首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactivity with nitric oxide was investigated for a number of type-1, type-2 and type-3 copper proteins azurin from Pseudomonas aeruginosa (type-1 copper); bovine superoxide dismutase, diamine oxidase from pig kidney and galactose oxidase from Dactylium dendroides (type-2 copper); haemocyanin from Helix pomatia (type-3 copper); the blue oxidases ceruloplasmin from pig serum, and ascorbate oxidase from Cucurbita pepo medullosa. Type-1 copper formed complexes with NO in the oxidised state, which complexes were only fully formed at low temperatures and could be photodissociated at 77K. Complex formation led to the disappearance of the EPR signal of type-1 copper and of the optical absorbance band in the 600 nm region. In azurin, photodissociation caused the reappearance of the original 625 nm absorbance band, but in the blue oxidases, a new band with lower intensity was found at 595 nm instead of the original absorbance band at 610 nm. In all cases, the EPR signal of type-1 copper did not return. These results are best explained by the formation of a photolabile type-1 Cu1+-NO+ complex. They also indicate that in the complex formed, the type-1 copper structure is probably not disrupted, and that after illumination, the nitric oxide molecule is still in the near vicinity of the copper atom. Type-2 copper did not react at all with nitric oxide, and type-3 copper formed complexes with nitric oxide in both the oxidised and the reduced state, but photodissociation of these complexes could not be demonstrated.  相似文献   

2.
1. Ascorbate oxidase has been isolated from the green squash Cucurbita pepo medullosa by a new purification method. Furthermore a low-molecular-weight copper protein containing one type-1 copper/20000 Mr could be separated during the purification of the oxidase. The six-step procedure developed improved the yield of ascorbate oxidase by a factor of 2.5. The method is well reproducible and a constant value of 8 Cu (7.95 +/- 0.1/140000 Mr) has been established. By ultracentrifugal and electrophoretic criteria the enzyme preparations have been found to be homogeneous. They exhibited a specific activity of 3930 +/- 50 units/mg protein or 1088 +/- 15 units/microgram copper. 2. The pure enzyme is characterized by the following optical purity indices: A280/A610 = 25 +/- 0.5, A330/A610 = 0.65 +/- 0.05 and A610/A500 = 7.0 +/- 0.25. The molar absorption coeffient of the characteristic absorption maximum at 610 nm (oxidized minus reduced) amounts of 9700 M-1 cm-1 . 3. Computer simulations of the electron paramagnetic resonance (EPR) spectra of the oxidized enzyme reveal the following parameters: for the type-1 (blue) copper gz = 2.227, gy = 2.058, gx = 2.036; Az = 5.0 mT, Ay = Ax = 0.5 mT, for the type-2 (non-blue) copper g parallel to = 2.242, g perpendicular = 2.053; A parallel to = 19.0 mT, A perpendicular 0.5 mT. Out of the eight copper atoms present in the oxidase four are detectable by EPR. Of these, three belong to the type-1 class, and one to the type-2 class, as demonstrated by computer simulations of the EPR spectra. 4. To achieve full reduction of the enzyme, as measured by bleaching of the blue chromophore, four equivalents of L-ascorbate or reductase must be added in the absence of molecular oxygen. Upon reduction of the enzyme the fluorescence at 330 nm (lambda max ex = 295 nm) is enhanced by a factor of 1.5 to 1.75. The reduced enzyme is readily reoxidized by dioxygen, ferricyanide or hydrogen peroxide. It binds two molecules of hydrogen peroxide in the oxidized state (1/type-3 Cu pair), which can be monitored by a characteristic increase of the absorbance around 310 nm (delta epsilon = 1000 +/- 50 M-1 cm-1). Corresponding changes in EPR and fluorescence spectra have not been detected.  相似文献   

3.
Reactions of nitric oxide with tree and fungal laccase   总被引:3,自引:0,他引:3  
The reactions of nitric oxide (NO) with the oxidized and reduced forms of fungal and tree laccase, as well as with tree laccase depleted in type 2 copper, are reported. The products of the reactions were determined by NMR and mass spectroscopy, whereas the oxidation states of the enzymes were monitored by EPR and optical spectroscopy. All three copper sites in fungal laccase are reduced by NO. In addition, NO forms a specific complex with the reduced type 2 copper. NO similarly reduces all of the copper sites in tree laccase, but it also oxidizes the reduced sites produced by ascorbate or NO reduction. A catalytic cycle is set up in which N2O, NO2-, and various forms of the enzyme are produced. On freezing of fully reduced tree laccase in the presence of NO, the type 1 copper becomes reoxidized. This reaction does not occur with the enzyme depleted in type 2 copper, suggesting that it involves intramolecular electron transfer from the type 1 copper to NO bound to the type 2 copper. When the half-oxidized tree laccase is formed in the presence of NO, a population of molecules exists which exhibits a type 3 EPR signal. A triplet EPR signal is also seen in the same preparation and is attributed to a population of the enzyme molecules in which NO is bound to the reduced copper of a half-oxidized type 3 copper site.  相似文献   

4.
Nitric oxide (NO) has previously been reported to modify the EPR spectrum of multicopper blue oxidases, disclosing a pure type 2 copper and inducing half-field transitions at g = 4. In the present work the reactivity of NO was reinvestigated with respect to ceruloplasmins having an apparently EPR-silent type 2 copper in their native state. The optical properties of NO-treated ceruloplasmin were independent of the initial redox state of the metal sites. Addition of NO caused the absorption at 600 nm to decrease in the case of oxidized ceruloplasmin and to increase when starting from the reduced proteins. In this latter case the absorbance at 330 nm was also restored, indicating that NO was able to reoxidize the reduced protein. In all cases the band at 600 nm leveled to ca. 60% of the intensity of the native untreated protein, and new bands below 500 nm appeared in the spectra. While the blue absorption band was restored by removal of NO, the absorbance below 500 nm remained higher even after dialysis. The EPR spectrum resulting from reaction of NO with either oxidized, partially reduced, or fully reduced ceruloplasmin consisted in all cases of a broad, structureless resonance around g = 2. NO caused the reversible disappearance of the type 1 copper EPR spectrum in oxidized ceruloplasmin. Also, the transient novel copper signal that arises during the anaerobic reduction process by ascorbate completely disappeared in the presence of NO and did not reappear upon removal of the gas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Pseudomonas aureofaciens truncates the respiratory reduction of nitrate (denitrification) at the level of N2O. The nitrite reductase from this organism was purified to apparent electrophoretic homogeneity and found to be a blue copper protein. The enzyme contained 2 atoms of copper/85 kDa, both detectable by electron paramagnetic resonance (EPR) spectroscopy. The protein was dimeric, with subunits of identical size (40 +/- 3 kDa). Its pI was 6.05. The EPR spectrum showed an axial signal g at 2.21(8) and g at 2.04(5). The magnitude of the hyperfine splitting (A parallel = 6.36 mT) indicated the presence of type 1 copper only. The electronic spectrum had maxima at 280 nm, 474 nm and 595 nm (epsilon = 7.0 mM-1 cm-1), and a broad shoulder around 780 nm. A copper protein of low molecular mass (15 kDa), with properties similar to azurin, was also isolated from P. aureofaciens. The electronic spectrum of this protein showed a maximum at 624 nm in the visible range (epsilon = 2.5 mM-1 cm-1) and pronounced structures in the ultraviolet region. The EPR parameters were g parallel = 2.26(6) and g perpendicular = 2.05(6), with A parallel = 5.8 mT. The reduced azurin transferred electrons efficiently to nitrite reductase; the product of nitrite reduction was nitric oxide. The specific nitrite-reducing activity with ascorbate-reduced phenazine methosulfate as electron donor was 1 mumol substrate min-1 mg protein-1. The reaction product again was nitric oxide. Nitrous oxide was the reaction product from hydroxylamine and nitrite and from dithionite-reduced methyl viologen and nitrite. No 'oxidase' activity could be demonstrated for the enzyme. Our data disprove the presumed exclusiveness of cytochrome cd1 as nitrite reductase within the genus Pseudomonas.  相似文献   

6.
The interaction of one-electron reduced metronidazole (ArNO2.-) with native and Type-2-copper-depleted ascorbate oxidase were studied in buffered aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. With ArNO2.-, reduction of Type 1 copper of the native enzyme and of the Type-2-copper-depleted ascorbate oxidase occurs via a bimolecular step and at the same rate. Whereas the native protein accepts, in the absence of O2, 6-7 reducing equivalents, Type-2-copper-depleted ascorbate oxidase accepts only 3 reducing equivalents with stoichiometric reduction of Type 1 copper. On reaction of O2.- with ascorbate oxidase under conditions of [O2.-] much greater than [ascorbate oxidase], removal of Type 2 copper results in reduction of all the Type 1 copper atoms, in contrast with reduction of the equivalent of only one Type 1 copper atom in the holoprotein. From observations at 610 nm, the rate of reduction of ascorbate oxidase by O2.- is not dependent on the presence of Type 2 copper. For the holoprotein, no significant optical-absorption changes were observed at 330 nm. It is proposed that electrons enter the protein via Type 1 copper in a rate-determining step followed by a fast intramolecular transfer of electrons within the protein. For the Type-2-copper-depleted protein, intramolecular transfer within the protein, however, is slow or does not occur. In the presence of O2, it is also suggested that re-oxidation of the partially reduced holoprotein occurs at steady state, as inferred from the observations at 330 nm and 610 nm. The role of Type 2 copper in ascorbate oxidase is discussed in terms of its involvement in redistribution of electrons within the protein or structural considerations.  相似文献   

7.
(1) 45% of the total copper of green zucchini ascorbate oxidase is EPR-detectable. At least two species of copper are present, one with a small A parallel (Type 1) and one with a large A parallel (Type 2). Computer simulated spectra indicated 50% contribution by each type of copper. (2) Azide inhibited ascorbate oxidase activity by an uncompetitive mechanism. EPR and optical spectra performed on titration of ascorbate oxidase with azide indicated the formation of a copper-azide complex. The Type 2 copper appears to be the binding site of azide. The involvement of the EPR non-detectable copper as an anion binding site with high affinity toward azide can not be excluded.  相似文献   

8.
The aerobic interaction between ascorbate oxidase and L-tyrosine, L-3,4-dihydroxyphenylalanine or 3,4-dihydroxycinnamic acid in 1:10 molar ratio was followed by optical absorption, CD and EPR spectroscopy in 0.1 M phosphate buffer at pH 5.0. While the spectra of the system ascorbate oxidase—L-tyrosine remain practically unaffected after several hours, indicating that no oxidation of the amino acid occurs in the conditions employed, rather drastic changes can be observed in the spectra of the ascorbate oxidase-catechol systems. In particular, while the optical absorption below 500 nm increases markedly due to the formation of the substrate oxidation products, an irreversible decrease in intensity of the absorption, CD and EPR spectral features associated with the blue copper(II) chromophores indicates that a partial loss of Type 1 copper by ascorbate oxidase has occurred during this secondary catechol oxidase activity. A copper species characterized by weak positive CD activity at 370 nm and EPR signal at intermediate field between those of the Type 2 and Type 1 coppers can be detected in the early stages of the reaction. The irreversible damage undergone by the protein during catechol oxidase activity may have biological significance and accounts for the low yield of purified enzyme obtained when the crude enzyme extract is left in prolonged contact with low molecular weight cell components, rich in σ-diphenolic compounds.  相似文献   

9.
The absorbance and EPR spectra of type 1 and 2 copper-binding centres which are present in ceruloplasmin (Cp) molecule were shown to disappear upon the reduction of the enzyme by ascorbate under anaerobic conditions. The fluorescence band attributed to type 3 Cu was altered concomitantly. The electron-accepting nitroxyl radical added to reduced Cp restored the absorbance, EPR and fluorescence spectra of the oxidase. Only type 1 and 3 copper ions, as judged by spectral changes, can be reduced by ascorbate and then reoxidized by the nitroxyl radical in the azide-treated Cp. The spectral properties of Cp provided by copper ions of different types change simultaneously and concordantly upon oxidation/reduction. This seems to be caused by cooperative interaction of these ions involved in the electron transfer from the donating substrate to the accepting molecule of the nitroxyl radical (in model studies of oxidase reaction) or oxygen (under natural conditions). The copper ions in the active centre of Cp constitute an intramolecular electron transport chain, which may, at least in vitro, function without one of its links.  相似文献   

10.
1.Upon addition of sulphide to oxidized cytochrome c oxidase, a low-spin heme sulphide compound is formed with an EPR signal at gx = 2.54, gy = 2.23 and gz = 1.87. Concomitantly with the formation of this signal the EPR-detectable low-spin heme signal at g = 3 and the copper signal near g = 2 decrease in intensity, pointing to a partial reduction of the enzyme by sulphide. 2. The addition of sulphide to cytochrome c oxidase, previously reduced in the presence of azide or cyanide, brings about a disappearance of the azido-cytochrome c oxidase signal at gx = 2.9, gy = 2.2, and gz = 1.67 and a decrease of the signal at g = 3.6 of cyano-cytochrome c oxidase. Concomitantly the sulphide-induced EPR signal is formed. 3. These observations demonstrate that azide, cyanide and sulphide are competitive for an oxidized binding site on cytochrome c oxidase. Moreover, it is shown that the affinity of cyanide and sulphide for this site is greater than that of azide.  相似文献   

11.
Nitrous oxide reductase from the denitrifying bacterium Pseudomonas perfectomarina has been isolated and purified to homogeneity. The enzyme contained about eight copper atoms/120 kDa and was composed of two presumably identical subunits. The isoelectric point was 5.1. Several spectroscopically distinct forms of the enzyme were identified. A 'pink' form of the enzyme was obtained when the purification was done aerobically. The specific activity of this species was around 30 nkat/mg protein as measured by the nitrous-oxide-dependent oxidation of photochemically reduced benzyl viologen. A 'purple' form of the enzyme, whose catalytic activity was 2-5-fold higher, was obtained when the purification was done anaerobically. The activity of both forms of the enzyme was substantially increased by dialyzing the protein against 2-(N-cyclohexylamino)ethanesulfonate buffer at pH approximately equal to 10. A maximal activity of 1000 nkat/mg protein has been obtained for the purple form using this procedure. A 'blue', enzymatically inactive form of the enzyme resulted when either the pink or the purple species was exposed to excess dithionite or ascorbate. Anaerobic, potentiometric titrations of both the purple and the pink form of the enzyme gave a Nernst factor, n540, of 0.95 and a midpoint potential, E'0,540 of +260 mV (vs SHE, 25 degrees C, Tris/HCl buffer, pH 7.5). Electron paramagnetic resonance (EPR) and optical spectra of N2O reductase suggested the presence of an unusual type 1 copper center. Type 2 copper was absent. The hyperfine splitting in the g parallel region consisted of a seven-line pattern. In the presence of excess of reductant, a broad EPR signal with g values at 2.18 and 2.06 was observed. The EPR spectra of the pink and purple forms of the enzyme were similar; however, the spectrum of the purple form was better resolved with g parallel = 2.18 (A parallel = 3.83 mT) and g perpendicular = 2.03 (A perpendicular = 2.8 mT). Most of the copper in N2O reductase was removed by anaerobic dialysis against KCN. Reaction of the apoprotein with Cu(en)2SO4 partially regenerated the optical and EPR spectra of the holoprotein; the resulting protein was enzymatically inactive. Monospecific antibodies against the copper protein strongly inhibited the N2O reductase activity of purified samples and cell-free extracts.  相似文献   

12.
The reactivity with dioxygen of a mammalian (sheep) ceruloplasmin, anaerobically reduced with ascorbate, was found to depend on the state of the Type 2 and Type 3 copper centers, as monitored by EPR and optical spectroscopy. A complete reoxidation by air after anaerobic reduction with ascorbate was observed with samples (A) purified by the single-step procedure described for chicken ceruloplasmin (Calabrese, L., Carbonaro, M., and Musci, G. (1988) J. Biol. Chem. 263, 6480-6483), while samples prepared by traditional multistep procedure (B) or subjected to freeze-thawing (C) displayed partial and very slow reoxidation, reflecting the functional nonequivalence of blue coppers which is considered a typical property of mammalian ceruloplasmin. The rate of reduction of the 330 nm chromophore was found to increase as a function of the extent and rate of reoxidation of different samples, while the 610 nm band displayed an opposite trend. Samples B and C showed a Type 2 copper signal in the EPR spectrum, while sample A showed practically no Type 2 copper in the oxidized protein, and a transient Type 2-like signal during reduction. The presence of a trinuclear Type 2-Type 3 cluster can therefore be proposed for all ceruloplasmins, and the integrity of the copper-copper coupling is essential for efficient oxidase behavior.  相似文献   

13.
Data are presented which were collected in the course of the past ten years and bear on the correlation of absorbance at 800 nm and the EPR signal at g = 2 ('copper signal') of cytochrome c oxidase in various states of oxidation and ligation. Both EPR and optical reflectance spectra were obtained at low temperature (-170 to -190 degrees C). For some sets of samples spectra were recorded in the range 500-1100 nm. A particular efFort was made to study this correlation with what are called 'mixed valence' states (Greenwood, C., Wilson, M.T. and Brunori, M. (1974) Biochem. J. 137, 205-215), when cytochrome a and the EPR-detectable copper are thought to be oxidized and the other components reduced and vice versa. These data show no evidence that the copper component of cytochrome oxidase which has so far not been detected by EPR makes a contribution to the absorption between 800 and 900 nm exceeding 10-15% of the total, which is close to or within the error of the respective measurements. For the various states of the oxidase examined in this work the 700-800 nm region did not appear to be more useful than the 800-900 nm region for determining the state of the EPR-undetectable copper in a reliable way. These conclusions are in agreement with results presented previously from other laboratories concerning the relationship of optical (approx. 800 nm) and EPR spectroscopic (g = 2) data obtained with the enzyme.  相似文献   

14.
Data are presented which were collected in the course of the past ten years and bear on the correlation of absorbance at 800 nm and the EPR signal at g = 2 (‘copper signal’) of cytochrome c oxidase in various states of oxidation and ligation. Both EPR and optical reflectance spectra were obtained at low temperature (?170 to ?190°C). For some sets of samples spectra were recorded in the range 500–1100 nm. A particular effort was made to study this correlation with what are called ‘mixed valence’ states (Greenwood, C., Wilson, M.T. and Brunori, M. (1974) Biochem. J. 137, 205–215), when cytochrome a and the EPR-detectable copper are thought to be oxidized and the other components reduced and vice versa. These data show no evidence that the copper component of cytochrome oxidase which has so far not been detected by EPR makes a contribution to the absorption between 800 and 900 nm exceeding 10–15% of the total, which is close to or within the error of the respective measurements. For the various states of the oxidase examined in this work the 700–800 nm region did not appear to be more useful than the 800–900 nm region for determining the state of the EPR-undetectable copper in a reliable way. These conclusions are in agreement with results presented previously from other laboratories concerning the relationship of optical (approx. 800 nm) and EPR spectroscopic (g = 2) data obtained with the enzyme.  相似文献   

15.
Cytochrome c oxidase catalyzes the reduction of oxygen to water with a concomitant conservation of energy in the form of a transmembrane proton gradient. The enzyme has a catalytic site consisting of a binuclear center of a copper ion and a heme group. The spectroscopic parameters of this center are unusual. The origin of broad electron paramagnetic resonance (EPR) signals in the oxidized state at rather low resonant field, the so-called g' = 12 signal, has been a matter of debate for over 30 years. We have studied the angular dependence of this resonance in both parallel and perpendicular mode X-band EPR in oriented multilayers containing cytochrome c oxidase to resolve the assignment. The "slow" form and compounds formed by the addition of formate and fluoride to the oxidized enzyme display these resonances, which result from transitions between states of an integer-spin multiplet arising from magnetic exchange coupling between the five unpaired electrons of high spin Fe(III) heme a(3) and the single unpaired electron of Cu(B). The first successful simulation of similar signals observed in both perpendicular and parallel mode X-band EPR spectra in frozen aqueous solution of the fluoride compound of the closely related enzyme, quinol oxidase or cytochrome bo(3), has been reported recently (Oganesyan et al., 1998, J. Am. Chem. Soc. 120:4232-4233). This suggested that the exchange interaction between the two metal ions of the binuclear center is very weak (|J| approximately 1 cm(-1)), with the axial zero-field splitting (D approximately 5 cm(-1)) of the high-spin heme dominating the form of the ground state. We show that this model accounts well for the angular dependences of the X-band EPR spectra in both perpendicular and parallel modes of oriented multilayers of cytochrome c oxidase derivatives and that the experimental results are inconsistent with earlier schemes that use exchange coupling parameters of several hundred wavenumbers.  相似文献   

16.
Absorption and EPR spectroscopic properties of purified dimethyl sulfoxide (Me2SO) reductase from Rhodobacter sphaeroides f. sp. denitrificans have been examined. The absence of prosthetic groups other than the molybdenum center in the enzyme has made it possible to study its absorption properties. The enzyme displays multiple absorbance peaks in both the oxidized and the dithionite-reduced forms. The oxidized enzyme has absorbance peaks at 280, 350, 470, 550, and 720 nm while the dithionite-reduced enzyme has peaks at 280, 374, and 645 nm with a shoulder at 430 nm. A comparison of the absorbance spectrum of oxidized Me2SO reductase with that of the molybdenum fragment of rat liver sulfite oxidase shows that the 350 and 470 peaks are common to both proteins. EPR studies of the Mo(V) form of Me2SO reductase show a rhombic signal with g1 = 1.988, g2 = 1.977, g3 = 1.961, and g(ave) = 1.975. The signal shows evidence of coupling to an exchangeable proton with A1 = 1.05, A2 = 1.13, A3 = 0.98, and Aave = 1.05 millitesla. These parameters are similar to those of other Mo enzymes, however, the epr signal of this enzyme differs from those of other Mo hydroxylases in showing only a slight sensitivity to pH and no detectable anion effect. EPR potentiometric titrations of Me2SO reductase gave midpoint potentials of +144 mV for the Mo(VI)/Mo(V) couple and +160 mV for the Mo(V)/Mo(IV) couple at room temperature and +141 mV for the Mo(VI)/Mo(V) couple and +200 mV for the Mo(V)/Mo(IV) couple at 173 K.  相似文献   

17.
From the peelings of cucumber Cucumis sativus and marrow squash Cucurbita pepo var. giramontia highly purified ascorbate oxidase preparations were obtained. Molecular weights, optical and EPR spectra, total copper contents and different type copper contents of the both proteins were similar. The effects of NaN3, KCN, I- and F- on the optical and EPR spectra of the proteins were studied. The incubation of ascorbate oxidase with these anions lead to the partial reduction of the copper. The data obtained indicate that F- is bound to the copper atoms of the type 2, and that N5- modifies surroundings of these copper atoms. The copper atoms of types 1 and 2 in both ascorbate oxidases, unlike fungal laccase, are completely reduced under effect of CN-. The bleaching of ascorbate oxidase, observed in alkaline media involves also increasing of the intensity of the band at 330 nm. The results show that three types of copper in ascorbate oxidase have various sensitivities to the inorganic anions. These data are compared with results observed for another blue copper-containing enzymes, such as laccases and ceruloplasmin.  相似文献   

18.
The effect of CO on the optical absorbance spectrum of partially reduced cytochrome c oxidase has been studied. The changes at 432 and 590 nm suggest that the cytochrome alpha2/3+ - CO compound is formed preferentially and that concomitantly a second electron is taken up by the enzyme. From the CO-induced changes at 830 nm it is concluded that in the partially reduced enzyme addition of CO causes reoxidation of the copper component of cytochrome c oxidase. Addition of CO to partially reduced enzyme (2 electrons per 4 metal ions) also brings about a decrease in the intensities of electron paramagnetic resonance signals of high-spin heme iron near g = 6 and of the low-spin heme at g = 2.6. Concomitantly both the low-spin heme a signal at g = 3 and the copper signal at g = 2 increase in intensity. These results demonstrate that formation of the reduced diamagnetic cytochrome a3 - CO compound is accompanied by reoxidation of both the copper component detectable by electron paramagnetic resonance and possibly also by cytochrome a.  相似文献   

19.
1. The photodissociation reaction of the cytochrome c oxidase-CO compound was studied by EPR at 15 °K. Illumination with white light at both room and liquid N2 temperatures of the partially reduced cytochrome c oxidase (2 electrons per 4 metals) in the presence of CO, causes the appearance of a rhombic (gx = 6.60, gy = 5.37) high-spin heme signal.This signal disappears completely upon darkening of the sample and reappears upon illumination at room temperature; accordingly the photolytic process is reversible. Under these conditions, no great changes in the intensities are observed, neither of the copper signal at g = 2, nor of the low-spin heme signal at g = 3, 2.2 and 1.5.2. In the presence of ferricyanide (2 mM) and CO, both the low-spin heme signal (g = 3.0, 2.2 and 1.5) and the copper signal of the partially reduced enzyme have intensities about equal to those of the completely oxidized enzyme in the absence of CO. Upon illumination of the carboxy-cytochrome c oxidase in the presence of ferricyanide, it was found that the rhombic high-spin heme signal appears without affecting appreciably the copper of low-spin heme signals. Thus, in the presence of ferricyanide the EPR-detectable paramagnetism of the illuminated carboxy-cytochrome c oxidase is higher than in the untreated oxidized enzyme.3. The membrane-bound cytochrome c oxidase reduced with NADH in the presence of CO and subsequently oxidized with ferricyanide shows a similar rhombic high-spin heme signal (gx = 6.62, gy = 5.29) upon illumination at room temperature. This signal disappears completely upon darkening and reappears upon illumination at room temperature.  相似文献   

20.
Nitrous oxide reductase from Wolinella succinogenes, an enzyme containing one heme c and four Cu atoms/subunit of Mr = 88,000, was studied by electron paramagnetic resonance (EPR) at 9.2 GHz from 6 to 80 K. In the oxidized state, low spin ferric cytochrome c was observed with gz = 3.10 and an axial Cu resonance was observed with g parallel = 2.17 and g perpendicular = 2.035. No signals were detected at g values greater than 3.10. For the Cu resonance, six hyperfine lines each were observed in the g parallel and g perpendicular regions with average separations of 45.2 and 26.2 gauss, respectively. The hyperfine components are attributed to Cu(I)-Cu(II) S = 1/2 (half-met) centers. Reduction of the enzyme with dithionite caused signals attributable to heme c and Cu to disappear; exposure of that sample to N2O for a few min caused the reappearance of the g = 3.10 component and a new Cu signal with g parallel = 2.17 and g perpendicular = 2.055 that lacked the simple hyperfine components attributed to a single species of half-met center. The enzyme lost no activity as the result of this cycle of reduction and reoxidation. EPR provided no evidence for a Cu-heme interaction. The EPR detectable Cu in the oxidized and reoxidized forms of the enzyme comprised about 23 and 20% of the total Cu, respectively, or about one spin/subunit. The enzyme offers the first example of a nitrous oxide reductase which can have two states of high activity that present very different EPR spectra of Cu. These two states may represent enzyme in two different stages of the catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号