首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retromer complex localizes to endosomal membranes and is involved in protein trafficking. In mammals, it is composed of a dimer of sorting nexins and of the core retromer consisting of vacuolar protein sorting (VPS)26, VPS29, and VPS35. Although homologs of these proteins have been identified in plants, how the plant retromer functions remains elusive. To better understand the role of VPS components in the assembly and function of the core retromer, we characterize here Arabidopsis vps26-null mutants. We show that impaired VPS26 function has a dramatic effect on VPS35 levels and causes severe phenotypic defects similar to those observed in vps29-null mutants. This implies that functions of plant VPS26, VPS29, and VPS35 are tightly linked. Then, by combining live-cell imaging with immunochemical and genetic approaches, we report that VPS35 alone is able to bind to endosomal membranes and plays an essential role in VPS26 and VPS29 membrane recruitment. We also show that the Arabidopsis Rab7 homolog RABG3f participates in the recruitment of the core retromer to the endosomal membrane by interacting with VPS35. Altogether our data provide original information on the molecular interactions that mediate assembly of the core retromer in plants.  相似文献   

2.
Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.  相似文献   

3.
In the double fertilization of angiosperms, one sperm cell fertilizes an egg cell to produce a zygote, whereas the other sperm cell fertilizes a central cell to give rise to an endosperm. There is little information on gamete membrane dynamics during double fertilization even though the cell surface structure is critical for male and female gamete interactions. In a recent study, we analyzed gamete membrane behavior during double fertilization by live-cell imaging with Arabidopsis gamete membrane marker lines. We observed that the sperm membrane signals occasionally remained at the boundary of the female gametes after gamete fusion. In addition, sperm membrane signals entering the fertilized female gametes were detected. These findings suggested that plasma membrane fusion between male and female gametes occurred with the sperm internal membrane components entering the female gametes, and this was followed by plasmogamy.  相似文献   

4.
Xian-De Liu 《BBA》2005,1706(3):215-219
This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl2, an inhibitor of cytochrome b6f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b6f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.  相似文献   

5.
In subcellular light-sheet fluorescence microscopy (LSFM) of adherent cells, glass substrates are advantageously rotated relative to the excitation and emission light paths to avoid glass-induced optical aberrations. Because cells are spread across the sample volume, three-dimensional imaging requires a light-sheet with a long propagation length, or rapid sample scanning. However, the former degrades axial resolution and/or optical sectioning, while the latter mechanically perturbs sensitive biological specimens on pliant biomimetic substrates (e.g., collagen and basement membrane). Here, we use aberration-free remote focusing to diagonally sweep a narrow light-sheet along the sample surface, enabling multicolor imaging with high spatiotemporal resolution. Further, we implement a dithered Gaussian lattice to minimize sample-induced illumination heterogeneities, significantly improving signal uniformity. Compared with mechanical sample scanning, we drastically reduce sample oscillations, allowing us to achieve volumetric imaging at speeds of up to 3.5 Hz for thousands of Z-stacks. We demonstrate the optical performance with live-cell imaging of microtubule and actin cytoskeletal dynamics, phosphoinositide signaling, clathrin-mediated endocytosis, polarized blebbing, and endocytic vesicle sorting. We achieve three-dimensional particle tracking of clathrin-associated structures with velocities up to 4.5 μm/s in a dense intracellular environment, and show that such dynamics cannot be recovered reliably at lower volumetric image acquisition rates using experimental data, numerical simulations, and theoretical modeling.  相似文献   

6.
The freshwater filamentous green oxyphotobacterium Prochlorothrix hollandica is an unusual oxygenic photoautotrophic cyanobacterium differing from most of the others by the presence of light-harvesting Pcb antenna binding both chlorophylls a and b and by the absence of phycobilins. The pigment-protein complexes of P. hollandica SAG 10.89 (CCAP 1490/1) were isolated from dodecylmaltoside solubilized thylakoid membranes on sucrose density gradient and characterized by biochemical, spectroscopic and immunoblotting methods. The Pcb antennae production is suppressed by high light conditions (> 200 μmol photons m−2 s−1) in P. hollandica. PcbC protein was found either in higher oligomeric states or coupled to PS I (forming antenna rings around PS I). PcbA and PcbB are most probably only very loosely bound to photosystems; we assume that these pigment-protein complexes function as low light-induced mobile antennae. Further, we have detected α-carotene in substantial quantities in P. hollandica thylakoid membranes, indicating the presence of chloroplast-like carotenoid synthetic pathway which is not present in common cyanobacteria.  相似文献   

7.
Truncated light-harvesting antenna 1 (TLA1) is a nuclear gene proposed to regulate the chlorophyll (Chl) antenna size in Chlamydomonas reinhardtii. The Chl antenna size of the photosystems and the chloroplast ultrastructure were manipulated upon TLA1 gene over-expression and RNAi downregulation. The TLA1 over-expressing lines possessed a larger chlorophyll antenna size for both photosystems and contained greater levels of Chl b per cell relative to the wild type. Conversely, TLA1 RNAi transformants had a smaller Chl antenna size for both photosystems and lower levels of Chl b per cell. Western blot analyses of the TLA1 over-expressing and RNAi transformants showed that modulation of TLA1 gene expression was paralleled by modulation in the expression of light-harvesting protein, reaction centre D1 and D2, and VIPP1 genes. Transmission electron microscopy showed that modulation of TLA1 gene expression impacts the organization of thylakoid membranes in the chloroplast. Over-expressing lines showed well-defined grana, whereas RNAi transformants possessed loosely held together and more stroma-exposed thylakoids. Cell fractionation suggested localization of the TLA1 protein in the inner chloroplast envelope and potentially in association with nascent thylakoid membranes, indicating a role in Chl antenna assembly and thylakoid membrane biogenesis. The results provide a mechanistic understanding of the Chl antenna size regulation by the TLA1 gene.  相似文献   

8.
Our laboratory has had a longstanding interest in how the interactions between tumors and their microenvironment affect malignant progression. Recently, we have focused on defining the proteolytic pathways that function in the transition of breast cancer from the pre-invasive lesions of ductal carcinoma in situ (DCIS) to invasive ductal carcinomas (IDCs). We use live-cell imaging to visualize, localize and quantify proteolysis as it occurs in real-time and thereby have established roles for lysosomal cysteine proteases both pericellularly and intracellularly in tumor proteolysis. To facilitate these studies, we have developed and optimized 3D organotypic co-culture models that recapitulate the in vivo interactions of mammary epithelial cells or tumor cells with stromal and inflammatory cells. Here we will discuss the background that led to our present studies as well as the techniques and models that we employ. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

9.
The assembly of an HIV-1 particle is a complex, multistep process involving several viral and cellular proteins, RNAs and lipids. While many macroscopic and fixed-cell microscopic techniques have provided important insights into the structure of HIV-1 particles and the mechanisms by which they assemble, analysis of individual particles and their assembly in living cells offers the potential of surmounting many of the limitations inherent in other approaches. In this review, we discuss how the recent application of live-cell microscopic imaging techniques has increased our understanding of the process of HIV-1 particle assembly. In particular, we focus on recent studies that have employed total internal reflection fluorescence microscopy and other single-virion imaging techniques in live cells. These approaches have illuminated the dynamics of Gag protein assembly, viral RNA packaging and ESCRT (endosomal sorting complex required for transport) protein recruitment at the level of individual viral particles. Overall, the particular advantages of individual particle imaging in living cells have yielded findings that would have been difficult or impossible to obtain using macroscopic or fixed-cell microscopic techniques.  相似文献   

10.
The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus.  相似文献   

11.
Electroporation is an efficient method of delivering DNA and other charged macromolecules into tissues at precise time points and in precise locations. For example, electroporation has been used with great success to study neural and retinal development in Xenopus, chicken and mouse 1-10. However, it is important to note that in all of these studies, investigators were not targeting soft tissues. Because we are interested in craniofacial development, we adapted a method to target facial mesenchyme.When we searched the literature, we found, to our surprise, very few reports of successful gene transfer into cartilaginous tissue. The majority of these studies were gene therapy studies, such as siRNA or protein delivery into chondrogenic cell lines, or, animal models of arthritis 11-13. In other systems, such as chicken or mouse, electroporation of facial mesenchyme has been challenging (personal communications, Dept of Craniofacial Development, KCL). We hypothesized that electroporation into procartilaginous and cartilaginous tissues in Xenopus might work better. In our studies, we show that gene transfer into the facial cartilages occurs efficiently at early stages (28), when the facial primordium is still comprised of soft tissue prior to cartilage differentiation.Xenopus is a very accessible vertebrate system for analysis of craniofacial development. Craniofacial structures are more readily visible in Xenopus than in any other vertebrate model, primarily because Xenopus embryos are fertilized externally, allowing analyses of the earliest stages, and facilitating live imaging at single cell resolution, as well as reuse of the mothers 14. Among vertebrate models developing externally, Xenopus is more useful for craniofacial analysis than zebrafish, as Xenopus larvae are larger and easier to dissect, and the developing facial region is more accessible to imaging than the equivalent region in fish. In addition, Xenopus is evolutionarily closer to humans than zebrafish (˜100 million years closer) 15. Finally, at these stages, Xenopus tadpoles are transparent, and concurrent expression of fluorescent proteins or molecules will allow easy visualization of the developing cartilages. We anticipate that this approach will allow us to rapidly and efficiently test candidate molecules in an in vivo model system.  相似文献   

12.
The Hox genes, which are organized into clusters on different chromosomes, are key regulators of embryonic anterior-posterior (A-P) body pattern formation and are expressed at specific times and in specific positions in developing vertebrate embryos. Previously, we have shown that histone methylation patterns are closely correlated with collinear Hox gene expression patterns along the A-P axis of E14.5 mouse embryos. Since histone modification is thought to play a crucial mechanistic role in the highly coordinated pattern of collinear Hox gene expression, we examined the maintenance of the spatial collinear expression pattern of Hoxc genes and the corresponding histone modifications during embryogenesis and in early postnatal mice. Hox expression patterns and histone modifications were analyzed by semi-quantitative RT-PCR and chromatin immunoprecipitation (ChIP)-PCR analyses, respectively. The spatiotemporal expression patterns of Hoxc genes in a cluster were maintained until the early postnatal stage (from E8.5 through P5). Examination of histone modifications in E14.5 and P5 tissues revealed that level of H3K27me3 is only a weak correlation with collinear Hoxc gene expression in the trunk regions although diminished in general, however the enrichment of H3K4me3 is strongly correlated with the gene expression in both stages. In summary, the initial spatiotemporal collinear expression pattern of Hoxc genes and epigenetic modifications are maintained after birth, likely contributing to the establishment of the gene expression code for position in the anatomic body axis throughout the entire life of the organism.  相似文献   

13.
Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.  相似文献   

14.
The thylakoid lumen is an important photosynthetic compartment which is the site of key steps in photosynthetic electron transport. The fluidity of the lumen could be a major constraint on photosynthetic electron transport rates. We used Fluorescence Recovery After Photobleaching in cells of the cryptophyte alga Rhodomonas salina to probe the diffusion of phycoerythrin in the lumen and chlorophyll complexes in the thylakoid membrane. In neither case was there any detectable diffusion over a timescale of several minutes. This indicates very restricted phycoerythrin mobility. This may be a general feature of protein diffusion in the thylakoid lumen.  相似文献   

15.
Maria Mubarakshina 《BBA》2006,1757(11):1496-1503
Hydrogen peroxide production in isolated pea thylakoids was studied in the presence of cytochrome c to prevent disproportionation of superoxide radicals outside of the thylakoid membranes. The comparison of cytochrome c reduction with accompanying oxygen uptake revealed that hydrogen peroxide was produced within the thylakoid. The proportion of electrons from water oxidation participating in this hydrogen peroxide production increased with increasing light intensity, and at a light intensity of 630 μmol quanta m− 2 s− 1 it reached 60% of all electrons entering the electron transport chain. Neither the presence of a superoxide dismutase inhibitor, potassium cyanide or sodium azide, in the thylakoid suspension, nor unstacking of the thylakoids appreciably affected the partitioning of electrons to hydrogen peroxide production. Also, osmolarity-induced changes in the thylakoid lumen volume, as well as variation of the lumen pH induced by the presence of Gramicidin D, had negligible effects on such partitioning. The flow of electrons participating in lumen hydrogen peroxide production was found to be near 10% of the total electron flow from water. It is concluded that a considerable amount of hydrogen peroxide is generated inside thylakoid membranes, and a possible mechanism, as well as the significance, of this process are discussed.  相似文献   

16.
应用蛋白质免疫杂交技术分析了永绿色基因(Stay-green Rice,SGR)突变和超表达对水稻(Oryza sativa)叶片类囊体蛋白质降解的影响.结果表明,在正常生长条件下,SGR超表达降低了光系统Ⅱ(PSⅡ)、光系统Ⅰ(PS Ⅰ)和电子传递链等的蛋白质含量.暗诱导衰老处理时,SGR突变延缓了PSⅠ和PSⅡ的蛋...  相似文献   

17.
HvLhcb1 a major light-harvesting chlorophyll a/b-binding protein in barley, is a critical player in sustainable growth under Fe deficiency. Here, we demonstrate that Fe deficiency induces phosphorylation of HvLhcb1 proteins leading to their migration from grana stacks to stroma thylakoid membranes. HvLhcb1 remained phosphorylated even in the dark and apparently independently of state transition, which represents a mechanism for short-term acclimation. Our data suggest that the constitutive phosphorylation-triggered translocation of HvLhcb1 under Fe deficiency contributes to optimization of the excitation balance between photosystem II and photosystem I, the latter of which is a main target of Fe deficiency.  相似文献   

18.
Only a few neuronal populations in the central nervous system (CNS) of adult mammals show local regrowth upon dissection of their axon. In order to understand the mechanism that promotes neuronal regeneration, an in-depth analysis of the neuronal types that can remodel after injury is needed. Several studies showed that damaged climbing fibers are capable of regrowing also in adult animals1,2. The investigation of the time-lapse dynamics of degeneration and regeneration of these axons within their complex environment can be performed by time-lapse two-photon fluorescence (TPF) imaging in vivo3,4. This technique is here combined with laser surgery, which proved to be a highly selective tool to disrupt fluorescent structures in the intact mouse cortex5-9.This protocol describes how to perform TPF time-lapse imaging and laser nanosurgery of single axonal branches in the cerebellum in vivo. Olivocerebellar neurons are labeled by anterograde tracing with a dextran-conjugated dye and then monitored by TPF imaging through a cranial window. The terminal portion of their axons are then dissected by irradiation with a Ti:Sapphire laser at high power. The degeneration and potential regrowth of the damaged neuron are monitored by TPF in vivo imaging during the days following the injury.  相似文献   

19.
Human and animal alveolar echinococcosis (AE) are important helminth infections endemic in wide areas of the Northern hemisphere. Monitoring Echinococcus multilocularis viability and spread using real-time fluorescent imaging in vivo provides a fast method to evaluate the load of parasite. Here, we generated a kind of fluorescent protoscolices in vivo imaging model and utilized this model to assess the activity against E. multilocularis protoscolices of metformin (Met). Results indicated that JC-1 tagged E. multilocularis can be reliably and confidently used to monitor protoscolices in vitro and in vivo. The availability of this transient in vivo fluorescent imaging of E. multilocularis protoscolices constitutes an important step toward the long term bio-imaging research of the AE-infected mouse models. In addition, this will be of great interest for further research on infection strategies and development of drugs and vaccines against E. multilocularis and other cestodes.  相似文献   

20.
In plants and green algae, light is captured by the light-harvesting complexes (LHCs), a family of integral membrane proteins that coordinate chlorophylls and carotenoids. In vivo, these proteins are folded with pigments to form complexes which are inserted in the thylakoid membrane of the chloroplast. The high similarity in the chemical and physical properties of the members of the family, together with the fact that they can easily lose pigments during isolation, makes their purification in a native state challenging. An alternative approach to obtain homogeneous preparations of LHCs was developed by Plumley and Schmidt in 19871, who showed that it was possible to reconstitute these complexes in vitro starting from purified pigments and unfolded apoproteins, resulting in complexes with properties very similar to that of native complexes. This opened the way to the use of bacterial expressed recombinant proteins for in vitro reconstitution. The reconstitution method is powerful for various reasons: (1) pure preparations of individual complexes can be obtained, (2) pigment composition can be controlled to assess their contribution to structure and function, (3) recombinant proteins can be mutated to study the functional role of the individual residues (e.g., pigment binding sites) or protein domain (e.g., protein-protein interaction, folding). This method has been optimized in several laboratories and applied to most of the light-harvesting complexes. The protocol described here details the method of reconstituting light-harvesting complexes in vitro currently used in our laboratory,and examples describing applications of the method are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号