3T3-E1) isolated from newborn mouse calvaria. After exposure to human growth hormone (hGH) or 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), a significant increase in alkaline phosphatase activity was observed in MC3T3-E1 cells. Simultaneous exposure of MC3T3-E1 cells to hGH and 10 nM 1,25(OH)2D3 showed a synergistic effect of the two hormones on this activity. The optimal dose of hGH was 0.1 nM. An immunocytological procedure was performed on ultrathin frozen sections from 7-day-old rat calvaria and MC3T3-E1 cells cultured with hGH. GH-like immunoreactivity was observed in both cases. In calvaria, endogenous GH-like immunoreactivity was localized at the same ultrastructural level (plasma membrane, cytoplasmic and nuclear matrices) as exogenous GH-like immunoreactivity in MC3T3-E1 cells. Following the initial step of binding to the plasma membrane, GH may be internalized in the cytoplasmic matrix and nucleus. In situ hybridization revealed the presence of mRNA coding for GH receptor in calvaria cells. The density of these receptors seemed to be lower in osteoblasts than in hepatocytes. In MC3T3-E1 cells, hGH induced a dose-dependent secretion of insulin-like growth factor 1. In conclusion, these results indicate that GH may act directly on osteoblasts. 相似文献
6.
Sulfated gastrin stimulates ghrelin and growth hormone release but inhibits insulin secretion in cattle 总被引:1,自引:0,他引:1
This study was designed to determine the effects of gastrin on the circulating levels of ghrelin, growth hormone (GH), insulin, glucagon and glucose in ruminants. Two experiments were done in eight Holstein steers. Animals were randomly assigned to receive intravenous bolus injections: (1) 0.1% bovine serum albumin in saline as vehicle, 0.8, 4.0 and 20.0 μg/kg body weight (BW) of bovine sulfated gastrin-34; (2) vehicle, 0.53 μg/kg BW of bovine sulfated gastrin-17 alone or combined with 20.0 μg/kg BW of [d-Lys3]-GHRP-6, the selective antagonist of GHS-R1a. Blood samples were collected from −10 to 150 min relative to injection time. Concentrations of acyl and total ghrelin in response to gastrin-34 injection were significantly increased in a dose-dependent manner. Concentrations of GH were also markedly elevated by gastrin-34 injection; however, the effect of 20.0 μg/kg was weaker than that of 4.0 μg/kg. The three doses of gastrin-34 equally decreased insulin levels within 15 min and maintained the level until the time of last sampling. Gastrin-34 had no effect (P > 0.05) on the levels of glucagon and glucose. Levels of acyl ghrelin increased after administration of gastrin-17 alone or combined with [d-Lys3]-GHRP-6; however, [d-Lys3]-GHRP-6 did not block the elevation of GH by gastrin-17. The present results indicate that sulfated gastrin stimulates both ghrelin and GH release, but the GHS-R1a may not contribute to the release of GH by gastrin. Moreover, sulfated gastrin seems to indirectly maintain the homeostasis of blood glucose through the down-regulation of insulin in ruminants. 相似文献
7.
8.
9.
Veldhuis JD Bowers CY 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,301(4):R1143-R1152
Although stimulatory (feedforward) and inhibitory (feedback) dynamics jointly control neurohormone secretion, the factors that supervise feedback restraint are poorly understood. To parse the regulation of growth hormone (GH) escape from negative feedback, 25 healthy men and women were studied eight times each during an experimental GH feedback clamp. The clamp comprised combined bolus infusion of GH or saline and continuous stimulation by saline GH-releasing hormone (GHRH), GHRP-2, or both peptides after randomly ordered supplementation with placebo (both sexes) vs. E(2) (estrogen; women) and T (testosterone; men). Endpoints were GH pulsatility and entropy (a model-free measure of feedback quenching). Gender determined recovery of pulsatile GH secretion from negative feedback in all four secretagog regimens (0.003 ≤ P ≤ 0.017 for women>men). Peptidyl secretagog controlled the mass, number, and duration of feedback-inhibited GH secretory bursts (each, P < 0.001). E(2)/T administration potentiated both pulsatile (P = 0.006) and entropic (P < 0.001) modes of GH recovery. IGF-I positively predicted the escape of GH secretory burst number and mode (P = 0.022), whereas body mass index negatively forecast GH secretory burst number and mass (P = 0.005). The composite of gender, body mass index, E(2), IGF-I, and peptidyl secretagog strongly regulates the escape of pulsatile and entropic GH secretion from autonegative feedback. The ensemble factors identified in this preclinical investigation enlarge the dynamic model of GH control in humans. 相似文献
10.
11.
Atomistic molecular dynamics simulations have been used to investigate the conformational changes associated with the binding of human growth hormone (hGH) to the extracellular domains (ECD) of the human growth hormone receptor (hGHR), thereby shedding light on the mechanism of activation. It is shown that the removal of hGH from the hormone‐bound receptor complex results in a counter‐clockwise rotation of the twosubunits relative to each other by 30°–64° (average 45° ± 14°), in close agreement in terms of both the magnitude and direction of the rotation with that proposed based on mutagenesis experiments. In addition to providing evidence to support a rotational activation mechanism, the simulations have enabled the nature of the interaction interfaces in both the cytokine‐bound and unliganded hGHR states to be analyzed in detail. Proteins 2010. © 2009 Wiley‐Liss, Inc. 相似文献
12.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion. 相似文献
13.
Katayama T Shimamoto S Oda H Nakahara K Kangawa K Murakami N 《Biochemical and biophysical research communications》2007,357(4):865-870
The present study was performed to evaluate the role of glucagon in the regulation of ghrelin secretion from the rat stomach. mRNA for ghrelin and glucagon receptor was expressed predominantly in the lower body and pylorus of stomach, but little or not in the upper body and cardia. Ghrelin- and glucagon receptor-immunoreactive cells were detected in lamina propria mucosae of stomach and some cells expressed both. Intravenous administration of glucagon caused transient increases in both acyl- and desacyl-ghrelin levels in the gastric vein within 10 min, which was followed by gradual increases in desacyl-ghrelin levels until 60 min. Steady state levels of ghrelin mRNA in the stomach were increased by 1.9-fold 20 min after glucagon administration, but not at 5 or 120 min. These results suggest that glucagon stimulates acute release of both forms of ghrelin and thereafter upregulates synthesis and release of desacyl-ghrelin in the rat stomach. 相似文献
14.
Segal-Lieberman G Rubinfeld H Glick M Kronfeld-Schor N Shimon I 《American journal of physiology. Endocrinology and metabolism》2006,290(5):E982-E988
Melanin-concentrating hormone (MCH), a 19-amino acid orexigenic (appetite-stimulating) hypothalamic peptide, is an important regulator of energy homeostasis. It is cleaved from its precursor prepro-MCH (ppMCH) along with several other neuropeptides whose roles are not fully defined. Because pituitary hormones such as growth hormone (GH), ACTH, and thyroid-stimulating hormone affect body weight and composition, appetite, insulin sensitivity, and lipoprotein metabolism, we investigated whether MCH exerts direct effects on the human pituitary to regulate energy balance using dispersed human fetal pituitaries (21-22 wk gestation) and cultured GH-secreting adenomas. We found that MCH receptor-1 (MCH-R1), but not MCH receptor-2, is expressed in both normal (fetal and adult) human pituitary tissues and in GH cell adenomas. MCH (10 nM) stimulated GH release from human fetal pituitary cultures by up to 62% during a 4-h incubation (P < 0.05). Interestingly, neuropeptide EI (10 nM), which is also cleaved from ppMCH, increased human GH secretion by up to 124% in fetal pituitaries. A milder, albeit significant, induction of GH secretion by MCH (20%) was seen in cultured GH-secreting pituitary adenomas. A comparable stimulation of GH secretion was seen when cultured mouse pituitary cells were treated with MCH. Treatment of cultured GH adenoma cells with MCH (100 nM) induced extracellular signal-regulated kinases 1 and 2 phosphorylation, suggesting activation of MCH-R1. In aggregate, these data suggest that MCH may regulate pituitary GH secretion and imply a potential cross-talk mechanism between appetite-regulating neuropeptides and pituitary hormones. 相似文献
15.
Evidence for a stimulating factor of prolactin and growth hormone secretion present in brewery draff
Aquous extracts of brewery draff injected intravenously into ewes and cows induced prolactin and growth hormone (GH) secretion. The same draff added to the feed of cows appeared to be unable to significantly stimulate the blood level of prolactin and GH. In these experimental conditions, milk production was not enhanced by draff. Pure beta-glucan extracted from barley also stimulated hormone secretion when administered by the intravenous route. Barley, bier and draff therefore contain a beta-glucan-like factor which stimulates lactogenic hormone secretion. The amount present in draff is probably unable to cause an increase in hormones when administered orally. Hence, the well-established stimulatory effect of draff on milk production results from their nutritive value rather than from their ability of modulating the endocrine system. 相似文献
16.
17.
M K Dyck D Gagné M Ouellet J F Sénéchal E Bélanger D Lacroix M A Sirard F Pothier 《Nature biotechnology》1999,17(11):1087-1090
Production of foreign proteins in the tissues of transgenic animals represents an efficient and economical method of producing therapeutic and pharmaceutical proteins. In this study, we demonstrate that the mouse P12 gene promoter specific to the male accessory sex gland can be used to generate transgenic mice that express human growth hormone (hGH) in their seminal vesicle epithelium. The hGH is secreted into the ejaculated seminal fluids with the seminal vesicle lumen contents containing concentrations of up to 0.5 mg/ml. As semen is a body fluid that can be collected easily on a continuous basis, the production of transgenic animals expressing pharmaceutical proteins into their seminal fluid could prove to be a viable alternative to use of the mammary gland as a bioreactor. 相似文献
18.
We identified a growth hormone secretagogue-receptor (GHS-R) for ghrelin (GRLN) in the Japanese quail, and examined relationship between its receptor distribution and the effects of ghrelin on the gastrointestinal tract of the quail. GHS-R expression and GRLN-induced response were also investigated in the chicken and compared with quail. Several types of GHS-R, namely GHS-R1a-L, GHS-R1a-S, GHS-R1aV, GHS-R1b, GHS-R1bV and GHS-R1tv-like receptor, were identified in quail cerebellum cDNA. Amino acid sequence of quail GHS-R1a-L was 98% identical to that of chicken GHS-R1a. GHS-R1a mRNA was expressed heterogeneously in the quail gastrointestinal tract with a high expression level in the colon, moderate levels in the esophagus and crop, and low levels in the proventriculus, gizzard and small intestine. The region-specific expression pattern was almost the same as that in the chicken. Chicken and quail GRLN caused contraction in the crop, proventriculus and colon of both the quail and chicken, whereas the small intestine was less sensitive. However, the contractile efficacy was more potent in the chicken than in the quail. Chicken motilin (MTL), another gut peptide, structurally resemble to GRLN, caused marked contraction in the small intestine of both the quail and chicken, and the region-specific effect of MTL was opposite to that of GRLN. In conclusion, GRLN mainly induces the contractile responses of the upper and lower gastrointestinal tract and MTL stimulates motility of the middle intestine in both the quail and chicken. Regions in which GRLN acts were consistent with the distribution of GHS-R1a mRNA, but the contractile efficacy was different in the quail and chicken. These results suggest a species-specific contribution of GRLN in the regulation of avian gastrointestinal contractility. 相似文献
19.
The effect of immunization against somatostatin on growth rates and growth hormone secretion in the chicken 总被引:1,自引:0,他引:1
G S Spencer S Harvey A R Audsley K G Hallett S Kestin 《Comparative biochemistry and physiology. A, Comparative physiology》1986,85(3):553-556
The effect of both active passive immunization against somatostatin on growth rate and growth hormone levels was studied in chickens. Passive immunization against somatostatin by administration of antiserum had no effect on rate of growth of chickens and no persistent effect on circulating growth hormone (GH) levels. In acute experiments, administration of anti-somatostatin serum caused a marked elevation of GH levels in chickens at both 4 and 8 weeks of age, but the relative stimulation was greater in the older birds. Active immunization against somatostatin significantly stimulated growth rate in chickens, but was not shown to have a clear effect on circulating GH levels. These data suggest that somatostatin control over GH secretion may not be fully developed in the chicken at 4 weeks of age, but that immuno-neutralization of somatostatin can produce an increase rate of growth in chickens similar to that seen in mammals. 相似文献
20.
The role of circulating ghrelin in growth hormone (GH) secretion in freely moving male rats 总被引:5,自引:0,他引:5
Okimura Y Ukai K Hosoda H Murata M Iguchi G Iida K Kaji H Kojima M Kangawa K Chihara K 《Life sciences》2003,72(22):2517-2524
To examine the physiological significance of plasma ghrelin in generating pulsatile growth hormone (GH) secretion in rats, plasma GH and ghrelin levels were determined in freely moving male rats. Plasma GH was pulsatilely secreted as reported previously. Plasma ghrelin levels were measured by both N-RIA recognizing the active form of ghrelin and C-RIA determining total amount of ghrelin. Mean +/- SE plasma ghrelin levels determined by N-RIA and C-RIA were 21.6 +/- 8.5 and 315.5 +/- 67.5 pM, respectively, during peak periods when plasma GH levels were greater than 100 ng / ml. During trough periods when plasma GH levels were less than 10 ng / ml, they were 16.5 +/- 4.5 and 342.1 +/- 29.8 pM, respectively. There were no significant differences in plasma ghrelin levels between two periods. Next, effect of a GH secretagogue antagonist, [D-Lys-3]-GHRP-6, on plasma GH profiles was examined. There were no significant differences in both peak GH levels and area under the curves of GH (AUCs) between [D-Lys-3]-GHRP-6-treated and control rats. These findings suggest circulating ghrelin in peripheral blood does not play a role in generating pulsatile GH secretion in freely moving male rats. 相似文献