首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ba2+ block of large conductance Ca2+-activated K+ channels was studied in patches of membrane excised from cultures of rat skeletal muscle using the patch clamp technique. Under conditions in which a blocking Ba2+ ion would dissociate to the external solution (150 mM N-methyl-d-glucamine+ o, 500 mM K+ i, 10 μM Ba2+ i, +30 mV, and 100 μM Ca2+ i to fully activate the channel), Ba2+ blocks with a mean duration of ∼2 s occurred, on average, once every ∼100 ms of channel open time. Of these Ba2+ blocks, 78% terminated with a single step in the current to the fully open level and 22% terminated with a transition to a subconductance level at ∼0.26 of the fully open level (preopening) before stepping to the fully open level. Only one apparent preclosing was observed in ∼10,000 Ba2+ blocks. Thus, the preopenings represent Ba2+-induced time-irreversible subconductance gating. The fraction of Ba2+ blocks terminating with a preopening and the duration of preopenings (exponentially distributed, mean = 0.75 ms) appeared independent of changes in [Ba2+]i or membrane potential. The fractional conductance of the preopenings increased from 0.24 at +10 mV to 0.39 at +90 mV. In contrast, the average subconductance level during normal gating in the absence of Ba2+ was independent of membrane potential, suggesting different mechanisms for preopenings and normal subconductance levels. Preopenings were also observed with 10 mM Ba2+ o and no added Ba2+ i. Adding K+, Rb+, or Na+ to the external solution decreased the fraction of Ba2+ blocks with preopenings, with K+ and Rb+ being more effective than Na+. These results are consistent with models in which the blocking Ba2+ ion either induces a preopening gate, and then dissociates to the external solution, or moves to a site located on the external side of the Ba2+ blocking site and acts directly as the preopening gate.  相似文献   

2.
Ionic (Ii) and gating currents (Ig) from noninactivating Shaker H4 K+ channels were recorded with the cut-open oocyte voltage clamp and macropatch techniques. Steady state and kinetic properties were studied in the temperature range 2–22°C. The time course of Ii elicited by large depolarizations consists of an initial delay followed by an exponential rise with two kinetic components. The main Ii component is highly temperature dependent (Q10 > 4) and mildly voltage dependent, having a valence times the fraction of electric field (z) of 0.2–0.3 eo. The Ig On response obtained between −60 and 20 mV consists of a rising phase followed by a decay with fast and slow kinetic components. The main Ig component of decay is highly temperature dependent (Q10 > 4) and has a z between 1.6 and 2.8 eo in the voltage range from −60 to −10 mV, and ∼0.45 eo at more depolarized potentials. After a pulse to 0 mV, a variable recovery period at −50 mV reactivates the gating charge with a high temperature dependence (Q10 > 4). In contrast, the reactivation occurring between −90 and −50 mV has a Q10 = 1.2. Fluctuation analysis of ionic currents reveals that the open probability decreases 20% between 18 and 8°C and the unitary conductance has a low temperature dependence with a Q10 of 1.44. Plots of conductance and gating charge displacement are displaced to the left along the voltage axis when the temperature is decreased. The temperature data suggests that activation consists of a series of early steps with low enthalpic and negative entropic changes, followed by at least one step with high enthalpic and positive entropic changes, leading to final transition to the open state, which has a negative entropic change.  相似文献   

3.
A simple kinetic model is presented to explain the gating of a HERG-like voltage-gated K+ conductance described in the accompanying paper (Zhou, W., F.S. Cayabyab, P.S. Pennefather, L.C. Schlichter, and T.E. DeCoursey. 1998. J. Gen. Physiol. 111:781–794). The model proposes two kinetically distinct closing pathways, a rapid one favored by depolarization (deactivation) and a slow one favored by hyperpolarization (inactivation). The overlap of these two processes leads to a window current between −50 and +20 mV with a peak at −36 mV of ∼12% maximal conductance. The near absence of depolarization-activated outward current in microglia, compared with HERG channels expressed in oocytes or cardiac myocytes, can be explained if activation is shifted negatively in microglia. As seen with experimental data, availability predicted by the model was more steeply voltage dependent, and the midpoint more positive when determined by making the holding potential progressively more positive at intervals of 20 s (starting at −120 mV), rather than progressively more negative (starting at 40 mV). In the model, this hysteresis was generated by postulating slow and ultra-slow components of inactivation. The ultra-slow component takes minutes to equilibrate at −40 mV but is steeply voltage dependent, leading to protocol-dependent modulation of the HERG-like current. The data suggest that “deactivation” and “inactivation” are coupled through the open state. This is particularly evident in isotonic Cs+, where a delayed and transient outward current develops on depolarization with a decay time constant more voltage dependent and slower than the deactivation process observed at the same potential after a brief hyperpolarization.  相似文献   

4.
The calcium pump of the sarcoplasmic reticulum (SERCA) is an ATP-driven active transporter of Ca2+ ions that functions via an “alternating-access” cycle mechanism. In each cycle, SERCA transports two Ca2+ ions toward the lumen of the sarcoplasmic reticulum and two to three protons to the cytoplasm. How the latter conformational transition is coupled to cytoplasmic release of protons remains poorly understood. The present computational study shows how the mechanism of proton countertransport is coupled to the alternating access gating process in SERCA. Molecular dynamics simulation trajectories are generated starting from a series of configurations taken along the E2 to E1 transition pathway determined by the string method with swarms-of-trajectories. Simulations of different protonation configurations at the binding sites reveal how deprotonation events affect the opening of the cytoplasmic gate. The results show that there is a strong coupling between the chronological order of deprotonation, the entry of water molecules into the TM region, and the opening of the cytoplasmic gate. Deprotonation of E309 and E771 is sequential with E309 being the first to lose the proton. The deprotonation promotes the opening of the cytoplasmic gate but leads to a productive gating transition only if it occurs after the transmembrane domain has reached an intermediate conformation. Deprotonation of E309 and E771 is unproductive when it occurs too early because it causes the re-opening of the luminal gate.  相似文献   

5.
Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as “charge immobilization” (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567–590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at −90 mV return potential changed from a single fast component to at least two components, the slower requiring ∼200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at −120 and −90 mV. In contrast, at higher potentials (−70 and −50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of “parallel” inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region.  相似文献   

6.
The understanding of the role of cytoplasmic pH in modulating sarcoplasmic reticulum (SR) ion channels involved in Ca2+ regulation is important for the understanding of the function of normal and adversely affected muscles. The dependency of the SR small chloride (SCl) channel from rabbit skeletal muscle on cytoplasmic pH (pH cis ) and luminal pH (pH trans ) was investigated using the lipid bilayer-vesicle fusion technique. Low pH cis 6.75–4.28 modifies the operational mode of this multiconductance channel (conductance levels between 5 and 75 pS). At pH cis 7.26–7.37 the channel mode is dominated by the conductance and kinetics of the main conductance state (65–75 pS) whereas at low pH cis 6.75–4.28 the channel mode is dominated by the conductance and kinetics of subconductance states (5–40 pS). Similarly, low pH trans 4.07, but not pH trans 6.28, modified the activity of SCl channels. The effects of low pH cis are pronounced at 10−3 and 10−4 m [Ca2+] cis but are not apparent at 10−5 m [Ca2+] cis , where the subconductances of the channel are already prominent. Low pH cis -induced mode shift in the SCl channel activity is due to modification of the channel proteins that cause the uncoupling of the subconductance states. The results in this study suggest that low pH cis can modify the functional properties of the skeletal SR ion channels and hence contribute, at least partly, to the malfunction in the contraction-relaxation mechanism in skeletal muscle under low cytoplasmic pH levels. Received: 20 May 1998/Revised: 24 September 1998  相似文献   

7.
Data obtained with the lipid bilayer technique indicate that cis (cytoplasmic) concentration of 4.4–22 mm hydrogen peroxide (H2O2), is a water-soluble oxidant. [H2O2] cis (n= 26) reversibly inhibits the multisubconductance SCl channel of the sarcoplasmic reticulum vesicles from rabbit skeletal muscle. At −40 mV, the mean values of the current amplitude (I) and the probability of the SCl channel being open (P o ) were reduced significantly (n= 8) from −6.14 ± 0.42 pA and 0.69 ± 0.06 (for all conductance levels) in control 0.0 mm [H2O2] cis to −1.10 ± 0.51 pA and 0.13 ± 0.04 (for the intermediate subconductance states) in 8.8 mm [H2O2] cis , respectively. The [H2O2] cis -induced decrease in P o is mainly due to a decrease in the mean open time T o . The mechanism of [H2O2] cis effects on the multiconductance SCl channel is characterized by a mode shift in the channel state from the main conductance state to the low subconductance states. The estimated concentration of the [H2O2] cis for the half inhibitory constant, K i , was 11.78 mm, higher than the estimated 8.0 and 8.1 mm for the parameters P o and T o , respectively, indicating that the conductance of the SCl channel is less sensitive than the gating kinetics of the channel. After a lag period of between 30 to 60 sec, the lipophilic SH-oxidizing agent 4,4′-dithiodipyridine (4,4′-DTDP) added to the cis side at 1.0 mm removed the inhibitory effects of 8.8 mm [H2O2] cis . The 4,4′-DTDP-enhanced SCl channel activity was blocked after the addition of 0.5 mm ATP to the cis side of the channel. The addition of 1.0 mm 4,4′-DTDP to the cis or trans solutions facing an SCl channel already subjected to 0.5 mm [ATP] cis or [ATP] trans failed to activate the ATP-inhibited SCl channel. These findings suggest that 4,4′-DTDP is not preventing the binding of ATP to its binding site on the channel protein. The interaction of H2O2 with the SCl channel proteins is consistent with a thiol-disulfide redox state model for regulating ion transport, where SH groups can directly modify the function of the channel and/or the availability of regulatory sites on the channel proteins. The H2O2 effects on the Ca2+ countercurrent through the SCl channel are also consistent with H2O2-modification of the mechanisms involved in the Ca2+ regulation, which underlies excitation-contraction coupling in skeletal muscle. Received: 27 April 1999/Revised: 1 July 1999  相似文献   

8.
The charge translocation associated with sarcoplasmic reticulum (SR) Ca2+ efflux is compensated for by a simultaneous SR K+ influx. This influx is essential because, with no countercurrent, the SR membrane potential (Vm) would quickly (<1 ms) reach the Ca2+ equilibrium potential and SR Ca2+ release would cease. The SR K+ trimeric intracellular cation (TRIC) channel has been proposed to carry the essential countercurrent. However, the ryanodine receptor (RyR) itself also carries a substantial K+ countercurrent during release. To better define the physiological role of the SR K+ channel, we compared SR Ca2+ transport in saponin-permeabilized cardiomyocytes before and after limiting SR K+ channel function. Specifically, we reduced SR K+ channel conduction 35 and 88% by replacing cytosolic K+ for Na+ or Cs+ (respectively), changes that have little effect on RyR function. Calcium sparks, SR Ca2+ reloading, and caffeine-evoked Ca2+ release amplitude (and rate) were unaffected by these ionic changes. Our results show that countercurrent carried by SR K+ (TRIC) channels is not required to support SR Ca2+ release (or uptake). Because K+ enters the SR through RyRs during release, the SR K+ (TRIC) channel most likely is needed to restore trans-SR K+ balance after RyRs close, assuring SR Vm stays near 0 mV.  相似文献   

9.
10.
TRPV1 represents a non-selective cation channel activated by capsaicin, acidosis and high temperature. In the central nervous system where TRPV1 is highly expressed, its physiological role in nociception is clearly identified. In skeletal muscle, TRPV1 appears implicated in energy metabolism and exercise endurance. However, how as a Ca2+ channel, it contributes to intracellular calcium concentration ([Ca2+]i) maintenance and muscle contraction remains unknown. Here, as in rats, we report that TRPV1 is functionally expressed in mouse skeletal muscle. In contrast to earlier reports, our analysis show TRPV1 presence only at the sarcoplasmic reticulum (SR) membrane (preferably at the longitudinal part) in the proximity of SERCA1 pumps. Using intracellular Ca2+ imaging, we directly accessed to the channel functionality in intact FDB mouse fibers. Capsaicin and resiniferatoxin, both agonists as well as high temperature (45°C) elicited an increase in [Ca2+]i. TRPV1-inhibition by capsazepine resulted in a strong inhibition of TRPV1-mediated functional responses and abolished channel activation. Blocking the SR release (with ryanodine or dantrolene) led to a reduced capsaicin-induced Ca2+ elevation suggesting that TRPV1 may participate to a secondary SR Ca2+ liberation of greater amplitude. In conclusion, our experiments point out that TRPV1 is a functional SR Ca2+ leak channel and may crosstalk with RyR1 in adult mouse muscle fibers.  相似文献   

11.
《Molecular membrane biology》2013,30(3-4):283-296
A fast method for preparing Ca2+-ATPase from rabbit muscle sarcoplasmic reticulum was devised. The method involves extracting extrinsic membrane proteins with the non-ionic detergent octylglucoside at high salt concentration. A Ca2+ ATPase of consistently high specific activity (about 25 μmoles/mg·min) is found in the insoluble residue. The method was optimized with respect to the concentrations of detergent and salt, pH, and other extraction conditions. By the criteria of the protein pattern in SDS-polyacrylamide gel electrophoresis, dependence of the hydrolytic activity on the presence of Ca2+, and the phosphoprotein formation, the preparation is identical with the Ca2+-ATPase isolated previously by MacLennan [10] and other authors. The main advantages of the new method are its rapidity, its reliability, and the high specific activity of the purified enzyme.  相似文献   

12.
In this and the following paper we have examined the kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents in order to interpret these currents in terms of the gating behavior of the mslo channel. To do so, however, it was necessary to first find conditions by which we could separate the effects that changes in Ca2+ concentration or membrane voltage have on channel permeation from the effects these stimuli have on channel gating. In this study we investigate three phenomena which are unrelated to gating but are manifest in macroscopic current records: a saturation of single channel current at high voltage, a rapid voltage-dependent Ca2+ block, and a slow voltage-dependent Ba2+ block. Where possible methods are described by which these phenomena can be separated from the effects that changes in Ca2+ concentration and membrane voltage have on channel gating. Where this is not possible, some assessment of the impact these effects have on gating parameters determined from macroscopic current measurements is provided. We have also found that without considering the effects of Ca2+ and voltage on channel permeation and block, macroscopic current measurements suggest that mslo channels do not reach the same maximum open probability at all Ca2+ concentrations. Taking into account permeation and blocking effects, however, we find that this is not the case. The maximum open probability of the mslo channel is the same or very similar over a Ca2+ concentration range spanning three orders of magnitude indicating that over this range the internal Ca2+ concentration does not limit the ability of the channel to be activated by voltage.  相似文献   

13.
The same isoform of ryanodine receptor (RYR1) is expressed in both fast and slow mammalian skeletal muscles. However, differences in contractile activation and calcium release kinetics in intact and skinned fibers have been reported. In this work, intracellular Ca2+ transients were measured in soleus and extensor digitorum longus (EDL) single muscle fibers using mag-fura-2 (K D for Ca2+= 49 μm) as Ca2+ fluorescent indicator. Fibers were voltage-clamped at V h =−90 mV and sarcoplasmic reticulum calcium release was measured at the peak (a) and at the end (b) of 200 msec pulses at +10 mV. Values of a-b and b were assumed to correspond to Ca2+-gated and voltage-gated Ca2+ release, respectively. Ratios (b/a-b) in soleus and EDL fibers were 0.41 ± 0.05 and 1.01 ± 0.13 (n= 12), respectively. This result suggested that the proportion of dihydropyridine receptor (DHPR)-linked and unlinked RYRs is different in soleus and EDL muscle. The number of DHPR and RYR were determined by measuring high-affinity [3H]PN200-110 and [3H]ryanodine binding in soleus and EDL rat muscle homogenates. The B max values corresponded to a PN200-110/ryanodine binding ratio of 0.34 ± 0.05 and 0.92 ± 0.11 for soleus and EDL muscles (n= 4–8), respectively. These data suggest that soleus muscle has a larger calcium-gated calcium release component and a larger proportion of DHPR-unlinked RYRs. Received: 31 August 1995/Revised: 25 January 1996  相似文献   

14.
15.
The kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents were studied in excised patches from Xenopus oocytes. In response to voltage steps, the timecourse of both activation and deactivation, but for a brief delay in activation, could be approximated by a single exponential function over a wide range of voltages and internal Ca2+ concentrations ([Ca]i). Activation rates increased with voltage and with [Ca]i, and approached saturation at high [Ca]i. Deactivation rates generally decreased with [Ca]i and voltage, and approached saturation at high [Ca]i. Plots of the macroscopic conductance as a function of voltage (G-V) and the time constant of activation and deactivation shifted leftward along the voltage axis with increasing [Ca]i. G-V relations could be approximated by a Boltzmann function with an equivalent gating charge which ranged between 1.1 and 1.8 e as [Ca]i varied between 0.84 and 1,000 μM. Hill analysis indicates that at least three Ca2+ binding sites can contribute to channel activation. Three lines of evidence indicate that there is at least one voltage-dependent unimolecular conformational change associated with mslo gating that is separate from Ca2+ binding. (a) The position of the mslo G-V relation does not vary logarithmically with [Ca]i. (b) The macroscopic rate constant of activation approaches saturation at high [Ca]i but remains voltage dependent. (c) With strong depolarizations mslo currents can be nearly maximally activated without binding Ca2+. These results can be understood in terms of a channel which must undergo a central voltage-dependent rate limiting conformational change in order to move from closed to open, with rapid Ca2+ binding to both open and closed states modulating this central step.  相似文献   

16.
The organ of Corti has been found to have multiple gap junction subunits, connexins, which are localized solely in nonsensory supporting cells. Connexin mutations can induce sensorineural deafness. However, the characteristics and functions of inner ear gap junctions are not well known. In the present study, the voltage-dependence of gap junctional conductance (G j ) in cochlear supporting cells was examined by the double voltage clamp technique. Multiple types of asymmetric voltage dependencies were found for both nonjunctional membrane voltage (V m ) and transjunctional (V j ) voltage. Responses for each type of voltage dependence were categorized into four groups. The first two groups showed rectification that was polarity dependent. The third group exhibited rectification with either voltage polarity, i.e., these cells possessed a bell-shaped G j -V j or G j -V m function. The rectification due to V j had fast and slow components. On the other hand, V m -dependent gating was fast (<5 msec), but stable. Finally, a group was found that evidenced no voltage dependence, although the absence of V j dependence did not preclude V m dependence and vice versa. In fact, for all groups V j sensitivity could be independent of V m sensitivity. The data show that most gap junctional channels in the inner ear have asymmetric voltage gating, which is indicative of heterogeneous coupling and may result from heterotypic channels or possibly heteromeric configurations. This heterogeneous coupling implies that single connexin gene mutations may affect the normal physiological function of gap junctions that are not limited to homotypic configurations. Received: 17 September 1999/Revised: 12 January 2000  相似文献   

17.
Using the patch-voltage clamp technique and the rescaled range method, activity of single large conductance Ca2+-activated K+ channels (KCa channels) was studied. For the sequences of alternating open and shut time intervals, the dependence R/S vs. N in the double logarithmic coordinates presented a curve with two slopes, H1 =0.60 ± 0.04, and H2 = 0.88 ± 0.21, where H1 and H2 characterized the Hurst exponents for shot and long time ranges, respectively. Similar results were obtained for reduced data sets consisting of only open or only shut intervals. Randomization of the experimental data resulted in a single slope, H, of 0.52 ± 0.02. Simulations were performed with eight-state Markovian model without memory. The calculated Hurst exponent presented in average 0.54 ± 0.02. The results suggest that the activity of single Ca2+-activated K+ channel exhibits two regimes, with slight positive correlation at short time ranges (H1 =0.6), and strong positive correlation at long time ranges (H2 = 0.88); therefore the channel gating as a whole is not a steady-state Markovian process.  相似文献   

18.
The sarcoplasmic reticulum (SR) of skeletal muscle contains K+, Cl, and H+ channels may facilitate charge neutralization during Ca2+ release. Our recent studies have identified trimeric intracellular cation (TRIC) channels on SR as an essential counter-ion permeability pathway associated with rapid Ca2+ release from intracellular stores. Skeletal muscle contains TRIC-A and TRIC-B isoforms as predominant and minor components, respectively. Here we test the physiological function of TRIC-A in skeletal muscle. Biochemical assay revealed abundant expression of TRIC-A relative to the skeletal muscle ryanodine receptor with a molar ratio of TRIC-A/ryanodine receptor ∼5:1. Electron microscopy with the tric-a−/− skeletal muscle showed Ca2+ overload inside the SR with frequent formation of Ca2+ deposits compared with the wild type muscle. This elevated SR Ca2+ pool in the tric-a−/− muscle could be released by caffeine, whereas the elemental Ca2+ release events, e.g. osmotic stress-induced Ca2+ spark activities, were significantly reduced likely reflecting compromised counter-ion movement across the SR. Ex vivo physiological test identified the appearance of “alternan” behavior with isolated tric-a−/− skeletal muscle, i.e. transient and drastic increase in contractile force appeared within the decreasing force profile during repetitive fatigue stimulation. Inhibition of SR/endoplasmic reticulum Ca2+ ATPase function could lead to aggravation of the stress-induced alternans in the tric-a−/− muscle. Our data suggests that absence of TRIC-A may lead to Ca2+ overload in SR, which in combination with the reduced counter-ion movement may lead to instability of Ca2+ movement across the SR membrane. The observed alternan behavior with the tric-a−/− muscle may reflect a skeletal muscle version of store overload-induced Ca2+ release that has been reported in the cardiac muscle under stress conditions.  相似文献   

19.
The sarcoplasmic reticulum of skeletal muscle retains a membrane bound Ca2+-ATPase which is able to interconvert different forms of energy. A part of the chemical energy released during ATP hydrolysis is converted into heat and in the bibliography it is assumed that the amount of heat produced during the hydrolysis of an ATP molecule is always the same, as if the energy released during ATP cleavage were divided in two non-interchangeable parts: one would be converted into heat, and the other used for Ca2+ transport. Data obtained in our laboratory during the past three years indicate that the amount of heat released during the hydrolysis of ATP may vary between 7 and 32 kcal/mol depending on whether or not a transmembrane Ca2+ gradient is formed across the sarcoplasmic reticulum membrane. Drugs such as heparin and dimethyl sulfoxide are able to modify the fraction of the chemical energy released during ATP hydrolysis which is used for Ca2+ transport and the fraction which is dissipated in the surrounding medium as heat.  相似文献   

20.
In this review we compared the electrophysiological properties of plant K+ uptake channels from different plants and tissues. Taking into account the detailed knowledge of K+ channel properties, which has emerged since the application of the patch-clamp technique on plant cells, as well as results from our recent studies we were able to extract features common among plant K+ channels. In addition, we focused on the diversity that could create plant or tissue-specificity. Functional fingerprints for the voltage-dependent K+ uptake channels were generated on the basis of their voltage-dependence, kinetics, permeability, conductance and pharmacology as well as regulation of K+ channels studied in their natural environment and cloned channels in heterologous expression systems. Finally, sequence information on plant and animal K+ channels cloned so far was used to identify structural motifs that may be related to functional phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号