首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain-enriched human FC96 protein shows a close sequence similarity to the Dictyostelium actin-binding protein coronin, which has been implicated in cell motility, cytokinesis, and phagocytosis. A phylogenetic tree analysis revealed that FC96 and two other mammalian molecules (p57 and IR10) form a new protein family, the coronin-like protein (Clipin) family; thus hereafter we refer to FC96 as ClipinC. A WD domain and a succeeding alpha-helical region are conserved among coronin and Clipin family members. ClipinC is predominantly expressed in the brain, and discrete areas in the mouse brain were intensely labeled with anti-ClipinC antibodies. ClipinC was also shown to bind directly to F-actin in vitro. Immunocytochemical analysis revealed that ClipinC accumulated at focal adhesions as well as at neurite tips and stress fibers. Furthermore, ClipinC was associated with vinculin, which is a major component of focal contacts. These results indicate that ClipinC is also a component part of the cross-bridge between the actin cytoskeleton and the plasma membrane. These findings and the previously reported function of coronin suggest that ClipinC may play specific roles in the reorganization of neuronal actin structure, a change that has been implicated in both cell motility and growth cone advance.  相似文献   

2.
3.
We have isolated a gene, termed CORO1C (human coronin-like actin-binding protein 1C), that encodes a new member of the coronin-like family of proteins. The cDNA consists of 3,857 nucleotides, with an open reading frame of 1,422 bp encoding a 474 amino acid protein. The deduced amino acid sequence shared 65% identity with p57 (human coronin-like actin-binding protein), as well as 46% identity with coronin, a protein first isolated from the slime mold Dictyostelium discoideum. Computer analysis predicted that the product of the CORO1C gene would contain five WD repeats in its N-terminal region and a coiled-coil motif in its C-terminal region, both of which are conserved among coronin-like proteins. CORO1C was ubiquitously expressed in all human tissues examined, in contrast to other known coronin-like molecules, each of which is expressed in a tissue-specific manner. Immunocytochemical staining demonstrated that CORO1C was co-localized with F-actin; therefore, the gene product is likely to be important in cytokinesis, motility, and signal transduction, as are the other members of this molecular family. We assigned this novel gene to chromosome 12q24.1 by fluorescence in situ hybridization.  相似文献   

4.
Coronin is a ubiquitous actin-binding protein representing a member of proteins portraying a WD-repeat sequence, including the beta-subunits of trimeric G-proteins. Coronin has been suggested to participate in multiple, actin-based physiological activities such as cell movement and cell division. Although the slow growth of coronin deletion mutants has been attributed to a defect in the fluid-phase uptake of nutrients, the exact role of coronin in cytoskeletal organization has not been elucidated. In this study, we examined a role of coronin in cytokinesis by analyzing the effect of coronin deletion on the actin cytoskeleton and its dynamic distribution using a green fluorescent protein (GFP)-coronin fusion protein. We show that GFP-coronin works similarly to natural coronin in vivo and in vitro. In live cells, GFP-coronin was found to accumulate into the cleavage furrow during cytokinesis. The fluorescence pattern suggests its association to the contractile ring throughout cytokinesis. Interestingly, a substantial amount of coronin was also bound to F-actin at the prospective posterior cortex of the daughter cells. We also show that the coronin null cells reveal irregularities in organization of actin and myosin II and divide by a process identical to the traction-mediated cytofission reported in myosin II mutants. Overall, this study suggests that coronin is essential for organizing the normal actin cytoskeleton and plays a significant role in cell division.  相似文献   

5.
A soluble actin binding protein of Dictyostelium discoideum cells has been extracted and purified from precipitated actin-myosin complexes. This protein with a relative molecular mass of 55 kDa has been named coronin because of its association with crown-shaped cell surface projections of growth-phase D. discoideum cells. In aggregating cells, which respond most sensitively to the chemoattractant cyclic AMP, coronin is accumulated at the front where surface projections are directed towards a cAMP source. Since these cells can quickly change shape and polarity, it follows that coronin is rapidly reshuffled within the cells during motion and chemotactic orientation. The cDNA derived sequence of coronin indicates a protein of 49 kDa, consisting of an amino-terminal domain with similarities to the beta subunits of G proteins and a carboxy-terminal domain with a high tendency for alpha-helical structure. It is hypothesized that coronin is implicated in the transmission of chemotactic signals from cAMP receptors in the plasma membrane through G proteins to the cortical cytoskeleton, whose structure and activity is locally modulated.  相似文献   

6.
On adhesion to host cells the flagellate Trichomonas vaginalis switches to an amoeboid form rich in actin microfilaments. We have undertaken the identification of actin-associated proteins that regulate actin dynamics. A monoclonal antibody 4C12 raised against a cytoskeletal fraction of T. vaginalis labeled a protein doublet at circa 50 kDa. These two bands were recognized by the antibody against Dictyostelium discoideum coronin. During cell extraction and actin polymerization, T. vaginalis coronin cosedimented with F-actin. By two-dimensional gel electrophoresis, the protein doublet was separated into two sets of isoforms covering two Ip zones around 6 and 7. By screening a T. vaginalis library with 4C12, two clones Cor 1 and Cor 2 were isolated. This gene duplicity is a particularity among unicellular organisms examined. The complete sequence of the gene Cor 1 encodes a 435-residue protein with a calculated molecular mass of 48 kDa and Ip of 5.58. The incomplete sequence Cor 2 was very similar but with a more basic calculated Ip than Cor 1 on the same region. T. vaginalis coronin had 50% similarity with the coronin family, possessing the five WD-repeats and a leucine zipper in its C-terminal part. Double immunofluorescence labeling showed that coronin mainly colocalized with actin at the periphery of the adherent amoeboid cells. However, coronin labeling displayed patches within a reticular array. Immunogold electron microscopy confirmed the coronin labeling in the actin-rich microfilamentous fringe beneath the plasma membrane, with accumulation in phagocytic zones and pseudopodial extensions. In T. vaginalis, one of the first emerging lineage of eukaryotes, coronin seems to play an important role in actin dynamics and may be a downstream target of a signaling mechanism for the cytoskeleton reorganization.  相似文献   

7.
Coronins constitute an evolutionarily conserved family of WD-repeat actin-binding proteins, which can be clearly classified into two distinct groups based on their structural features. All coronins possess a conserved basic N-terminal motif and three to ten WD repeats clustered in one or two core domains. Dictyostelium and mammalian coronins are important regulators of the actin cytoskeleton, while the fly Dpod1 and the yeast coronin proteins crosslink both actin and microtubules. Apart from that, several coronins have been shown to be involved in vesicular transport. C. elegans POD-1 and Drosophila coro regulate the actin cytoskeleton, but also govern vesicular trafficking as indicated by mutant phenotypes. In both organisms, defects in cytoskeleton and trafficking lead to severe developmental defects ranging from abnormal cell division to aberrant formation of morphogen gradients. Finally, mammalian coronin 7 appears not to execute any cytoskeleton-related functions, but rather participates in regulating Golgi trafficking. Here, we review recent data providing more insight into molecular mechanisms underlying the regulation of F-actin structures, cytoskeletal rearrangements and intracellular membrane transport by coronin proteins and the way that they might link cytoskeleton with trafficking in development and disease.  相似文献   

8.
Coronin is an actin-binding protein in Dictyostelium discoideum that is enriched at the leading edge of the cells and in projections of the cell surface called crowns. The polypeptide sequence of coronin is distinguished by its similarities to the beta-subunits of trimeric G proteins (E. L. de Hostos, B. Bradtke, F. Lottspeich, R. Guggenheim, and G. Gerisch, 1991. EMBO (Eur. Mol. Biol. Organ.) J. 10:4097-4104). To elucidate the in vivo function of coronin, null mutants have been generated by gene replacement. The mutant cells lacking coronin grow and migrate more slowly than wild-type cells. When these cor- cells grow in liquid medium they become multinucleate, indicating a role of coronin in cytokinesis. To explore this role, coronin has been localized in mitotic wild-type cells by immunofluorescence labeling. During separation of the daughter cells, coronin is strongly accumulated at their distal portions including the leading edges. This contrasts with the localization of myosin II in the cleavage furrow and suggests that coronin functions independently of the conventional myosin in facilitating cytokinesis.  相似文献   

9.
Actin polymerization can be induced in Dictyostelium by compressing the cells to bring phagosomes filled with large particles into contact with the plasma membrane. Asymmetric actin assembly results in rocketing movement of the phagosomes. We show that the compression-induced assembly of actin at the cytoplasmic face of the plasma membrane involves the Arp2/3 complex. We also identify two other proteins associated with the mechanically induced actin assembly. The class I myosin MyoB accumulates at the plasma membrane-phagosome interface early during the initiation of the response, and coronin is recruited as the actin filaments are disassembling. The forces generated by rocketing phagosomes are sufficient to push the entire microtubule apparatus forward and to dislocate the nucleus.  相似文献   

10.
Coronins are highly conserved regulators of the actin cytoskeleton whose structure and biological function have remained mysterious until recently. They were originally identified in Dictyostelium, where they localize to actin-rich crown-like structures on the dorsal surface of cells. Coronins bind filamentous actin and the Arp2/3 complex and are involved in modulating actin dynamics. Unlike other known Arp2/3-binding proteins, coronins inhibit Arp2/3 nucleating activity. Genetic data from Dictyostelium, yeast and Drosophila indicate that coronins are important regulators of several actin-dependent physiological processes. Here, we review recent insights into mammalian coronin structure, function and regulation and identify key questions that remain unanswered in this field.  相似文献   

11.
12.
Didichenko SA  Segal AW  Thelen M 《FEBS letters》2000,485(2-3):147-152
Coronin, a 57 kDa actin binding protein elutes with an apparent molecular mass of 400-600 kDa from gel filtration columns. This fraction is not unrelated to the reported 200 kDa complex where coronin is associated with phox proteins of the NADPH-oxidase. Phosphatidylinositol 3-kinase (PI 3-kinase) solubilizes coronin from the 400-600 kDa complex, thus constitutive active PI 3-kinase is sufficient to disrupt the complex, whereas wortmannin stabilizes it. Conversely, the phox protein associated pool of coronin is PI 3-kinase independent. During phagocytosis coronin is recruited together with PI 3-kinase to membranes of nascent and early phagosomes co-localizing with the actin cytoskeleton, confirming that coronin contributes to phagocytosis.  相似文献   

13.
Mechanisms for activating the actin-related protein 2/3 (Arp2/3) complex have been the focus of many recent studies. Here, we identify a novel mode of Arp2/3 complex regulation mediated by the highly conserved actin binding protein coronin. Yeast coronin (Crn1) physically associates with the Arp2/3 complex and inhibits WA- and Abp1-activated actin nucleation in vitro. The inhibition occurs specifically in the absence of preformed actin filaments, suggesting that Crn1 may restrict Arp2/3 complex activity to the sides of filaments. The inhibitory activity of Crn1 resides in its coiled coil domain. Localization of Crn1 to actin patches in vivo and association of Crn1 with the Arp2/3 complex also require its coiled coil domain. Genetic studies provide in vivo evidence for these interactions and activities. Overexpression of CRN1 causes growth arrest and redistribution of Arp2 and Crn1p into aberrant actin loops. These defects are suppressed by deletion of the Crn1 coiled coil domain and by arc35-26, an allele of the p35 subunit of the Arp2/3 complex. Further in vivo evidence that coronin regulates the Arp2/3 complex comes from the observation that crn1 and arp2 mutants display an allele-specific synthetic interaction. This work identifies a new form of regulation of the Arp2/3 complex and an important cellular function for coronin.  相似文献   

14.
Coronin-1 is an actin-associated protein whose function in actin dynamics has remained obscure. All coronin proteins have a variable N-terminal domain, followed by WD repeats and a C-terminal coiled-coil dimerization domain. Transfection of coronin-1-GFP into RAW 264.7 cells revealed that coronin rapidly and transiently associates with the phagosome. To determine if coronin is involved in mammalian phagocytosis we used a dominant-negative approach by expressing only the central WD domains. However, this caused cell rounding and dissociation from the substratum, hampering analysis of their phenotype. We therefore developed TAT-fusion constructs of coronin-1 WD domains to acutely introduce the recombinant protein fragment into live cells. We show that although TAT-WD has no effect on binding of opsonized RBCs to RAW 264.7 cells, receptor clustering or several downstream signaling events, lamellipodial extensions, and actin accumulation at the base of the bound particle were diminished. Furthermore, Arp3 accumulation at the phagosome was impaired after TAT-WD treatment. Interestingly, whereas coronin-1 also accumulates at the sites of actin remodeling associated with Salmonella invasion, TAT-WD had no effect on this process. Together, our data demonstrates that coronin-1 is required for an early step in phagosome formation, consistent with a role in actin polymerization.  相似文献   

15.
The actin interaction of coronin 3 has been mainly documented by in vitro experiments. Here, we discuss coronin 3 properties in the light of new structural information and focus on assays that reflect in vivo roles of coronin 3 and its impact on F-actin-associated functions. Using GFP-tagged coronin 3 fusion proteins and RNAi silencing we show that coronin 3 has roles in wound healing, protrusion formation, cell proliferation, cytokinesis, endocytosis, axonal growth, and secretion. During formation of cell protrusions actin accumulation precedes the focal enrichment of coronin 3 suggesting a role for coronin 3 in events that follow the initial F-actin assembly. Moreover, we show that coronin 3 similar to other coronins interacts with the Arp2/3-complex and cofilin indicating that this family in general is involved in regulating Arp2/3-mediated events.  相似文献   

16.
Arp2/3 complex is a key actin filament nucleator that assembles branched actin networks in response to cellular signals. The activity of Arp2/3 complex is regulated by both activating and inhibitory proteins. Coronins make up a large class of actin-binding proteins previously shown to inhibit Arp2/3 complex. Although coronins are known to play a role in controlling actin dynamics in diverse processes, including endocytosis and cell motility, the precise mechanism by which they regulate Arp2/3 complex is unclear. We conducted a detailed biochemical analysis of budding yeast coronin, Crn1, and found that it not only inhibits Arp2/3 complex but also activates it. We mapped regions required for activation and found that Crn1 contains a sequence called CA, which is conserved in WASp/Scar proteins, the prototypical activators of Arp2/3 complex. Point mutations in CA abolished activation of Arp2/3 complex by Crn1 in vitro. Confocal microscopy and quantitative actin patch tracking showed that these mutants had defective endocytic actin patch dynamics in Saccharomyces cerevisiae, indicating that activation of Arp2/3 complex by coronin is required for normal actin dynamics in vivo. The switch between the dual modes of regulation by Crn1 is controlled by concentration, and low concentrations of Crn1 enhance filament binding by Arp2/3 complex, whereas high concentrations block binding. Our data support a direct tethering recruitment model for activation of Arp2/3 complex by Crn1 and suggest that Crn1 indirectly inhibits Arp2/3 complex by blocking it from binding actin filaments.  相似文献   

17.
Reduction of actin-related protein complex 2/3 in fetal Down syndrome brain   总被引:5,自引:0,他引:5  
Down syndrome (DS) patients present with morphological abnormalities in brain development, leading to mental retardation. Given the importance of actin cytoskeleton to form the basis of various cell functions, the regulation of actin system is crucial during brain development. We therefore aimed to study the expression levels of actin binding proteins in fetal DS and control cortex. We evaluated the levels of eight actin binding proteins using the proteomic approach of two-dimensional gel electrophoresis with subsequent mass spectroscopical identification of protein spots. In fetal DS brain we found a significant reduction of the actin-related protein complex 2/3 (Arp2/3) 20 kDa subunit and the coronin-like protein p57, which are involved in actin filament cross-linking and nucleation and capping of actin filaments. We conclude that deficient levels of these proteins may, at least partially, be involved in the dysgenesis of the brain in DS.  相似文献   

18.
We have recently reported that GDP-bound Rab27a regulates endocytosis of the insulin secretory membrane via its binding to coronin 3, an actin-binding protein. The aim of this study was to examine the participation of actin assembly in the Rab27a-dependent regulation of endocytosis using a pancreatic beta cell line, MIN6. Coronin 3 promoted F-actin bundling only in the presence of GDP-Rab27a. This effect was independent of coronin-3-binding to the actin-related proteins 2 and 3 (Arp2/3). Uptake of anti-phogrin-lumen antibody into MIN6 was inhibited by anti-coronin-3-C antibody which recognizes the actin-binding site. This inhibition was also observed with coronin-3-R28D, which lacks in actin binding. These results suggest that coronin 3 is a genuine GDP-Rab27a effector, and that controls endocytosis of the secretory membrane via modulating actin assembly in pancreatic β-cells.  相似文献   

19.
Actin filaments in cells depolymerize rapidly despite the presence of high concentrations of polymerizable G actin. Cofilin is recognized as a key regulator that promotes actin depolymerization. In this study, we show that although pure cofilin can disassemble Listeria monocytogenes actin comet tails, it cannot efficiently disassemble comet tails in the presence of polymerizable actin. Thymus extracts also rapidly disassemble comet tails, and this reaction is more efficient than pure cofilin when normalized to cofilin concentration. By biochemical fractionation, we identify Aip1 and coronin as two proteins present in thymus extract that facilitate the cofilin-mediated disassembly of Listeria comet tails. Together, coronin and Aip1 lower the amount of cofilin required to disassemble the comet tail and permit even low concentrations of cofilin to depolymerize actin in the presence of polymerizable G actin. The cooperative activities of cofilin, coronin, and Aip1 should provide a biochemical basis for understanding how actin filaments can grow in some places in the cell while shrinking in others.  相似文献   

20.
《The Journal of cell biology》1995,131(6):1483-1493
Many actin-binding proteins affect filament assembly in vitro and localize with actin in vivo, but how their molecular actions contribute to filament assembly in vivo is not understood well. We report here that capping protein (CP) and fimbrin are both important for actin filament assembly in vivo in Saccharomyces cerevisiae, based on finding decreased actin filament assembly in CP and fimbrin mutants. We have also identified mutations in actin that enhance the CP phenotype and find that those mutants also have decreased actin filament assembly in vivo. In vitro, actin purified from some of these mutants is defective in polymerization or binding fimbrin. These findings support the conclusion that CP acts to stabilize actin filaments in vivo. This conclusion is particularly remarkable because it is the opposite of the conclusion drawn from recent studies in Dictyostelium (Hug, C., P.Y. Jay, I. Reddy, J.G. McNally, P.C. Bridgman, E.L. Elson, and J.A. Cooper. 1995. Cell. 81:591-600). In addition, we find that the unpolymerized pool of actin in yeast is very small relative to that found in higher cells, which suggests that actin filament assembly is less dynamic in yeast than higher cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号