首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
The plant hormone cytokinin is a key morphogenic factor controlling cell division and differentiation, and thus the formation and growth rate of organs during a plant's life cycle. In order to explore the relevance of cytokinin during the initial phase of leaf primordia formation and its impact on subsequent leaf development, we increased cytokinin degradation in young shoot organ primordia of Arabidopsis thaliana by expressing a cytokinin oxidase/dehydrogenase (CKX) gene under control of the AINTEGUMENTA (ANT) promoter. The final leaf size in ANT:CKX3 plants was reduced to ∼27% of the wild-type size and the number of epidermal cells was reduced to ∼12% of the wild type. Kinematic analysis revealed that cell proliferation ceased earlier and cell expansion was accelerated in ANT:CKX3 leaves, demonstrating that cytokinin controls the duration of the proliferation phase by delaying the onset of cell differentiation. The reduction of the cell number was partially compensated by an increased cell expansion. Interestingly, ANT:CKX3 leaf cells became about 60% larger than those of 35S:CKX3 leaves, indicating that cytokinin has an important function during cell expansion as well. Furthermore, ANT:CKX3 expression significantly reduced the capacity of both the vegetative as well as the generative shoot apical meristem to initiate the formation of new leaves and flowers, respectively. We therefore hypothesize that the cytokinin content in organ primordia is important for regulating the activity of the shoot meristem in a non-autonomous fashion.  相似文献   

3.
Compensation refers to an increase in cell size when the cell number is significantly decreased due to the mutation or gain of function of a gene that negatively affects the cell cycle. Given the importance of coordinated growth during organogenesis in both animal and plant systems, compensation is important to understand the mechanism of size regulation. In leaves, cell division precedes cell differentiation (which involves cell expansion); therefore, a decrease in cell number triggers enhanced cell expansion (compensated cell expansion; hereafter, CCE). Functional analyses of genes for which a loss or gain of function triggers compensation have increased our understanding of the molecular mechanisms underlying the decrease in cell number. Nevertheless, the mechanisms that induce enhanced cell expansion (the link between cell cycling and expansion), as well as the cellular machinery mediating CCE, have not been characterized. We recently characterized an important pathway involved in cell enlargement in KRP2-overexpressing plants. Here, we discuss the potential role of plant KRPs in triggering enlargement in cells with meristematic features.  相似文献   

4.
5.
Wang Y  Liu C  Li K  Sun F  Hu H  Li X  Zhao Y  Han C  Zhang W  Duan Y  Liu M  Li X 《Plant molecular biology》2007,64(6):633-644
The nuclear protein ETHYLENE INSENSITIVE2 (EIN2) is a central component of the ethylene signal transduction pathway in plants, and plays an important role in mediating cross-links between several hormone response pathways, including abscisic acid (ABA). ABA mediates stress responses in plants, but there is no report on the role of EIN2 on plant response to salt and osmotic stresses. Here, we show that EIN2 gene regulates plant response to osmotic and salt stress through an ABA-dependent pathway in Arabidopsis. The expression of the EIN2 gene is down-regulated by salt and osmotic stress. An Arabidopsis EIN2 null mutant was supersensitive to both salt and osmotic stress conditions. Disruption of EIN2 specifically altered the expression pattern of stress marker gene RD29B in response to the stresses, but not the stress- or ABA-responsive genes RD29A and RD22, suggesting EIN2 modulates plant stress responses through the RD29B branch of the ABA response. Furthermore, disruption of EIN2 caused substantial increase in ABA. Lastly, our data showed that mutations of other key genes in ethylene pathway also had altered sensitivity to abiotic stresses, indicating that the intact ethylene may involve in the stress response. Taken together, the results identified EIN2 as a cross-link node in ethylene, ABA and stress signaling pathways, and EIN2 is necessary to induce developmental arrest during seed germination, and seedling establishment, as well as subsequent vegetative growth, thereby allowing the survival and growth of plants under the adverse environmental conditions. Youning Wang and Chuang Liu contributed equally to this work.  相似文献   

6.
7.
8.
9.
Hypocotyl cell elongation has been studied as a model to understand how cellular expansion contributes to plant organ growth. Hypocotyl elongation is affected by multiple environmental factors, including light quantity and light quality. Red light inhibits hypocotyl growth via the phytochrome signaling pathways. Proteins of the FLAVIN-BINDING KELCH REPEAT F-BOX 1 / LOV KELCH PROTEIN 2 / ZEITLUPE family are positive regulators of hypocotyl elongation under red light in Arabidopsis. These proteins were suggested to reduce phytochrome-mediated inhibition of hypocotyl elongation. Here, we show that ZEITLUPE also functions as a positive regulator in warmth-induced hypocotyl elongation under light in Arabidopsis.  相似文献   

10.
Ethylene signal transduction   总被引:22,自引:0,他引:22  
  相似文献   

11.
Two key determinants of plant and organ size are cell number and cell size, and altering either one may affect the plant organ size, but cell number control often plays a predominant role in natural populations. Domesticated crops usually have larger fruit and harvested organ sizes than wild progenitors. Crop yields have increased significantly by breeding, often via heterosis, which is associated with increased plant and organ size primarily achieved by cell number increases. A small class of genes is now known that control plant and organ sizes though cell number or cell size. The fw2.2 gene was found to control a major QTL for tomato fruit size by negatively affecting cell numbers. Orthologs to these fw2.2 genes underlie QTLs for fruit sizes in other species, and their expression can be negatively correlated with increased cell number. In maize decreased or increased expression of the fw2.2 ortholog ZmCNR1, increases or decreases cell number, respectively, thereby affecting maize organ size throughout the plant and thus also whole plant size. Therefore, these genes should now be considered as more general regulators of plant cell number and organ size. The exact molecular function of these transmembrane domain proteins remains unknown, as does any clear relationship to the cell cycle. Because these genes control organ sizes in diverse plants and important crop species, and because they can affect whole plant size, interest arose into how effects of such genes could parallel agronomic crop improvements, in particular that by heterosis, as it also affects cell number. In joining these subjects here in discussion we speculate on how single gene cell number regulation and heterosis may cooperate in crop improvement.  相似文献   

12.
13.
14.
Although as an organ the root plays a pivotal role in nutrient and water uptake as well anchorage, individual cell types function distinctly. Cortex is regarded as the least differentiated cell type in the root, but little is known about its role in plant growth and physiology. In recent studies, we found that cortex proliferation can be induced by oxidative stress. Since all types of abiotic stress lead to oxidative stress, this finding suggests a role for cortex in coping with abiotic stress. This hypothesis was tested in this study using the spy mutant, which has an extra layer of cortex in the root. Interestingly, the spy mutant was shown to be hypersensitive to salt and oxidizing reagent applied to the leaves, but it was as tolerant as the wild type to these compounds in the soil. This result lends support to the notion that cortex has a protective role against abiotic stress arising from the soil.  相似文献   

15.
ETHYLENE INSENSITIVE 3 (EIN3) is a key regulator of ethylene signaling, and EIN3‐BINDING F‐BOX1 (EBF1) and EBF2 are responsible for EIN3 degradation. Previous reports have shown that the ebf1 ebf2 double homozygous mutant cannot be identified. In this study, the genetic analysis revealed that the ebf1 ebf2 female gametophyte is defective. The pollination experiment showed that ebf1 ebf2 ovules failed to attract pollen tubes. In female gametophyte/ovule, the synergid cell is responsible for pollen tube attraction. Observation of the pEIN3::EIN3‐GFP transgenic lines showed that EIN3 signal was over‐accumulated at the micropylar end of ebf1 ebf2 female gametophyte. The overexpression of stabilized EIN3 in synergid cell led to the defect of pollen tube guidance. These results suggested that the over‐accumulated EIN3 in ebf1 ebf2 synergid cell blocks its pollen tube attraction which leads to the failure of ebf1 ebf2 homozygous plant. We identified that EIN3 directly activated the expression of a sugar transporter, SENESCENCE‐ASSOCIATED GENE29 (SAG29/SWEET15). Overexpression of SAG29 in synergid cells blocked pollen tube attraction, suggesting that SAG29 might play a role in ethylene signaling to repel pollen tube entry. Taken together, our study reveals that strict control of ethylene signaling is critical for the synergid cell function during plant reproduction.  相似文献   

16.
Ethylene signalling regulates plant growth and development. However, its roles in salt stress response are less known. Here we studied functions of EIN2, a central membrane protein of ethylene signalling, and its interacting protein ECIP1 in salt stress responses. Mutation of EIN2 led to extreme salt sensitivity as revealed by phenotypic and physiological changes, and overexpression of C-terminus of EIN2 suppressed salt sensitivity in ein2-5, indicating that EIN2 is required for salt tolerance. Downstream components EIN3 and EIL1 are also essential for salt tolerance because ein3-1eil1-1 double mutant showed extreme salt-sensitive phenotype. A MA3 domain-containing protein ECIP1 was further identified to interact with EIN2 in yeast two-hybrid assay and GST pull-down assay. Loss-of-function of ECIP1 resulted in enhanced ethylene response but altered salt response during seed germination and plant growth. Double mutant analysis revealed that ein2-1 was epistatic to ecip1, and ecip1 mutation partially suppressed ethylene-insensitivity of etr2-1 and ein4-1. These studies strengthen that interactions between ECIP1 and EIN2 or ethylene receptors regulate ethylene response and stress response.  相似文献   

17.
Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.  相似文献   

18.
19.
20.

Background and Aims

Leaf longevity is an important plant functional trait that often varies with soil nitrogen supply. Ethylene is a classical plant hormone involved in the control of senescence and abscission, but its role in nitrogen-dependent leaf longevity is largely unknown.

Methods

Pot and field experiments were performed to examine the effects of nitrogen addition on leaf longevity and ethylene production in two dominant plant species, Agropyron cristatum and Stipa krylovii, in a temperate steppe in northern China.

Key Results

Nitrogen addition increased leaf ethylene production and nitrogen concentration but shortened leaf longevity; the addition of cobalt chloride, an ethylene biosynthesis inhibitor, reduced leaf nitrogen concentration and increased leaf longevity. Path analysis indicated that nitrogen addition reduced leaf longevity mainly through altering leaf ethylene production.

Conclusions

These findings provide the first experimental evidence in support of the involvement of ethylene in nitrogen-induced decrease in leaf longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号