首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A new computational method for simultaneously estimating all the proton-proton coupling constants in a molecule from COSY spectra [Yang, J.-X. and Havel, T.F. (1994) J. Biomol. NMR, 4, 807–826] is applied to experimental data from two polypeptides. The first of these is a cyclic hexapeptide denoted as VDA (-d-Ala1-Phe2-Trp3-Lys(Z)4-Val5-Phe6-), in deuterated DMSO, while the second is a 39-residue protein, called decorsin, in aqueous solution. The effect of different data processing strategies and different initial parameter values on the accuracy of the coupling constants was explored. In the case of VDA, most of the coupling constants did not depend strongly on the initial values chosen for the optimization or on how the data were processed. This, together with our previous experience using simulated data, implies strongly that these values are accurate estimates of the coupling constants. They also differ by an average of only 0.36 Hz from the values of the 14 coupling constants that could be measured independently by established methods. In the case of decorsin, many of the coupling constants exhibited a moderate dependence on their initial values and a strong dependence on how the data were processed. With the most successful data processing strategy, the amide- coupling constants differed by an average of 1.11 Hz from the 21 values that could be measured by established methods, while two thirds of the three-bond coupling constants fell within 1.0 Hz of the ranges obtained by applying the Karplus relation to an independently computed ensemble of distance geometry structures. The averages of the coupling constants over multiple optimizations using random initial values were computed in order to obtain the best possible estimates of the coupling constants. Most clearly incorrect averages can be identified by large standard deviations in the coupling constants or the associated line widths and chemical shifts, and can be explained by strong coupling and/or overlap with the water signal, the diagonal peaks or other cross peaks.  相似文献   

2.
Summary A computational method is described that takes an initial estimate of the chemical shifts, line widths and scalar coupling constants for the protons in a molecule, and refines this estimate so as to improve the least-squares fit between an experimental COSY spectrum and the spectrum simulated from these parameters in the weak-coupling approximation. In order to evaluate the potential of such refinements for estimating these parameters from COSY experiments, the method has been applied to a large number of sample problems which were themselves simulated from standard conformations of the amino acids, along with 25 near-native conformations of the protein bovine pancreatic trypsin inhibitor. The results of this evaluation show that: (i) if the chemical shifts are known to within ca. 0.01 ppm and no noise or artifacts are present in the data, the method is capable of recovering the correct coupling constants, starting from essentially arbitrary values, to within 0.1 Hz in almost all cases. (ii) Although the precision of these estimates of the coupling constants is degraded by the limited resolution, noise and artifacts present in most experimental spectra, the large majority of coupling constants can still be recovered to within 1.0 Hz; the local minimum problem is not made significantly worse by such defects in the data. (iii) The method assigns an effective line width to all the resonances, and in the process can resolve overlapping cross peaks. (iv) The method is not capable of determining the chemical shifts a priori, due to the presence of numerous local minima in the least-squares residual as a function of these parameters.  相似文献   

3.
The Fo membrane domain of FoF1-ATPase complex had been purified from porcine heart mitochondria. SDS-PAGE with silver staining indicated that the purity of Fo was about 85% and the sample contained no subunits of F1-ATPase. The purified Fo was reconstituted into liposomes with different phospholipid composition, and the effect of CL (cardiolipin), PA (phosphatidic acid), PI (phosphatidylinositol) and PS (phosphatidylserine) on the H+ translocation activity of Fo was investigated. The results demonstrated that CL, PA and PI could promote the proton translocation of Fo with the order of CL>PA>>PI, while PS inhibited it. Meanwhile ADM (adriamycin) severely impaired the proton translocation activity of Fo vesicles containing CL, which suggested that CL's stimulation of the activity of reconstituted Fo might correlate with its non-bilayer propensity. After Fo was incorporated into the liposomes containing PE (phosphatidylethanolamine), DOPE (dioleoylphosphatidylethanolamine) as well as DEPE (dielaidoylphospha  相似文献   

4.
AimThe feasibility of using 230 MeV proton cyclotrons in proton therapy centers as a spallation neutron source for Boron Neutron Capture Therapy (BNCT) was investigated.BackgroundBNCT is based on the neutron irradiation of a 10B-containing compound located selectively in tumor cells. Among various types of neutron generators, the spallation neutron source is a unique way to generate high-energy and high-flux neutrons.Materials and MethodsNeutron beam was generated by a proton accelerator via spallation reactions and then the produced neutron beam was shaped to be appropriate for BNCT. The proposed Beam Shaping Assembly (BSA) consists of different moderators, a reflector, a collimator, as well as thermal and gamma filters. In addition, the simulated Snyder head phantom was utilized to evaluate the dose distribution in tumor and normal tissue due to the irradiation by the designed beam. MCNPX2.6 Monte Carlo code was used to optimize BSA as well as evaluate dose evaluation.ResultsA BSA was designed. With the BSA configuration and a beam current of 104 nA, epithermal neutron flux of 3.94 × 106 [n/cm2] can be achieved, which is very low. Provided that we use the beam current of 5.75 μA, epithermal neutron flux of 2.18 × 108 [n/cm2] can be obtained and the maximum dose of 38.2 Gy-eq can be delivered to tumor tissue at 1.4 cm from the phantom surface.ConclusionsResults for 230 MeV protons show that with proposed BSA, proton beam current about 5.75 μA is required for this purpose.  相似文献   

5.
In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method.  相似文献   

6.
High-resolution proton and carbon-13 NMR of membranes: why sonicate?   总被引:2,自引:0,他引:2  
E Oldfield  J L Bowers  J Forbes 《Biochemistry》1987,26(22):6919-6923
We have obtained high-field (11.7-T) proton and carbon-13 Fourier transform (FT) nuclear magnetic resonance (NMR) spectra of egg lecithin and egg lecithin-cholesterol (1:1) multibilayers, using "magic-angle" sample spinning (MASS) techniques, and sonicated egg lecithin and egg lecithin-cholesterol (1:1) vesicles, using conventional FT NMR methods. Resolution of the proton and carbon-13 MASS NMR spectra of the pure egg lecithin samples is essentially identical with that of sonicated samples, but spectra of the unsonicated lipid, using MASS, can be obtained very much faster than with the more dilute, sonicated systems. With the 1:1 lecithin-cholesterol systems, proton MASS NMR spectra are virtually identical with conventional FT spectra of sonicated samples, while with 13C NMR, we demonstrate that most 13C nuclei in the cholesterol moiety can be monitored, even though these same nuclei are essentially invisible, i.e., are severely broadened, in the corresponding sonicated systems. In addition, 13C MASS NMR, spectra can again be recorded much faster than with sonicated samples, due to concentration effects. Taken together, these results strongly suggest there will seldom be need in the future to resort to ultrasonic disruption of lipid bilayer membranes in order to obtain high-resolution proton or carbon-13 NMR spectra.  相似文献   

7.
Arginine residues are generally considered poor candidates for the role of general bases because they are predominantly protonated at physiological pH. Nonetheless, Arg residues have recently emerged as general bases in several enzymes: IMP dehydrogenase, pectate/pectin lyases, fumarate reductase, and l-aspartate oxidase. The experimental evidence suggesting this mechanistic function is reviewed. Although these enzymes have several different folds and distinct evolutionary origins, a common structural motif is found where the critical Arg residue is solvent accessible and adjacent to carboxylate groups. The chemistry of the guanidine group suggests unique strategies to lower the pK(a) of Arg. Lastly, the presumption that general bases must be predominantly deprotonated is revisited.  相似文献   

8.
1. The -->H(+)/e(-) quotients for proton release from mitochondria associated with electron flow from succinate and duroquinol to O(2), ferricyanide or ferricytochrome c, and from NNN'N'-tetramethyl-p-phenylenediamine+ascorbate to O(2), were determined from rate measurements of electron flow and proton translocation. 2. Care was taken to avoid, or to take into account, unrelated electron flow and proton translocation, which might take place in addition to the oxido-reductions that were the subject of our analysis. Spectrophotometric techniques were chosen to provide accurate measurement of the rate of consumption of oxidants and reductants. The rate of proton translocation was measured with fast pH meters with a precision of 10(-3) pH unit. 3. The -->H(+)/O quotient for succinate or duroquinol oxidation was, at neutral pH, 4, when computed on the basis of spectrophotometric determinations of the rate of O(2) consumption or duroquinol oxidation. Higher -->H(+)/O quotients for succinate oxidation, obtained from polarographic measurements of O(2) consumption, resulted from underestimation of the respiratory rate. 4. The -->H(+)/2e(-) quotient for electron flow from succinate and duroquinol to ferricyanide or ferricytochrome c ranged from 3.9 to 3.6. 5. Respiration elicited by NNN'N'-tetramethyl-p-phenylenediamine+ascorbate by antimycin-inhibited mitochondria resulted in extra proton release in addition to that produced for oxidation of ascorbate to dehydroascorbate. Accurate spectrophotometric measurement of respiration showed that the -->H(+)/e(-) ratio was only 0.25 and not 0.7-1.0 as obtained with the inadequate polarographic assay of respiration. Proton release was practically suppressed when mitochondria were preincubated aerobically in the absence of antimycin. Furthermore, the rate of scalar proton consumption for water production was lower than that expected from the stoicheiometry. Thus the extra proton release observed during respiration elicited by NNN'N'-tetramethyl-p-phenylenediamine+ascorbate is caused by oxidation of endogenous hydrogenated reductants. 6. It is concluded that (i) the -->H(+)/O quotient for the cytochrome system is, at neutral pH, 4 and not 6 or 8 as reported by others; (ii) all the four protons are released during electron flow from quinol to cytochrome c; (iii) the oxidase transfers electrons from cytochrome c to protons from the matrix aqueous phase and does not pump protons from the matrix to the outer aqueous phase.  相似文献   

9.
Light-driven photosynthetic electron transport is coupled to the movement of protons from the chloroplast stroma to the thylakoid lumen. The resulting proton motive force that is generated is used to drive the conformational rotation of the transmembrane thylakoid ATPase enzyme which converts ADP (adenosine diphosphate) and Pi (inorganic phosphate) into ATP (adenosine triphosphate), the energy currency of the plant cell required for carbon fixation and other metabolic processes. According to Mitchell’s chemiosmotic hypothesis, the proton motive force can be parsed into the transmembrane proton gradient (ΔpH) and the electric field gradient (Δψ), which are thermodynamically equivalent. In chloroplasts, the proton motive force has been suggested to be split almost equally between Δψ and ΔpH (Kramer et al., Photosynth Res 60:151–163, 1999). One of the central pieces of evidence for this theory is the existence of a steady-state electrochromic shift (ECS) absorption signal detected ~515 nm in plant leaves during illumination. The interpretation of this signal is complicated, however, by a heavily overlapping absorption change ~535 nm associated with the formation of photoprotective energy dissipation (qE) during illumination. In this study, we present new evidence that dissects the overlapping contributions of the ECS and qE-related absorption changes in wild-type Arabidopsis leaves using specific inhibitors of the ΔpH (nigericin) and Δψ (valinomycin) and separately using leaves of the Arabidopsis lut2npq1 mutant that lacks qE. In both cases, our data show that no steady-state ECS signal persists in the light longer than ~60 s. The consequences of our observations for the suggesting parsing of steady-state thylakoid proton motive force between (ΔpH) and the electric field gradient (Δψ) are discussed.  相似文献   

10.
The nature of the control of water/proton selectivity in biological channels is a problem of a fundamental importance. Most studies of this issue have proposed that an interference with the orientational requirements of the so-called proton wire is the source of selectivity. The elucidation of the structures of aquaporins, which have evolved to prevent proton transfer (PT), provided a clear benchmark for exploring the selectivity problem. Previous simulations of this system have not examined, however, the actual issue of PT, but only considered the much simpler task of the transfer of water molecules. Here we take aquaporin as a benchmark and quantify the origin of the water/proton selectivity in this and related systems. This is done by evaluating in a consistent way the free energy profile for transferring a proton along the channel and relating this profile to the relevant PT rate constants. It is found that the water/proton selectivity is controlled by the change in solvation free energy upon moving the charged proton from water to the channel. The reason for the focus on the elegant concept of the proton wire and the related Grotthuss-type mechanism is also considered. It is concluded that these mechanisms are clearly important in cases with flat free energy surfaces (e.g., in bulk water, in gas phase water chains, and in infinitely long channels). However, in cases of biological channels, the actual PT mechanism is much less important than the energetics of transferring the proton charge from water to different regions in the channels.  相似文献   

11.
Most bacterial genomes have five to nine distinct genes predicted to encode transporters that exchange cytoplasmic Na+ and/or K+ for H+ from outside the cell, i.e. monovalent cation/proton antiporters. By contrast, pathogens that live primarily inside host cells usually possess zero to one such antiporter while other stress-exposed bacteria exhibit even higher numbers. The monovalent cation/proton antiporters encoded by these diverse genes fall into at least eight different transporter protein families based on sequence similarity. They enable bacteria to meet challenges of high or fluctuating pH, salt, temperature or osmolarity, but we lack explanations for why so many antiporters are needed and for the value added by specific antiporter types in specific settings. In this issue of Molecular Microbiology, analyses of the pH dependence of cytoplasmic [Na+], [K+], pH and transmembrane electrical potential in the 'poly extremophile' Natranaerobius thermophilus are the context for assessment of the catalytic properties of 12 predicted monovalent cation/proton antiporters in the genome of this thermophilic haloalkaliphile. The results provide a profile of adaptations of the poly extremophilic anaerobe, including a proposed role of cytoplasmic buffering capacity. They also provide new perspectives on two large monovalent cation/proton antiporter families, the NhaC and the cation/proton antiporter-3 antiporter families.  相似文献   

12.
Nutrient deficiencies are an ongoing problem in many populations and ascorbic acid is a key vitamin whose mild or acute absence leads to a number of conditions including the famously debilitating scurvy. As such, the biochemical effects of ascorbate deficiency merit ongoing scrutiny, and the Gulo knockout mouse provides a useful model for the metabolomic examination of vitamin C deficiency. Like humans, these animals are incapable of synthesizing ascorbic acid but with dietary supplements are otherwise healthy and grow normally. In this study, all vitamin C sources were removed after weaning from the diet of Gulo-/- mice (n?=?7) and wild type controls (n?=?7) for 12?weeks before collection of serum. A replicate study was performed with similar parameters but animals were harvested pre-symptomatically after 2-3?weeks. The serum concentration of 50 metabolites was determined by quantitative profiling of 1D proton NMR spectra. Multivariate statistical models were used to describe metabolic changes as compared to control animals; replicate study animals were used for external validation of the resulting models. The results of the study highlight the metabolites and pathways known to require ascorbate for proper flux.  相似文献   

13.
Sodium–proton antiporters rapidly exchange protons and sodium ions across the membrane to regulate intracellular pH, cell volume, and sodium concentration. How ion binding and release is coupled to the conformational changes associated with transport is not clear. Here, we report a crystal form of the prototypical sodium–proton antiporter NhaA from Escherichia coli in which the protein is seen as a dimer. In this new structure, we observe a salt bridge between an essential aspartic acid (Asp163) and a conserved lysine (Lys300). An equivalent salt bridge is present in the homologous transporter NapA, but not in the only other known crystal structure of NhaA, which provides the foundation of most existing structural models of electrogenic sodium–proton antiport. Molecular dynamics simulations show that the stability of the salt bridge is weakened by sodium ions binding to Asp164 and the neighboring Asp163. This suggests that the transport mechanism involves Asp163 switching between forming a salt bridge with Lys300 and interacting with the sodium ion. pKa calculations suggest that Asp163 is highly unlikely to be protonated when involved in the salt bridge. As it has been previously suggested that Asp163 is one of the two residues through which proton transport occurs, these results have clear implications to the current mechanistic models of sodium–proton antiport in NhaA.  相似文献   

14.
Summary Rat liver lysosomes have been used to characterize further the effects of ATP on lysosomal stability during incubation at 37°C at hypo-osmolarity. As previously reported, when the osmotically-supporting solute is the salt of a strong base (K+), ATP protects against lysis during incubation. However, if the osmotically-supporting solute is the salt of a weak base, e.g. Tris HCl or NH4Cl, ATP actually promotes lysis during incubation. Thus, ATP can exert destabilizing as well as protective effects on lysosomes. The destabilizing effect is eliminated by protonophores. The protective effect in the presence of potassium salts is not eliminated by protonophores. Moreover, when incubation is in the presence of a salt of a weak base, protonophores actually cause an ATP-dependent protective effect to be established. The destabilizing effect occurs at 37°C, but not at 0°C. The Mg–+-dependence of the destabilizing effect was found to be similar to that found earlier for the ATP-dependent protective effect, insofar as only 1 mM MgCl2 in the presence of 1 mM EDTA is sufficient for nearly maximal stimulation of both effects. The destabilizing effect may result from a H ion gradient across the lysosomal membrane which is maintained by the lysosomal ATP-dependent proton pump. The protective effect, on the other hand, does not depend on such a gradient being maintained; on the contrary, protonophores appear to act as enablers of the protective effect. The question that remains to be answered is: does the protective effect derive in some way from the same ATP-driven mechanism which constitutes the proton pump? Some possible answers to this question are considered.Abbreviations Mops 2-(N-morpholine)-propanesulfonic acid - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DNP 2,4-Dinitrophenol - EDTA Ethylenediaminetetracetic acid  相似文献   

15.
The effect of the incorporation of phosphorylated phospholamban (pPLN) and sarcolipin (SLN) in mercury-supported self-assembled lipid monolayers and in lipid bilayers tethered to mercury via a hydrophilic spacer was investigated by voltammetric techniques and electrochemical impedance spectroscopy. It was shown that pPLN and SLN do not permeabilize lipid bilayers toward ions at physiological pH. However, they exert a permeabilizing action toward inorganic monovalent cations such as K+ and Tl+, but not toward divalent cations such as Ca2+ and Cd2 +, following a small decrease in pH. This behavior can be associated with their regulatory action on the Ca-ATPase of the sarcoplasmic reticulum (SERCA). SERCA pumps two Ca2+ ions from the cytosol to the lumen of the sarcoplasmic reticulum (SR) and two protons in the opposite direction, causing a transient decrease of pH in the immediate vicinity of its cytoplasmic domain. This decrease is expected to activate the liberated pPLN molecules and SLN to make the SR membrane leakier toward K+ and Na+ and the SLN ion channel to translocate small inorganic anions, such as Cl. The effect of pPLN and SLN, which becomes synergic when they are both present in the SR membrane, is expected to favor a rapid equilibration of ions on both sides of the membrane.  相似文献   

16.
An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct., 76, 81–92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341–346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1H chemical shifts revealing their physical origin. For example, a down-field shift of either H2 or H3 or both indicates a high-syn/syn -angle. In an A-helix it is essentially the 5-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings.  相似文献   

17.
A mechanism for proton pumping is described that is based on chemiosmotic principles and the detailed molecular structures now available for cytochrome oxidases. The importance of conserved water positions and a step-wise gated process of proton translocation is emphasized, where discrete electron transfer events are coupled to proton uptake and expulsion. The trajectory of each pumped proton is the same for all four substrate electrons. An essential role for the His-Tyr cross-linked species is discussed, in gating of the D- and K-channels and as an acceptor/donor of electrons and protons at the binuclear center.  相似文献   

18.

Background

One of the central debates in membrane bioenergetics is whether proton-dependent energy coupling mechanisms are mediated exclusively by protonic transmembrane electrochemical potentials, as delocalized pmf, ΔµH+, or by more localized membrane surface proton pathways, as interfacial pmf, ΔµHS.

Methods

We measure ?pHS in rat liver mitoplasts energized by respiration or ATP hydrolysis by inserting pH sensitive fluorescein-phosphatidyl-ethanolamine(F-PE) into mitoplast surface.

Results

In the presence of rotenone and Ap5A, succinate oxidation induces a bi-phasic interfacial protonation on the mitoplast membranes, a fast phase followed by a slow one, and an interfacial pH decrease of 0.5 to 0.9 pH units of mitoplast with no simultaneous pH changes in the bulk. Antimycin A, other inhibitors or uncouplers of mitochondrial respiration prevent the decrease of mitoplast ?pHS, supporting that ΔµHS is dependent and controlled by energization of mitoplast membranes. A quantitative assay of ATP synthesis coupled with ?pHS of mitoplasts oxidizing succinate with malonate titration shows a parallel correlation between ATP synthesis, State 4 respiration and ?pHS, but not with ?ΨE.

General Significance

Our data substantiate ?pHS as the primary energy source of pmf for mitochondrial ATP synthesis. Evidence and discussion concerning the relative importance and interplay of ?pHS and ?ΨE in mitochondrial bioenergetics are also presented.  相似文献   

19.
The 97 amino acid bitopic membrane protein M2 of influenza A forms a tetrameric bundle in which two of the monomers are covalently linked via a cysteine bridge. In its tetrameric assembly the protein conducts protons across the viral envelope and within intracellular compartments during the infectivity cycle of the virus. A key residue in the translocation of the protons is His-37 which forms a planar tetrad in the configuration of the bundle accepting and translocating the incoming protons from the N terminal side, exterior of the virus, to the C terminal side, inside the virus. With experimentally available data from NMR spectroscopy of the transmembrane domains of the tetrameric M2 bundle classical MD simulations are conducted with the protein bundle in different protonation stages in respect to His-37. A full correlation analysis (FCA) of the data sets with the His-37 tetrad either in a fully four times unprotonated or protonated state, assumed to mimic high and low pH in vivo, respectively, in both cases reveal asymmetric backbone dynamics. His-37 side chain rotation dynamics is increased at full protonation of the tetrad compared to the dynamics in the fully unprotonated state. The data suggest that proton translocation can be achieved by decoupled side chain or backbone dynamics.
Graphical abstract Visualization of the tetrameric bundle of the transmembrane domains of M2 of influenza A after 200 ns of MD simulations (upper left). The four histidine residues 37 are either not protonated as in M20 or fully protonated is in M24+. The asymmetric dynamics of the backbones are shown after a full correlation analysis (FCA) in blue (lower left). The rotational dynamics of the χ2 dihedral angles of the histidines in M20 (upper right) are less than those in M24+ (lower right)
  相似文献   

20.
A scanning proton microprobe has been used for the elemental microanalysis of individual fibroblast cells. Both normal fibroblasts and fibroblasts cultured from patients with Menkes' disease, an X-linked genetic disorder known to be associated with defective copper metabolism, were examined by the probe. The cells were cultured on a thin ultra-clean nylon foil and retained on that surface for analysis. The focused high-energy proton beam was used to irradiate selected individual cells and elemental information was derived from X-ray and backscattered proton data. The sensitivity of the scanning proton microprobe to trace concentrations of heavy elements has allowed this elemental information to be used to identify individual cells as being either normal or a Menkes' mutant. The cell identification was based on the application of discriminate analysis to a data set formed from the ratios of copper to each of the macroelements present in the cell. This method of cell identification offers the promise of rapid diagnosis of Menkes' disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号