首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The normal pattern of maize floral development of staminate florets on the terminal inflorescence (tassel) and pistillate florets on the lateral inflorescences (ears) is disrupted by the recessive mutation tassel seed 2. Tassel seed 2 mutant plants develop pistillate florets instead of staminate florets in the tassel. In addition, the ears of tassel seed 2 plants display irregular rowing of kernels due to the development of the normally suppressed lower floret of each spikelet. The morphology of tassel and ear florets of the recessive maize mutant tassel seed 2 has been compared to those of wild-type maize through development. We have identified the earliest stages at which morphological signs of sex differentiation are evident. We find that sex determination occurs during the same stage on tassel and ear development. Early postsex determination morphology of florets in wild-type ears and in tassel seed 2 tassels and ears is identical.  相似文献   

3.
The maize sex determination pathway results in the arrest of stamen in ear spikelets and the abortion of pistils in both the tassel spikelets and in the secondary florets of ear spikelets. Arrested stamen cells showed no signs of DNA fragmentation, an absence of CYCLIN B expression, and an accumulation of the negative cell cycle regulator WEE1 RNA.  相似文献   

4.
Development in higher plants depends on the activity of meristems, formative regions that continuously initiate new organs at their flanks. Meristems must maintain a balance between stem cell renewal and organ initiation. In fasciated mutants, organ initiation fails to keep pace with meristem proliferation. The thick tassel dwarf1 (td1) mutation of maize affects both male and female inflorescence development. The female inflorescence, which results in the ear, is fasciated, with extra rows of kernels. The male inflorescence, or tassel, shows an increase in spikelet density. Floral meristems are also affected in td1 mutants; for example, male florets have an increase in stamen number. These results suggest that td1 functions in the inflorescence to limit meristem size. In addition, td1 mutants are slightly shorter than normal siblings, indicating that td1 also plays a role in vegetative development. td1 encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that is a putative ortholog of the Arabidopsis CLAVATA1 protein. These results complement previous work showing that fasciated ear2 encodes a CLAVATA2-like protein, and suggest that the CLAVATA signaling pathway is conserved in monocots. td1 maps in the vicinity of quantitative trait loci that affect seed row number, spikelet density and plant height. We discuss the possible selection pressures on td1 during maize domestication.  相似文献   

5.
6.
The molecular and genetic control of inflorescence and flower development has been studied in great detail in model dicotyledonous plants such as Arabidopsis and Antirrhinum . In contrast, little is known about these important developmental steps in monocotyledonous species. Here we report the analysis of the Zea mays mutant branched silkless1–2 (bd1–2) , allelic to bd1 , which we have used as a tool to study the transition from spikelet to floret development in maize. Floret development is blocked in the female inflorescence (the ear) of bd1–2 plants, whereas florets develop almost normally in the male inflorescence (the tassel). Detailed phenotypic analyses indicate that in bd1–2 mutants ear inflorescence formation initiates normally, however, the spikelet meristems do not proceed to form floret meristems. The ear spikelets, at anthesis, contain various numbers of spikelet-like meristems and glume-like structures. Furthermore, growth of branches from the base of the ear is often observed. Expression analyses show that the floral-specific MADS box genes Zea mays AGAMOUS1 ( ZAG1 ), ZAG2 and Zea mays MADS 2 ( ZMM2 ) are not expressed in ear florets in bd1–2 mutants, whereas their expression in tassel florets is similar to that of wild type. Taken together, these data indicate that the development from spikelet to floret meristem is differentially controlled in the ear and tassel in the monoecious grass species Zea mays , and that BRANCHED SILKLESS plays an important role in regulating the transition from spikelet meristem to floral meristem during the development of the female inflorescence of maize.  相似文献   

7.
赤霉素2-氧化酶(GA2ox)通过2-β-羟基化作用产生失活的赤霉素,进而调节植物体内的赤霉素的活性水平。前期,本研究在烟草侧枝发育突变体转录组数据中,发现一个赤霉素2-氧化酶基因,其表达水平与野生型相比存在显著差异,命名为NtGA2ox1。为了更好地研究该基因在烟草侧枝发育中的作用,本研究从普通烟草中分离克隆了NtGA2ox1基因。通过测序分析该基因的编码及全长序列,发现NtGA2ox1基因含有2个外显子和1个内含子,编码一条长度为379个氨基酸的序列。同源进化分析表明,该基因在多种植物中存在同源序列,特别是茄科植物。组织特异性表达分析发现,NtGA2ox1基因在烟草的各个生长阶段均有表达,其中,在花和根中表达量较高。同时,激光共聚焦显微镜结果表明,YFP-NtGA2ox1融合蛋白在细胞质和细胞核中有很强的荧光信号,表明NtGA2ox1蛋白很可能定位于细胞核和细胞质中。本研究为进一步研究赤霉素调控烟草侧枝发育提供了理论依据。  相似文献   

8.
The tassel seed mutations of maize cause sex reversal of the florets of the tassel, such that the normally staminate florets develop pistils. Although these mutations have been recognized for many years, little is known about how they act. We have tested the hypothesis that the tassel seed genes interact directly with each other and with other genes controlling sex determination in a single genetic pathway by the construction and analysis of double mutants. On the basis of the phenotypes of the double mutants, the tassel seed mutations were placed into two groups: ts1, ts2, Ts5 and ts4, Ts6. Both groups of tassel seed mutations were additive with the masculinizing mutation dwarf, indicating independent modes of action. Interactions of tassel seed mutations with silkless varied, allowing the ordering of the action of the various tassel seed mutations relative to silkless. Both groups of tassel seed mutations were epistatic with regard to sex expression to mutations that alter both architecture of the plant and distribution of male and female florets, Teopod 1, terminal ear, and teosinte branched. Thus, there are at least two separate genetic pathways that control the sex of florets in maize tassels. In addition, analysis of double mutants revealec that all tassel seed genes tested play a role in the regulation of flower morphogenesis as well as pistil suppression. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Irish EE 《Plant physiology》1997,114(3):817-825
The maize (Zea mays L.) mutation Tassel seed 6 (Ts6) disrupts both sex determination in the tassel and the pattern of branching in inflorescences. This results in the formation of supernumerary florets in tassels and ears and in the development of pistils in tassel florets where they are normally aborted. A developmental analysis indicated that extra florets in Ts6 inflorescences are most likely the result of delayed determinacy in spikelet meristems, which then initiate additional floret meristems rather than initiating floral organs as in wild type. I have used culturing experiments to assay whether delayed determinacy of Ts6 mutant tassels is reflected in an altered timing of specific determination events. Length of the tassel was used as a developmental marker. These experiments showed that although Ts6 tassels elongate much more slowly than wild type, both mutant and wild-type tassels gained the ability to form flowers with organs of normal morphology in culture at the same time. In situ hybridization patterns of expression of the maize gene Kn, which is normally expressed in shoot meristems and not in determinate lateral organs, confirmed that additional meristems, rather than lateral organs, are initiated by spikelet meristems in Ts6 tassels.  相似文献   

10.
Maize develops separate male and female flowers in different locations on a single plant. Male flowers develop at the tip of the shoot in the tassel, and female flowers develop on the ears, which terminate short branches. The development of male flowers in tassels and female flowers in ears is the result of selective abortion of pistils or stamens, respectively, in developing florets. Genetic analysis has shown that stamen abortion and pistil abortion are under the control of two different genetic pathways. Local levels of the plant hormone gibberellic acid determine whether or not stamens are suppressed. Pistil abortion is under the regulation of the tassel seed genes, one of which has been shown to encode a short-chain alcohol dehydrogenase. The tassel seed genes play a role in regulating the fate of inflorescence meristems as well as pistil primordium fate.  相似文献   

11.
Precise coordination between stamen and pistil development is essential to make a fertile flower. Mutations impairing stamen filament elongation, pollen maturation, or anther dehiscence will cause male sterility. Deficiency in plant hormone gibberellin (GA) causes male sterility due to accumulation of DELLA proteins, and GA triggers DELLA degradation to promote stamen development. Deficiency in plant hormone jasmonate (JA) also causes male sterility. However, little is known about the relationship between GA and JA in controlling stamen development. Here, we show that MYB21, MYB24, and MYB57 are GA-dependent stamen-enriched genes. Loss-of-function of two DELLAs RGA and RGL2 restores the expression of these three MYB genes together with restoration of stamen filament growth in GA-deficient plants. Genetic analysis showed that the myb21-t1 myb24-t1 myb57-t1 triple mutant confers a short stamen phenotype leading to male sterility. Further genetic and molecular studies demonstrate that GA suppresses DELLAs to mobilize the expression of the key JA biosynthesis gene DAD1, and this is consistent with the observation that the JA content in the young flower buds of the GA-deficient quadruple mutant ga1-3 gai-t6 rga-t2 rgl1-1 is much lower than that in the WT. We conclude that GA promotes JA biosynthesis to control the expression of MYB21, MYB24, and MYB57. Therefore, we have established a hierarchical relationship between GA and JA in that modulation of JA pathway by GA is one of the prerequisites for GA to regulate the normal stamen development in Arabidopsis.  相似文献   

12.
Gibberellin (GA), a plant hormone, is involved in many aspects of plant growth and development both in vegetative and reproductive phases. GA2-oxidase plays a key role in the GA catabolic pathway to reduce bioactive GAs. We produced transgenic Arabidopsis plants expressing GA2-oxidase 4 (AtGA2ox4) under the control of a senescenceassociated promoter (SEN1). As we hypothesized, transgenic plants (SEN1::AtGA2ox4) exhibited a dominant semi-dwarf phenotype with a decrease of bioactive GAs (e.g., GA4 and GA1) up to two-fold compared to control plants. Application of bioactive GA3 resulted in increased shoot length, indicating that the GA signaling pathway functions normally in the SEN1::AtGA2ox4 plants. Expressions of other members of GA2-oxidase family, such as AtGA2ox1, AtGA2ox3, AtGA2ox6, and AtGA2ox8, were decreased slightly in the flower and silique tissues while GA biosynthetic genes (e.g., AtGA20ox1, AtGA20ox2 and AtGA3ox1) were not significantly changed in the SEN::AtGA2ox4 plants. Using proteome profiling (2-D PAGE followed by MALDI-TOF/MS), we identified 29 protein spots that were increased in the SEN1::AtGA2ox4 plants, but were decreased to wild-type levels by GA3 treatment. The majority were found to be involved in photosynthesis and carbon/energy metabolism. Unlike the previous constitutive over-expression of GA2-oxidases, which frequently led to floral deformity and/or loss of fertility, the SEN1::AtGA2ox4 plants retained normal floral morphology and seed production. Accordingly, the expressions of FT and CO genes remained unchanged in the SEN1::AtGA2ox4 plants. Taken together, our results suggest that the dominant dwarf trait carried by SEN1::AtGA2ox4 plants can be used as an efficient dwarfing tool in plant biotechnological applications.  相似文献   

13.
Gibberellin 3-oxidase (GA3ox) catalyzes the final step in the synthesis of bioactive gibberellins (GAs). We examined the expression patterns of all four GA3ox genes in Arabidopsis thaliana by promoter-beta-glucuronidase gene fusions and by quantitative RT-PCR and defined their physiological roles by characterizing single, double, and triple mutants. In developing flowers, GA3ox genes are only expressed in stamen filaments, anthers, and flower receptacles. Mutant plants that lack both GA3ox1 and GA3ox3 functions displayed stamen and petal defects, indicating that these two genes are important for GA production in the flower. Our data suggest that de novo synthesis of active GAs is necessary for stamen development in early flowers and that bioactive GAs made in the stamens and/or flower receptacles are transported to petals to promote their growth. In developing siliques, GA3ox1 is mainly expressed in the replums, funiculi, and the silique receptacles, whereas the other GA3ox genes are only expressed in developing seeds. Active GAs appear to be transported from the seed endosperm to the surrounding maternal tissues where they promote growth. The immediate upregulation of GA3ox1 and GA3ox4 after anthesis suggests that pollination and/or fertilization is a prerequisite for de novo GA biosynthesis in fruit, which in turn promotes initial elongation of the silique.  相似文献   

14.
Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography – mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62–0.90 fmol. We determined the kinetic parameters (K m) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.  相似文献   

15.
To identify where gibberellin (GA) biosynthesis and signaling occur, we analyzed the expression of four genes involved in GA biosynthesis, GA 20-oxidase1 and GA 20-oxidase2 (OsGA20ox1 and OsGA20ox2), and GA 3-oxidase1 and GA 3-oxidase2 (OsGA3ox1 and OsGA3ox2), and two genes involved in GA signaling, namely, the gene encoding the alpha-subunit of the heterotrimeric GTP-binding protein (Galpha), and SLENDER RICE1 (SLR1), which encodes a repressor of GA signaling. At the vegetative stage, the expression of OsGA20ox2, OsGA3ox2, Galpha, and SLR1 was observed in rapidly elongating or dividing organs and tissues, whereas the expression of OsGA20ox1 or OsGA3ox1 could not be detected. At the inflorescence or floral stage, the expression of OsGA20ox2, OsGA3ox2, Galpha, and SLR1 was also observed in the shoot meristems and stamen primordia. The overlapping expression of genes for GA biosynthesis and signaling indicates that in these tissues and organs, active GA biosynthesis occurs at the same site as does GA signaling. In contrast, no GA-biosynthesis genes were expressed in the aleurone cells of the endosperm; however, the two GA-signaling genes were actively expressed, indicating that the aleurone does not produce bioactive GAs, but can perceive GAs. The expression of OsGA20ox1 and OsGA3ox1 was observed only in the epithelium of the embryo and the tapetum of the anther. Based on the specific expression pattern of OsGA20ox1 and OsGA3ox1 in these tissues, we discuss the unique nature of the epithelium and the tapetum in terms of GA biosynthesis. The epithelium and the tapetum are considered to be an important source of bioactive GAs for aleurone and other organs of the flower, respectively.  相似文献   

16.
17.
Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2β-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C19-GA2oxs and a smaller class of C20-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C20-GA2oxs subfamily, a subfamily of GA2oxs acting on C20-GAs (GA12, GA53). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GA-deficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 µM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.  相似文献   

18.
19.
20.
We previously reported that overexpression of the rice homeobox gene OSH1 led to altered morphology and hormone levels in transgenic tobacco (Nicotiana tabacum L.) plants. Among the hormones whose levels were changed, GA1 was dramatically reduced. Here we report the results of our analysis on the regulatory mechanism(s) of OSH1 on GA metabolism. GA53 and GA20, precursors of GA1, were applied separately to transgenic tobacco plants exhibiting severely changed morphology due to overexpression of OSH1. Only treatment with the end product of GA 20-oxidase, GA20, resulted in a striking promotion of stem elongation in transgenic tobacco plants. The internal GA1 and GA20 contents in OSH1-transformed tobacco were dramatically reduced compared with those of wild-type plants, whereas the level of GA19, a mid-product of GA 20-oxidase, was 25% of the wild-type level. We have isolated a cDNA encoding a putative tobacco GA 20-oxidase, which is mainly expressed in vegetative stem tissue. RNA-blot analysis revealed that GA 20-oxidase gene expression was suppressed in stem tissue of OSH1-transformed tobacco plants. Based on these results, we conclude that overexpression of OSH1 causes a reduction of the level of GA1 by suppressing GA 20-oxidase expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号