首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 2,6-diacetylpyridine, CuCl2, and semicarbazide hydrochloride was studied as a function of pH to yield three different products: aqua(2-acetylsemicarbazone-3-hydroxo-6-acetylpyridine) chlorocopper(II) hemihydrate, 1, bis(2,6-diacetylpyridinedisemicarbazone)copper(I) chloride dimer, 2, and bis(2,6-diacetylpyridinedisemicarbazone)copper(II) chloride dimer, 3. The reaction of 1 with a mol of semicarbazide hydrochloride gave chloro(3-hydroxo-2,6-diacetylpyridinedisemicarbazone)copper(II) chloride hydrate, 4, and with a mol of semicarbazide hydrochloride and cupric chloride gave aquachlorocopper(II)(μ-chloro)(μ′-[2-acetylsemicarbazone-O,N-3-hydroxy-6-acetylsemicarbazonepyridine-O,N,N])aquacopper(II) trihydrate, 5. The crystal structures of compounds 1-5 were determined by X-ray diffraction. Some observations on the course of the reactions are given.  相似文献   

2.
2,2-Dichloro-4,4,6,6-bis[spiro(2′,2′′-dioxy-1′,1′′-biphenylyl]cyclotriphosphazene (2) was obtained from the reaction of hexachlorocyclotriphosphazene (1) with biphenyl-2,2′-diol. 2,2-Bis(4-formylphenoxy)-4,4,6,6-bis[spiro(2′,2′′-dioxy-1′,1′′-biphenylyl]cyclotriphosphazene (3) was synthesized from the reaction of 2 with 4-hydroxybenzaldehyde. The novel oxime-cyclophosphazene containing dioxybiphenyl groups (4) was synthesized from the reaction of 3 with hydroxylaminehydrochloride in pyridine. The reactions of this oxime-cyclophosphazene with propanoyl chloride, allyl bromide, acetyl chloride, methyl iodide, benzoyl chloride, 4-methoxybenzoyl chloride, benzenesulfonyl chloride, chloroacetyl chloride, ethyl bromide, benzyl chloride and 2-chlorobenzoyl chloride were studied. Disubstituted compounds were obtained from the reactions of 4 with propanoyl chloride, allyl bromide, acetyl chloride, methyl iodide, benzoyl chloride, 4-methoxybenzoyl chloride, chloroacetyl chloride, ethyl bromide, and 2-chlorobenzoyl chloride, however, the oxime groups on 4 rearranged to nitrile (11) in the reaction of 4 with benzenesulfonyl chloride. A monosubstituted compound was obtained from the reaction of 4 with benzyl chloride. All products were generally obtained in high yields. The structures of the compounds were defined by elemental analysis, IR, 1H, 13C and 31P NMR spectroscopy.  相似文献   

3.
A prodrug based on a known antibacterial compound is reported to target Staphylococcus aureus and Escherichia coli under reductive conditions. The prodrug was prepared by masking the N-terminus and side chain amines of a component lysine residue as 4-nitrobenzyl carbamates. Activation to liberate the antibacterial was demonstrated on treatment with a model reductant, tin(II) chloride. The bioactivity of 1 was confirmed in antibacterial susceptibility assays whereas prodrug 2 was inactive.  相似文献   

4.
Novel C-aryl glucoside SGLT2 inhibitors containing cyclic diarylpolynoid motif were designed and synthesized for biological evaluation. Alkylzinc bromides have been efficiently prepared by the direct insertion of zinc metal into alkyl bromides. The organozinc reagents underwent smooth Pd-catalyzed cross-coupling reactions. Subsequent ring closing metathesis using 2nd generation Grubbs catalyst successfully generated novel class of ansa-compounds. These glucosides with cyclic diarylpolynoids demonstrated moderate in vitro inhibitory activity against SGLT2 in this series to date (IC50 = 59.5-103 nM).  相似文献   

5.
Some fused dihydrooxepino[f]-, [g]-, and [h]coumarins were obtained from the ring-closing metathesis of the corresponding o-allyl-allyloxycoumarins under the treatment with the first generation Grubbs’ catalyst. These compounds were tested in vitro for their antioxidant activity, and they present significant scavenging activity. They were also showed to inhibit in vitro soybean lipoxygenase.  相似文献   

6.
2,3,4,6-Tetra-O-acetyl-β-d-mannopyranosyl chloride (2) was obtained in 70% yield by the action of lithium chloride on 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide (1) in hexamethylphosphoric triamide. p-Nitrobenzenethiol reacted with 1 and 2 as well as with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide (9) or its β-d-chloro analog (10), giving exclusively and in good yield the corresponding p-nitrophenyl 1-thioglycosides of inverted anomeric configuration. The 1,2-cis-d-manno and -glucop-nitrophenylglycosides were likewise prepared. α-d-Glucopyranosyl 1-thio-α-d-glucopyranoside was similarly obtained by the action of the sodium salt of 1-thio-α-d-glucopyranose on the β-chloride 10 in hexamethylphosphoric triamide, or by treatment of 10 with sodium sulfide, with subsequent deacetylation. Analogous procedures allowed the preparation of β-d-mannopyranosyl 1-thio-β-d-mann opyranoside, the corresponding α,β anomer and α-d-glucopyranosyl 1-thio-α-d-mannopyranoside, starting from bromide 1, 1-thio-α-d-mannopyranose (8),and chloride 10, respectively. When acetone was used as solvent, the reaction between 1 and 8 led instead to the α,α anomer. The thio disaccharides that are interglycosidic 4-thio analogs of methyl 4-O-(β-d-galactopyranosyl)-α-d-galactopyranoside, methyl α-cellobioside, and methyl α-maltoside, respectively, were obtained by way of the peracetates of methyl 4-thio-α-d-galactopyranoside and -glucopyranoside by reaction of the corresponding thiolates with tetra-O-acetyl-α-d-galactopyranosyl bromide, bromide 9, or chloride 10, respectively, in hexamethylphosphoric triamide. These 1-thioglycosides, and (1→1)- and (1→4)-thiodisaccharides, were characterized by 1H- and 1 3C-n.m.r. spectroscopy. Correlations were established between the polarity of the sulfur atom and certain proton and carbon chemical-shifts in the 1-thioglycosides in comparison with the O-glycosyl analogs; these correlations permitted in particular the unambigous attribution of anomeric configuration.  相似文献   

7.
Crystal structures of nickel(II) complexes coordinated with cyclam-type macrocyclic tetraamine, meso-1,5,8,12-tetramethyl-1,4,8,11-tetraazacyclotetradecane (L) in two complex salts 1 and 2 have been determined by single-crystal X-ray crystallographic analysis. Complexes in both salts adopted trans-III structure, but the C-methyl groups of L adopted equatorial configuration in 1, while axial in 2. Complex 2 is the first example of complex of cyclam-type tetraamine with only axially oriented C-methyl groups. Complex in 1 adopted six-coordinated octahedral geometry with two water molecules occupying two apical sites, while in 2, apical sites were vacant resulting in four-coordinated square-planar geometry. UV-Vis spectra in various solutions also revealed the formation of octahedral six-coordinated complex for 1 but not for 2. Network of hydrogen bonds involving chloride ion, water, and N-H of L was present in crystals of both 1 and 2. Convenient synthetic paths for 1 and 2 are also presented.  相似文献   

8.
The activity of homobimetallic ruthenium alkylidene complexes, [(p-cymene)Ru(Cl)(μ-Cl)2Ru(Cl)(CHPh)(PCy3)] [Ru-I] and [(p-cymene)Ru(Cl)(μ-Cl)2Ru(Cl)(CHPh)(IPr)] [Ru-II], on intermolecular [2+2+2] cyclotrimerisation reactions of monoynes has been investigated for the first time. It was found that these complexes can catalyse the chemo and regioselective cyclotrimerisation reactions of alkynes at both 25 and 50 °C in polar, aprotic solvents. The catalytic activity of [Ru-I] and [Ru-II] was compared to other well-known ruthenium catalysts such as Grubbs first generation catalyst [RuCl2(CHPh)(PCy3)2] [Ru-III], [RuCl(μ-Cl)(p-cymene)]2 [Ru-IV] and [RuCl2(p-cymene)PCy3] [Ru-V] complexes. To examine the effect of the steric hinderance of substrates on the regioselectivity of the reaction, a series of sterically hindered silicon containing alkynes (1a, 1b, 1c) were used. It was shown that the isomeric product distribution of the reaction shifts from 1,2,4-trisubstituted arenes to 1,3,5-trisubstituted arenes as the steric hinderance on the substrates increases. These homobimetallic ruthenium alkylidene complexes also catalysed regio- and chemo-selective cross-cyclotrimerisation reactions between silicon-containing alkynes (1a, 1b, 1c) and aliphatic alkynes (1d-g).  相似文献   

9.
A series of 2′ and 4′‐doubly branched carbocyclic nucleosides 15, 16, 17 and 18 were synthesized starting from simple acyclic ketone derivatives. The required 4′‐quaternary carbon was constructed using Claisen rearrangement. In addition, the installation of a methyl group in the 2′‐position was accomplished using a Grignard carbonyl addition of isopropenylmagnesium bromide. Bis‐vinyl was successfully cyclized using a Grubbs’ catalyst II. Natural bases (adenine, cytosine) were efficiently coupled by using Pd(0) catalyst.  相似文献   

10.
We described here the first tetradecapeptide somatostatin-analogue where the disulfide bridge has been replaced by a carbon–carbon double bond. This analogue was prepared using microwave assisted ring closing metathesis (RCM) using the 2nd generation Grubbs as catalyst. Under our optimized conditions the cyclization between allylGly 3 and 14 proceeded in moderate yield, excellent cyclic/linear ratio and very high Z-double bond selectivity. NMR studies also demonstrated that the conformational flexibility of this peptide is increased in comparison to that of the natural hormone. Remarkably, this alkene-bridged somatostatin analog is highly selective against somatostatin receptors 1 and 5, suggesting that conformational rigidity is not required for the efficient interaction of somatostatin analogues with these two receptors.  相似文献   

11.
De-etherification of 6,6′-di-O-tritylsucrose hexa-acetate (2) with boiling, aqueous acetic acid caused 4→6 acetyl migration and gave a syrupy hexa-acetate 14, characterised as the 4,6′-dimethanesulphonate 15. Reaction of 2,3,3′4′,6-penta-O-acetylsucrose (5) with trityl chloride in pyridine gave a mixture containing the 1′,6′-diether 6 the 6′-ether 9, confirming the lower reactivity of HO-1′ to tritylation. Subsequent mesylation, detritylation, acetylation afforded the corresponding 4-methanesulphonate 8 1′,4-dimethanesulphonate 11. Reaction of these sulphonates with benzoate, azide, bromide, and chloride anions afforded derivatives of β-D-fructofuranosyl α-D-galactopyranoside (29) by inversion of configuration at C-4. Treatment of the 4,6′-diol 14 the 1,′4,6′-triol 5, the 4-hydroxy 1′,6′-diether 6 with sulphuryl chloride effected replacement of the free hydroxyl groups and gave the corresponding, crystalline chlorodeoxy derivatives. The same 4-chloro-4-deoxy derivative was isolated when the 4-hydroxy-1′,6′-diether 6 was treated with mesyl chloride in N,N-dimethylformamide.  相似文献   

12.
The crystal structures of diacetatobis(thiourea)tin(II) (I) and ditin(II)tetrabromopenta(thiourea)dihydrate (II) have been determined by X-ray diffraction analysis. The compound I crystallizes in the monoclinic space group Pc with a = 11.932(6), b = 10.937(5), c = 21.919(8) Å, β = 96.5(1), Z = 8. The compound II crystallizes in the orthorhombic space group Pnma with a = 27.83(3), b = 16.13(4), c = 6.11(6) Å, Z = 4. In compound I the tin atom has a square pyramidal environment. It is bonded to two thiourea sulphur atoms and to two carboxylate oxygens. In the compound II there are two tin sites both with trigonal pyramidal coordination. The 119Sn Mössbauer data for thiourea tin(II) compounds are discussed, in terms of their crystal structures.  相似文献   

13.
Sequential tritylation, benzoylation, and detritylation of methyl 3-deoxy-3-fluoro-β- -galactopyranoside gave crystalline methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β- -galactopyranoside (9), which was used as the initial nucleophile in the synthesis of the target oligosaccharide (16). Treatment of 9 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-α- -galactopyranosyl bromide gave the corresponding disaccharide derivative 13, having a selectively removable blocking group at O-6′. Debromoacetylation of 13 afforded the disaccharide nucleophile 14 which, when treated with 2,4,6-tri-O-benzoyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide, gave the fully protected trisaccharide 15. Debenzoylation of 15 gave the title glycoside 16. Condensation reactions were performed with silver trifluoromethane-sulfonate as a promoter in the presence of sym-collidine under base-deficient conditions, and gave excellent yields of the desired β-(trans)-products. Analyses of the 1H- and 13C-n.m.r. spectra, as well as determination of the JCF and JHF coupling constants, were made by using various one- and two-dimensional n.m.r. techniques.  相似文献   

14.
The self-assembled reaction of 2-hydroxynicotinic acid, KOH and tri-n-butyltin chloride in CH3OH and H2O (V/V = 5:1) under solvothermal condition (150 °C) affords a novel mixed tri- and dibutyltin macrocyclic complex 1. Characterization of the complex 1 was achieved using elemental analysis, IR, NMR (1H, 13C and 119Sn) spectroscopy, TGA and X-ray crystallography diffraction analysis. X-ray data revealed that it is an unusual 16-membered macrocycle containing eight tin atoms, and they can be divided into four sorts by the distinct environments, the endocyclic tin atoms are best described as five- and six-coordinate and the exocyclic tin atoms as five-coordinate. Furthermore, a 2D corrugated sheet is formed by intermolecular C-H?Cl, O-H?N and O-H?O weak interactions.  相似文献   

15.
The synthesis of four ruthenium phosphonium alkylidene complexes [(H2IMes)Cl2RuCH(PCy3)]+[A] (1, A = B(C6F5)4; 2, A = BF4; 3, A = OTf; 4, A = BPh4), differing only in the anion is described. The X-ray structures of 1, 3 and 4 show them to be isostructural in the cation, with no interaction between the Ru centers and the anion. Ring closing metathesis of a substrate to a six-membered methylcyclohexene at 0 °C in CD2Cl2 using 1 mol% catalyst, shows that catalysts 1-4 behave very similarly, and exhibit superior activity in comparison to Grubbs second generation and fast-initiating catalysts.  相似文献   

16.
The paper reports the tin(II) chloride catalyzed reactions of diazodiphenylmethane with the cis- and trans-1,2-cyclohexanediols and R,S-1,2-propanediol in 1,2-dimethoxyethane and the identification of the monodiphenylmethyl ethers formed. The catalyst is shown to work for both the cis- and trans-cyclohexanediols, but the catalyst is unstable at high reagent concentrations, especially in the case of the trans-isomer. Conditions where catalyst destruction is negligible show that the rate of the reaction with the trans-isomer is larger than with the cis-isomer. The reactions with 1,2-propanediol show small difference between the selectivity for the primary and secondary hydroxyl groups. This is in contrast with the tin(II) chloride catalyzed reactions of diazomethane and diazophenylmethane in methanol with carbohydrates, glycerol and ribonucleosides, where the primary hydroxyl group does not react.  相似文献   

17.
Two calix[4]arene derivatives (3 and 4) functionalised at the lower rim with pendant benzamide arms were successfully synthesised and characterised, with the X-ray crystal structure of 3 being determined. Only 4 took part in some metal ion complexation reactions, namely those involving metal(II) acetate salts, with metals salts containing other anions not being complexed.  相似文献   

18.
De-etherification of 6,6′-di-O-tritylsucrose hexa-acetate (2) with boiling, aqueous acetic acid caused 4→6 acetyl migration and gave a syrupy hexa-acetate 14, characterised as the 4,6′-dimethanesulphonate 15. Reaction of 2,3,3′4′,6-penta-O-acetylsucrose (5) with trityl chloride in pyridine gave a mixture containing the 1′,6′-diether 6 the 6′-ether 9, confirming the lower reactivity of HO-1′ to tritylation. Subsequent mesylation, detritylation, acetylation afforded the corresponding 4-methanesulphonate 8 1′,4-dimethanesulphonate 11. Reaction of these sulphonates with benzoate, azide, bromide, and chloride anions afforded derivatives of β- -fructofuranosyl α- -galactopyranoside (29) by inversion of configuration at C-4. Treatment of the 4,6′-diol 14 the 1,′4,6′-triol 5, the 4-hydroxy 1′,6′-diether 6 with sulphuryl chloride effected replacement of the free hydroxyl groups and gave the corresponding, crystalline chlorodeoxy derivatives. The same 4-chloro-4-deoxy derivative was isolated when the 4-hydroxy-1′,6′-diether 6 was treated with mesyl chloride in N,N-dimethylformamide.  相似文献   

19.
《Carbohydrate research》1985,140(2):299-311
Sequential tritylation, benzoylation, and detritylation of methyl 3-deoxy-3-fluoro-β-d-galactopyranoside gave crystalline methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β-d-galactopyranoside (9), which was used as the initial nucleophile in the synthesis of the target oligosaccharide (16). Treatment of 9 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-α-d-galactopyranosyl bromide gave the corresponding disaccharide derivative 13, having a selectively removable blocking group at O-6′. Debromoacetylation of 13 afforded the disaccharide nucleophile 14 which, when treated with 2,4,6-tri-O-benzoyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide, gave the fully protected trisaccharide 15. Debenzoylation of 15 gave the title glycoside 16. Condensation reactions were performed with silver trifluoromethane-sulfonate as a promoter in the presence of sym-collidine under base-deficient conditions, and gave excellent yields of the desired β-(trans)-products. Analyses of the 1H- and 13C-n.m.r. spectra, as well as determination of the JCF and JHF coupling constants, were made by using various one- and two-dimensional n.m.r. techniques.  相似文献   

20.
Based upon previously discovered antileukemic properties of 9-β-d-fucopyranosyladenine (1) in cell culture, four new nucleosides containing naturally occurring bases have been prepared from d-fucose. α-d-Fucopyranose tetraacetate was condensed with the silylated bases in either acetonitrile or 1,2-dichloroethane with tin(IV) chloride as the catalyst. The intermediates blocked nucleosides were obtained in crystalline form and deacetylated with methanolic sodium methoxide. 1-β-d-Fucopyranosyluracil (8), 1-β-d-fucopyranosylthymine (9), 1-β-d-fucopyranosylcytosine (10) as the hydrochloride salt, and 7-β-d-fucopyranosylguanine (11) were crystallized, and their structures were verified by spectroscopic techniques. Nucleosides 8 and 9 had only borderline activity against leukemia L1210 cells grown in culture, whereas nucleoside 11 had activity equal to 1. However, nucleoside 10 proved to be twice as active as either 1 or 11. The antileukemic activity, which was due to the inhibition of cell division, was reversible by transfer of the arrested cells to fresh media or by the addition of cytidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号