首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-pool solvent/detergent (SD) plasma for transfusion exhibits reduced alpha 2-antiplasmin (alpha2-AP; SERPINF2) functional activity. The reason for the loss of alpha2-AP has not been described and could be due to the SD incubation itself and/or to the processing steps implemented to remove the solvent and the detergent. We have studied alpha2-AP activity during six down-scale preparations of plasma virally-inactivated by 1% (v/v) TnBP combined with two different non-ionic detergents, either 1% Triton X-100 or 1% Triton X-45, at 31 degrees C for 4h. The SD-treated plasmas were then extracted with 7.5% (v/v) soybean oil, centrifuged at 3800 x g for 30 min, and subjected to hydrophobic interaction chromatography (HIC) to remove the SD agents. Control runs without TnBP and Triton were performed to evidence possible impacts of each process step on alpha2-AP activity. TnBP, Triton X-100, and Triton X-45 were measured at all stages of the processes to evaluate potential interferences with the alpha2-AP assay. Alpha 2-AP activity was about 10% that of starting plasma after 1% TnBP-1% Triton X-100 incubation and about 50% after oil extractions, centrifugation, and HIC. By contrast about 73% of the antiplasmin activity was found after the incubation with 1% TnBP and 1% Triton X-45, 88% after removal of the SD agents by oil extractions, 90% after centrifugation and 92% after HIC. The control runs performed without SD agents showed that the process steps did not affect the alpha2-AP activity. In conclusion, the agent altering alpha2-AP activity in SD-plasma is Triton X-100. The choice of detergents for the SD viral inactivation of therapeutic plasma fractions used in patients at risk of fibrinolysis should consider the impact on alpha2-AP activity.  相似文献   

2.
Biodesulfurization (BDS) in a bioreactor packed with a catalytic bed of silica containing immobilized Rhodococcus rhodochrous was studied. Various bed lengths and support particle sizes were evaluated for BDS of dibenzothiophene (DBT) and gas oil. The sulfur-containing substrates were introduced separately into the bioreactor at different feed flows. Higher removal of sulfur from DBT and gas oil was achieved with a long bed, lower substrate flow, and larger sizes of immobilization particles. The packed bed bioreactor containing metabolic active cells was recycled and maintained BDS activity.  相似文献   

3.
In this study, biodesulfurization (BDS) was carried out using immobilized Rhodococcus erythropolis KA2-5-1 in n-tetradecane containing dibenzothiophene (DBT) as a model oil (n-tetradecane/immobilized cell biphasic system). The cells were immobilized by entrapping them with calcium alginate, agar, photo-crosslinkable resin prepolymers (ENT-4000 and ENTP-4000), and urethane prepolymers (PU-3 and PU-6); and it was found that ENT-4000-immobilized cells had the highest DBT desulfurization activity in the model oil system without leakage of cells from the support. Furthermore, ENT4000-immobilized cells could catalyze BDS repeatedly in this system for more than 900 h with reactivation; and recovery of both the biocatalyst and the desulfurized model oil was easy. This study would give a solution to the problems in BDS, such as the troublesome process of recovering desulfurized oil and the short life of BDS biocatalysts.  相似文献   

4.
Surfactants and inorganic ligands are pointed as efficient to simultaneous removal of heavy metals and hydrophobic organic pollutants from soil. However, the biosurfactants are potentially less toxic to soil organisms than other chemical agents. Thus, in this study the efficiency of combinations of iodide (I) ligand and surfactants produced by different bacterial species in the simultaneous removal of cadmium (Cd2+) and phenanthrene in a Haplustox soil sample was investigated. Four microbial surfactants and the synthetic surfactant Triton X-100 were tested with different concentrations of ligand. Soil samples contaminated with Cd2+ and phenanthrene underwent consecutive washings with a surfactant/ligand solution. The removal of Cd2+ increased with increased ligand concentration, particularly in solutions containing biosurfactants produced by the bacterial strains Bacillus subtilis LBBMA155 (lipopeptide) and Flavobacterium sp. LBBMA168 (mixture of flavolipids) and Triton X-100. Maximum Cd2+ removal efficiency was 99.2% for biosurfactant produced by Arthrobacter oxydans LBBMA 201 (lipopeptide) and 99.2% for biosurfactant produced by Bacillus sp. LBBMA111A (mixed lipopeptide) in the presence of 0.336 mol iodide l−1, while the maximum efficiency of Triton X-100 removal was 65.0%. The biosurfactant solutions removed from 80 to 88.0% of phenanthrene in soil, and the removal was not influenced by the presence of the ligand. Triton X-100 removed from 73 to 88% of the phenanthrene and, differently from the biosurfactants, iodide influenced the removal efficiency. The results indicate that the use of a single washing agent, called surfactant-ligand, affords simultaneous removal of organic contaminants and heavy metals.  相似文献   

5.
Pseudomonas sp. sp48, a marine bacterium isolated from Bahary area (Alexandria, Egypt), showed a high potency for oil degradation up to 1.5%. Additionally, it showed an ability to consume aromatic hydrocarbons (phenol & naphthalene) and aliphatic (pentadecane) reaching to 79; 73; 62%, respectively. In the current study, Plackett-Burman factorial design was applied to evaluate culture conditions affecting the degradation potency. Analysis of Plackett-Burman design results revealed that, the most significant variables affecting oil removal were magnesium sulfate, inoculum size, glucose and Triton X-100. To optimize the levels of these significant variables Response Surface Methodology (RSM) was followed. In this respect, the three-level Box–Behnken design was employed and a polynomial model was created to correlate the relationship between the three variables and oil removal. The optimal combinations of the major constituents of media that was evaluated from the non-linear optimization algorithm of EXCEL-Solver was as follows: (w/v%) 1 crude oil, 0.5 peptone, 0.5 yeast-extract, 1 ammonium chloride, 0.7418 D-glucose, 0.5 MgSO4·7H2O, 0.1 Triton X-100 and inoculums size 4.18?ml% in natural sea water at pH 7; 30?°C incubation temperature, 200?rpm for 6?days. The predicted optimum oil removal was 89%, which is 2.4 times more than the basal medium.  相似文献   

6.
为提高D-阿拉伯糖醇的产量,研究不同类型表面活性剂对德巴利汉逊酵母(Debaryomyces hansenii)发酵生产D-阿拉伯糖醇的影响。结果表明:阳离子和阴离子表面活性剂对D-阿拉伯糖醇的生成几乎没有影响,部分非离子表面活性剂对D-阿拉伯糖醇的生产有促进作用,其中Trition X-100的影响最为显著。在不同发酵时间加入不同浓度的Trition X-100均对D-阿拉伯糖醇的生产有促进作用,当发酵24 h添加30 g/LTrition X-100时,D-阿拉伯糖醇的产量达到最高(92.9 g/L),相比于对照增加了27.2%。  相似文献   

7.
从含硫土壤中分离筛选出一株专一性脱硫菌Fds-1,经生理生化指标和16S rRNA序列分析鉴定其属于枯草芽孢杆菌(Bacillus subtilis)。用Gibb’s试剂显色和气相色谱-质谱联用分析表明,该菌株通过“4S”途径脱除有机硫。实验发现Fds-1的最佳脱硫活性在30℃,在此温度下72h内能脱除约0.5mmol/L DBT中的有机硫。Fds-1菌株对有机硫化合物的利用情况和柴油脱硫前后烃组分比较都进一步证明该菌株适合于柴油生物脱硫。利用休止细胞对不同组分柴油的脱硫研究表明,脱硫菌株Fds-1对精制柴油中的DBT类化合物的降解能力强。因此,该菌株对精制低硫柴油的深度脱硫具有应用意义。  相似文献   

8.
研究了不同浓度表面活性剂Tween-80,Triton X-100,SDS对大肠杆菌生产α-环糊精葡萄糖基转移酶(α-CGT酶)的影响。结果表明:发酵初始添加Tween-80和Triton X-100的最适浓度分别为2%,0.5%,最终胞外酶活分别达2.03U/ml和4.92U/ml,相对于未添加表面活性剂时提高4.6倍和12.67倍,且改变添加时间不能提高酶的产量;发酵36 h添加0.02%SDS对α-CGT酶产量促进最大,最终胞外酶活达5.31U/ml,较对照组提高12.75倍。表面活性剂对α-CGT酶生产的促进作用可能是由大肠杆菌细胞内外膜渗透性增加所致,使细胞周质空间中α-CGT酶能更加快速地渗透到胞外。  相似文献   

9.
Cai Y  Liao X  Liang X  Ding Y  Sun J  Zhang D 《New biotechnology》2011,28(6):588-592
Hypocrellins are important photodynamic therapy compounds for cancer disease. The effect of surfactants on hypocrellin production of Shiraia sp. SUPER-H168 was evaluated under submerged fermentation condition. The production of hypocrellins could reach 780.6 mg/l with the addition of Triton X-100, confirmed by color reaction, high performance liquid chromatography, electrospray ionization mass spectrometry and nuclear magnetic resonance experiments. According to our observation, treatment of the culture at the beginning of the fermentation was most effective, and the yield of hypocrellins was much lower with the addition of Triton X-100 during the log phase and stationary phase. Shiraia sp. SUPER-H168 could not produce hypocrellin with the addition of other tested surfactants, such as Tween 40, Triton X-114 and SDS. The experimental results indicated that Shiraia sp. SUPER-H168 could not produce hypocrellins without Triton X-100 under submerged fermentation condition.  相似文献   

10.
Detection of low amounts of Cryptosporidium oocysts in raw water sources is considered an important component in the management, prevention and control of Cryptosporidium in drinking water supplies as Cryptosporidium causes massive waterborne outbreaks worldwide. As Cryptosporidium has a robust oocyst that is extremely resistant to chlorine and other drinking water disinfectants, both the freeze-thaw method and DNA extraction kits have been commonly used for extracting and purifying DNA from the oocyst. However, the DNA extraction procedures are time consuming and costly. Therefore, a simple and low-cost method to extract and purify DNA from the robust oocyst has been required. In this study, we discussed a simple method for detecting Cryptosporidium DNA with the anionic surfactant, n-lauroylsarcosine sodium salt (LSS) using the loop-mediated isothermal amplification (LAMP) to eliminate the need for the freeze-thaw method and the DNA extraction kits. As a result, Bst DNA polymerase was inhibited by 0.1% LSS but not 0.01% LSS and 5% Triton X-100 or Tween 20. Although DNA was extracted from the oocysts by incubating with 0.1% LSS at 90°C for 15 min, Bst DNA polymerase was inhibited by 0.1% LSS. The inhibition by 0.1% LSS was suppressed by adding 5% of the nonionic surfactants, Triton X-100 or Tween 20. The concentration of LSS in a LAMP tube was 0.01% while that in an incubation tube was 0.1%, because LSS in an incubation tube was diluted by a factor of 10 at the DNA amplification process. Therefore, we found that ten oocysts of Cryptosporidium parvum could be detected by incubation with 0.1% LSS, without removing LSS or adding the nonionic surfactants in the LAMP method.  相似文献   

11.
Cells of Candida guilliermondii (ATCC 201935) were permeabilised with surfactant treatment (CTAB or Triton X-100) or a freezing-thawing procedure. Treatments were monitored by in situ activities of the key enzymes involved in xylose metabolism, that is, glucose-6-phosphate dehydrogenase (G6PD), xylose reductase (XR) and xylitol dehydrogenase (XD). The permeabilising ability of the surfactants was dependent on its concentration and incubation time. The optimum operation conditions for the permeabilisation of C. guilliermondii with surfactants were 0.41 mM (CTAB) or 2.78 mM (Triton X-100), 30°C, and pH 7 at 200 rpm for 50 min. The maximum permeabilisation measured in terms of the in situ G6PD activity observed was, in order, as follows: CTAB (122.4±15.7U/g(cells)) > freezing-thawing (54.3 ± 1.9U/g(cells))>Triton X-100 (23.5 ± 0.0U/g(cells)). These results suggest that CTAB surfactant is more effective in the permeabilisation of C. guilliermondii cells in comparison to the freezing-thawing and Triton X-100 treatments. Nevertheless, freezing-thawing was the only treatment that allowed measurable in situ XR activity. Therefore, freezing-thawing permeabilised yeast cells could be used as a source of xylose reductase for analytical purposes or for use in biotransformation process such as xylitol preparation from xylose. The level of in situ xylose reductase was found to be 13.2 ± 0.1 U/g(cells).  相似文献   

12.
The crystalline acid carboxypeptidase from Penicillium janthinellum IFO-8070 was stabilized by the addition of nonionic surfactants, such as Triton X-100, Brij 35, Span 40, and Tween 20. In the presence of these stabilizers, extremely diluted enzyme (0.3 μg/ml of 50 mm sodium acetate buffer, pH 3.7) was almost completely stable after 2 days incubation at 25°C. About 35% and 20% of the enzyme activities were activated by the addition of Triton X-100 and Brij 35, respectively. Triton X-100 completely retarded inactivation at freezing (?15°C). On the other hand, anionic surfactants of SLS and LBSA, and cationic surfactant of cetyltrimethylammonium bromide strongly inactivated the enzyme. The inhibition of the fatty acid series was roughly proportional to the molecular weight of the inhibitor. Di-, and Tri-carboxylic acids also inhibited the enzyme activity.  相似文献   

13.
Lipase from Rhizomucor miehei (RML) was immobilized on octyl-agarose (OC) at different loadings. Using low enzyme loadings (1/7 of the maximum loading), the incubation of the enzyme with polyethylenimine (PEI) increased the resistance to enzyme desorption in the presence of Triton X-100. However, more than 10% of the enzyme activity could be released from the OC-RML-PEI. The same treatment using fully loaded biocatalyst reduced the enzyme desorption to less than 5%. Further treatment with dextran sulfate (DS) of the PEI treaded immobilized enzyme fully avoids the enzyme desorption even in presence of a Triton X-100 concentration higher than that required for the complete enzyme release from OC-RML. This treatment produced a high stabilization of OC-RML in thermal or organic solvent inactivations, reducing the enzyme release under these drastic conditions. Nevertheless, the support could be recovered by incubation under adequate conditions, and reused in several adsorption/desorption cycles. Thus, the strategy permitted to avoid enzyme desorption, very likely by physical intermolecular crosslinking improving enzyme stability, while still maintaining the reversibility of the immobilization.  相似文献   

14.
The mechanisms of interaction between non-ionic or cationic surfactants with Escherichia coli K-12 cell membranes were studied using an approach based on the registration of changes in the membrane permeability to ethidium bromide, a fluorescent dye for nucleic acids. Triton X-100, a non-ionic detergent, was shown to exert no effect on the permeability of intact cell membranes. Triton X-100 interacted with the bacteria only after treatment with EDTA, a complexing agent for bivalent cations. Cetyltrimethyl ammonium bromide increased the permeability to ethidium bromide and the action of this cationic detergent did not require the pretreatment with the complexing agent. SDS, an anionic detergent, damaged E. coli K-12 and this could be registered by the lowering of intensity of light scattering by the bacterial suspension. The surface charge of E. coli K-12 cells was shown to influence the interaction of ionic detergents with bacterial cell membranes. Its variation by changing the pH of the incubation medium did not make E. coli K-12 sensitive to Triton X-100.  相似文献   

15.
Equilibrium and kinetic aspects of Triton X-100 adsorption onto hydrophobic Bio-Beads SM2 were investigated in detail using the batch procedure originally described by Holloway, P.W. (1973) Anal. Biochem. 53, 304-308. The results demonstrated the importance of the initial detergent concentration, the amount of beads, the commercial source of the detergent, the temperature and the presence of phospholipids in determining the rates of Triton X-100 adsorption onto Bio-Beads. One of the main findings was that Bio-Beads allowed the almost complete removal of Triton X-100, whatever the initial experimental conditions. It was shown that monomeric as well as micellar detergent could be adsorbed and that a key factor in determining the rate of detergent removal was the availability of the free bead surface. Rates of detergent removal were found to be linearly related to the amount of beads even for bead concentrations above those sufficient to remove all the detergent initially present. Adsorptive capacity of phospholipids onto Bio-Beads SM2 was also analyzed and found to be much smaller (2 mg lipid per g of wet beads) than that of Triton X-100 (185 mg TX 100 per g of wet beads). A more general aspect of this work was that the use of Bio-Beads SM2 provided a convenient way for varying and controlling the time course of Triton X-100 removal. The method was further extended to the formation of liposomes from phospholipid-Triton X-100 micelles and the size of the liposomes was found to be critically dependent upon the rate of detergent removal. A general procedure was described to prepare homogeneous populations of vesicles. Freeze-fracture electron microscopy and permeability studies indicated that the liposomes thus obtained were unilamellar, relatively large and impermeable. Noteworthy, this new procedure was shown to be well suited for the reconstitution of different membrane transport proteins such as bacteriorhodopsin, Ca2(+)-ATPase and H(+)-ATPase.  相似文献   

16.
《Process Biochemistry》1999,34(1):87-92
The addition of the surfactants Triton X-100, CHAPS, Tween-80 and sodium taurocholate to Clostridium thermosulfurogenes SV2 culture individually resulted in a marked increase in the yields of thermostable β-amylase and pullulanase. The stimulation of enzymes production was greater when the surfactants were added after 18 h of incubation of the culture. Upon treatment with 1.0 mM Triton X-100, 0.1 mM CHAPS, 0.1 mM Tween-80 and 0.1 mM sodium taurocholate, C. thermosulfurogenes SV2 produced 140, 34, 88 and 28% more β-amylase and 114, 146, 47 and 28% more pullulanase than the control (lacking surfactants), respectively. Besides stimulation, the surfactants caused an increased secretion of the enzymes into the extracellular fluid. These surfactants also further enhanced the stability of the enzymes. All the surfactants tested were found to have a little inhibitory effect on the growth of the bacterium.  相似文献   

17.
Triton X-100 was almost completely removed from bovine serum albumin solutions, BALB/c mouse liver extracts, and avocado peel lipoxygenase extracts by stirring the samples for 30 min in the presence of 250-350 mesh activated charcoal. The procedure did not remove protein significantly and did not reduce enzyme activity. At higher charcoal particle sizes, the efficiency of Triton adsorption was decreased and protein adsorption was increased. ElevateD temperatures enhanced Triton and protein adsorption. Adsorption on activated charcoal of 250-350 mesh is a simple and rapid procedure for Triton removal at a ratio of 0.23 g Triton X-100 per gram of activated charcoal.  相似文献   

18.
以陆地棉岱字-15号棉纤维细胞为材料,用3H-葡聚糖示踪方法测定β-1,3-葡聚糖和纤维素的合成。PEG4000促进β-1,3-葡聚糖和纤维素的合成,对刺激纤维素的合成更有效;随着非离子型表面活性剂 Trion X-100和Tween 20浓度的升高,抑制β-1,3-葡聚糖和纤维素的合成程度也增加,但抑制纤维素的合成更为强烈;而阴离子表面活性剂SDS则有所不同,在较高浓度下,又出现对β-1,3-葡聚糖合成抑制的减弱,这可能与SDS载负电荷的缘故有关。结果提示,完整的细胞膜有利于纤维素的合成,细胞膜损伤则利于β-1,3-葡聚糖的合成。  相似文献   

19.
Chen P  Pickard MA  Gray MR 《Biodegradation》2000,11(5):341-347
Surfactants have been proposed as a promising method to enhance bioremediation of hydrophobic compounds in contaminated soils. However, the results of effects of surfactants on bioremediation are not consistent. This study showed that Triton X-100 at low concentration (0.024 mM or 0.09 CMC) inhibited the rate of growth of either a Mycobacterium sp. or a Pseudomonas sp. on solid anthracene as sole carbon source. Recovery of microbial growth rate could be achieved by dilution of surfactants, while addition of more surfactant gave an immediate decrease in growth rate. No inhibition of growth by Triton X-100 was observed with growth on glucose. The surfactant sorbed onto the surfaces of both the cells and the anthracene particles, which could inhibit uptake of anthracene. The results were consistent with the hypothesis that inhibition of microbial adhesion of cells to anthracene was responsible for the inhibition of growth by Triton X-100.  相似文献   

20.
Allan Guan  Zhenyu Li 《Biofouling》2013,29(9-10):689-697
Block co-polymer surfactants have been used for cleaning hydrogel medical devices that contact the body (eg contact lenses) because of their biocompatibility. This work examined the relationship between concentration and detergency of two non-ionic polymeric surfactants (Pluronic F127 and Triton X-100) for cleaning protein soil, with anionic surfactants (sodium dodecyl sulfate and sodium laureth sulfate) as positive controls. Surface plasmon resonance was used to quantify removal of simulated tear soil from self-assembled monolayer surfaces, and a microplate format was used to study the removal of fluorescently labeled soil proteins from contact lenses. While detergency increased as a function of concentration for anionic surfactants, it decreased with concentration for the two polymeric surfactants. The fact that the protein detergency of some non-ionic polymeric surfactants did not increase with concentration above the critical micelle concentration could have implications for optimizing the tradeoff between detergency and biocompatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号