首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks.  相似文献   

3.
MOTIVATION: Biological processes in cells are properly performed by gene regulations, signal transductions and interactions between proteins. To understand such molecular networks, we propose a statistical method to estimate gene regulatory networks and protein-protein interaction networks simultaneously from DNA microarray data, protein-protein interaction data and other genome-wide data. RESULTS: We unify Bayesian networks and Markov networks for estimating gene regulatory networks and protein-protein interaction networks according to the reliability of each biological information source. Through the simultaneous construction of gene regulatory networks and protein-protein interaction networks of Saccharomyces cerevisiae cell cycle, we predict the role of several genes whose functions are currently unknown. By using our probabilistic model, we can detect false positives of high-throughput data, such as yeast two-hybrid data. In a genome-wide experiment, we find possible gene regulatory relationships and protein-protein interactions between large protein complexes that underlie complex regulatory mechanisms of biological processes.  相似文献   

4.
Protein--protein interaction maps: a lead towards cellular functions   总被引:6,自引:0,他引:6  
The availability of complete genome sequences now permits the development of tools for functional biology on a proteomic scale. Several experimental approaches or in silico algorithms aim at clustering proteins into networks with biological significance. Among those, the yeast two-hybrid system is the technology of choice to detect protein-protein interactions. Recently, optimized versions were applied at a genomic scale, leading to databases on the web. However, as with any other 'genetic' assay, yeast two-hybrid assays are prone to false positives and false negatives. Here we discuss these various technologies, their general limitations and the potential advances they make possible, especially when in combination with other functional genomics or bioinformatics analyses.  相似文献   

5.
6.
7.
Network responses to DNA damaging agents   总被引:4,自引:0,他引:4  
Begley TJ  Samson LD 《DNA Repair》2004,3(8-9):1123-1132
  相似文献   

8.
在生命体内,基因以及其它分子间相互作用形成复杂调控网络,生命过程都是以调控网络的形式存在,如从代谢通路网络到转录调控网络,从信号转导网络到蛋白质相互作用网络等等。因此,网络现象是生命现象的复杂本质和主要特征。本文系统地介绍了基于表达谱数据构建基因调控网络的布尔网络模型,线性模型,微分方程模型和贝叶斯网络模型,并对各种网络构建模型进行了深入的分析和总结。同时,文章从基因组序列信息、蛋白质相互作用信息和生物医学文献信息等方面讨论了基因调控网络方面构建的研究,这对从系统生物学水平揭示生命复杂机制具有重要的参考价值。  相似文献   

9.
10.
Summary: Studies of the functional proteins encoded by the poxvirus genome provide information about the composition of the virus as well as individual virus-virus protein and virus-host protein interactions, which provides insight into viral pathogenesis and drug discovery. Widely used proteomic techniques to identify and characterize specific protein-protein interactions include yeast two-hybrid studies and coimmunoprecipitations. Recently, various mass spectrometry techniques have been employed to identify viral protein components of larger complexes. These methods, combined with structural studies, can provide new information about the putative functions of viral proteins as well as insights into virus-host interaction dynamics. For viral proteins of unknown function, identification of either viral or host binding partners provides clues about their putative function. In this review, we discuss poxvirus proteomics, including the use of proteomic methodologies to identify viral components and virus-host protein interactions. High-throughput global protein expression studies using protein chip technology as well as new methods for validating putative protein-protein interactions are also discussed.  相似文献   

11.
Modeling of signaling networks   总被引:8,自引:0,他引:8  
Biochemical networks, including those containing signaling pathways, display a wide range of regulatory properties. These include the ability to propagate information across different time scales and to function as switches and oscillators. The mechanisms underlying these complex behaviors involve many interacting components and cannot be understood by experiments alone. The development of computational models and the integration of these models with experiments provide valuable insight into these complex systems-level behaviors. Here we review current approaches to the development of computational models of biochemical networks and describe the insights gained from models that integrate experimental data, using three examples that deal with ultrasensitivity, flexible bistability and oscillatory behavior. These types of complex behavior from relatively simple networks highlight the necessity of using theoretical approaches in understanding higher order biological functions.  相似文献   

12.
13.
14.
15.
16.
17.
We have developed a high-throughput yeast two-hybrid screening system (HTP-YTH) that incorporates yeast gap-repair cloning, multiple positive ( ADE2, HIS3, lacZ) and negative ( URA3-based) selection schemes to reduce the incidence of negative and false positive clones, and automation of laboratory procedures to increase throughput. This HTP-YTH system has been applied to the study of protein-protein interactions that are involved in rice defense signal transduction pathways. More than 100 genes involved in plant defense responses were selected from DuPont's rice expressed sequence tag (EST) databases as baits for HTP-YTH screening. Results from YTH screening of eight of these rice genes are presented in this paper. Not only have we identified known protein-protein interactions, but we have also discovered novel interactions, which may ultimately reveal the regulatory network of host defense signal transduction pathways. We have demonstrated that our HTP-YTH method can be used to map protein-protein interaction networks and signal transduction pathways in any system. In combination with other approaches, such efficient YTH screens can help us systemically to study the functions of known and unknown genes in the genomics era.  相似文献   

18.
Plant protein-protein interaction networks have not been identified by large-scale experiments. In order to better understand the protein interactions in rice, the Predicted Rice Interactome Network (PRIN; http://bis.zju.edu.cn/prin/) presented 76,585 predicted interactions involving 5,049 rice proteins. After mapping genomic features of rice (GO annotation, subcellular localization prediction, and gene expression), we found that a well-annotated and biologically significant network is rich enough to capture many significant functional linkages within higher-order biological systems, such as pathways and biological processes. Furthermore, we took MADS-box domain-containing proteins and circadian rhythm signaling pathways as examples to demonstrate that functional protein complexes and biological pathways could be effectively expanded in our predicted network. The expanded molecular network in PRIN has considerably improved the capability of these analyses to integrate existing knowledge and provide novel insights into the function and coordination of genes and gene networks.  相似文献   

19.
Genetic interaction analysis,in which two mutations have a combined effect not exhibited by either mutation alone, is a powerful and widespread tool for establishing functional linkages between genes. In the yeast Saccharomyces cerevisiae, ongoing screens have generated >4,800 such genetic interaction data. We demonstrate that by combining these data with information on protein-protein, prote in-DNA or metabolic networks, it is possible to uncover physical mechanisms behind many of the observed genetic effects. Using a probabilistic model, we found that 1,922 genetic interactions are significantly associated with either between- or within-pathway explanations encoded in the physical networks, covering approximately 40% of known genetic interactions. These models predict new functions for 343 proteins and suggest that between-pathway explanations are better than within-pathway explanations at interpreting genetic interactions identified in systematic screens. This study provides a road map for how genetic and physical interactions can be integrated to reveal pathway organization and function.  相似文献   

20.
Predicting active site residue annotations in the Pfam database   总被引:1,自引:0,他引:1  

Background

The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog). This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction.

Results

This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast.

Conclusion

Evaluation results of the proposed method using functional keyword and Gene Ontology (GO) annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号