首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two novel heteropolytungstates, [Ni(2,2′-bpy)3]1.5{PW10.79V1.21O40(VO)0.5[Ni(2,2′-bpy)2L]} · 0.5H2O (1) (2,2′-bpy = 2,2′-bipyridine, L = 0.5H2O + 0.5OH?) and K[PW12O40[Ni(1,10-phen)2(OH)]2] · 2H2O (2) (1,10-phen = 1,10-phenanthroline), have been synthesized under hydrothermal conditions and characterized by IR, XPS, and X-ray diffraction analyses. The polyoxoanion of 1 is a mono-capped α-Keggin cluster which supports a metal coordination fragment [Ni(2,2′-bpy)2L]1.5+, while the structure of 2 exhibits a 1D chain constructed from pseudo-Keggin cluster bi-supported transition metal complexes linked by K+ ions. Studies of magnetic properties indicated the presence of paramagnetic behaviours for compounds 1 and 2.  相似文献   

2.
The synthesis and characterization of homobimetallic palladium and platinum complexes of type [(Me(O)CS-4-NCN–M  NN  M–NCN-4-SC(O)Me](OTf)2 (Me(O)CS-4-NCN = [C6H2(CH2NMe2)2-2,6-SC(O)Me-4]?; NN = 4,4′-bipyridine (bipy); M = Pd, 12; M = Pt, 13) is reported. The required bifunctional thio-acetyl NCN pincer starting compound NC(Br)N-4-SC(O)Me (2) has been synthesized by the consecutive reactions of NC(Br)N–I (I-1-C6H2(CH2NMe2)2-3,5-Br-4) (1) with tBuLi, S8 and Me(O)CCl, respectively. Chemoselective metallation at the Caryl–Br bond was achieved by the reaction of 2 with the palladium(0) source [Pd2(dba)3] (3) (dba = dibenzylidene acetone). Treatment of thus formed [Pd(NCN-4-SC(O)Me)(Br)] (4) with [AgOTf] (8) (OTf = triflate, OSO2CF3) gave [Pd(NCN-4-SC(O)Me)(H2O)][OTf] (9) which was further reacted with 0.5 equiv. of 4,4′-bipyridine (11a) to afford rigid-rod structured 12. When [Pt(tol)2(SEt2)]2 (5) (tol = 4-tolyl) was used instead of 3, then 13 was produced via the in situ formation of [PtBr(NCN-4-SC(O)Me)] (7) and [Pt(NCN-4-SC(O)Me)(H2O)][OTf] (10). Another possibility to synthesize 7 relied upon the subsequent reaction of 1 with 0.5 equiv. of 5 to give [PtBr(NCN-4-I)] (6) which further reacted with tBuLi, 1/8 S8 and Me(O)CCl to afford 7. The cyclic voltammograms of 2, 7, and 13 are discussed.Complex 7 was structurally characterized by single crystal X-ray crystallography. Organometallic 7 crystallizes with three independent molecules in the asymmetric unit and displays a monomeric structure as commonly encountered in d8-metal pincer chemistry.  相似文献   

3.
《Inorganica chimica acta》2006,359(7):2047-2052
Two new coordination polymers, {[Er(5-nip)1.5(2,2′-bipy)](H2O)2}n (1) and {[Er(5-nip)2] (4,4′-H2bipy)0.5}n (2) (5-nip = 5-nitroisophthalic acid, 2,2′-bipy = 2,2′-bipyridyl, 4,4′-bipy = 4,4′-bipyridyl), have been synthesized by the hydrothermal reactions of erbium nitrate, 5-nitroisophthalic acid (5-H2nip) and 2,2′-bipyridyl (for 1), and erbium nitrate, 5-nitroisophthalic acid and 4,4′-bipyridyl (for 2). X-ray diffraction analysis indicates that complex 1 exhibits a two-dimensional layer structure, while complex 2 displays a 3D architecture sustained by the strong hydrogen-bond interactions between the protonated 4,4′-bipyridyl and the carboxyl oxygen atom from [Er2(5-nip)4]2− with 2D layer structure, and 4,4′-bipyridyl as the guest molecules exist in bilayer channel. They are characterized by the elemental analysis and IR spectroscopy. The studies for the thermal stabilities of the two complexes show that complex 2 is more stable than complex 1.  相似文献   

4.
《Inorganica chimica acta》2006,359(6):1855-1869
A series of discrete, mononuclear palladium(II)–methyl complexes, together with several palladium(II)–chloro analogues, of pyridine-functionalised bis-NHC ligands have been prepared via ligand transmetallation from the silver(I)-NHC complexes. The reported complexes comprise examples with both the methylene-bridged 2,6-bis[(3-R-imidazolin-2-yliden-1-yl)methyl]pyridine (RCNC; R = Mes, dipp, tBu) and planar 2,6-bis(3-R-imidazolin-2-yliden-1-yl)pyridine (RCNC; R = Mes, dipp) ligands and, when combined with the previously reported MeCNC/MeCNC examples, cover a broad spectrum of ligand substituent steric and electronic properties, including the bulky Mes and dipp groups frequently used in catalytic applications. The palladium(II) complexes have been characterised by a variety of methods, including single crystal X-ray crystallography, with the shielding of the Pd–Me groups in the proton NMR spectra of some of the N-aryl substituted examples correlated with the proximity of the aryl rings to the methyl group in the solid state structures. The [PdMe(RCNC/RCNC)]+ complexes undergo thermal degradation via reductive methyl-NHC coupling to give 2-methyl-3-R-imidazolium-1-yl species with relative stabilities in the order of [PdMe(MesCNC)]BF4 > [PdMe(MeCNC)]BF4  [PdMe(MesCNC)]BF4 > [PdMe(MeCNC)]BF4 > [PdMe(tBuCNC)]BF4  [PdMe(tBuCNC)]BF4 (not isolable). A comparison of the activity of the complexes as precatalysts in a model Heck coupling reaction shows greatest activity in those species bearing bulkier N-substituents, with complexes bearing RCNC ligands generally more efficient precatalysts than those bearing RCNC ligands.  相似文献   

5.
《Inorganica chimica acta》2006,359(8):2407-2416
The trimethyltin(IV) polymer [(Me3Sn)2(nip) · EtOH]n (1) of 5-nitroisophthalic acid (H2nip) and its three derivatives with mixed organic N-donor ligands 2,2′-bipy [(Me3Sn)2(nip) · 2H2O] · [(Me3Sn)2(nip) · H2O] · 2(2,2′-bipy) (2) 4,4′-bipy {[(Me3Sn)2(nip)]2(4,4′-bipy)}n (3) or phen [(Me3Sn)2(nip) · H2O] · (phen) (4) have been synthesized by the reaction of trimethyltin(IV) chloride and H2nip when sodium ethoxide was added in the presence of 2,2′-bipy 4,4′-bipy or phen. All complexes 14 were characterized by elemental, IR, 1H, 13C, and 119Sn NMR spectroscopy and X-ray crystallography analyses. Crystal, data collection and structure refinement parameters for complexes 1, 2, 3 and 4 are shown in Table 1, Table 2, respectively. The X-ray data showed the geometries of all the tin atoms in complexes 14 are trigonal bipyramidal. The X-ray analysis of 1 showed that the structure was a polymeric infinite chain with neighboring triorganotin centers being linked by dicarboxylate ligands and hydrogen bonds were found between adjacent chains. For 2, two different monomers were found, in one monomer, Me3Sn were coordinated to both carboxyl groups of the ligand and water molecules were coordinated to the two Sn(IV) centers. In the other monomer, water molecules were coordinated to only one Sn center. Co-crystallized2,2′-bipy was found in 2 and a 2D supermolecular structure was formed via O–H⋯O and O–H⋯N (N atoms derived from 2,2′-bipy) hydrogen bonds. In 3 however, a 2D polymeric block was formed due to the inversion center of the 4,4′-bipy. For 4, due to the O–H⋯O and O–H⋯N (N atoms derived from phen) hydrogen bonds and intermolecular Sn⋯O bonds, a 2D polymeric structure was formed.  相似文献   

6.
Two tetracyanometalate building blocks, [Fe(5,5′-dmbipy)(CN)4]? (2) and [Fe(4,4′-dmbipy)(CN)4]? (3) (5,5′-dmbipy = 5,5′-dimethyl-2,2′-bipyridine; 4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine), and two cyano-bridged heterobimetallic complexes, [Cu2(bpca)2(H2O)2Fe2(5,5′-dmbipy)2(CN)8] · 2[Cu(bpca)Fe(5,5′-dmbipy)(CN)4] · 4H2O (4) and [Cu(bpca)Fe(4,4′-dmbipy)(CN)4]n (5) (bpca = bis(2-pyridylcarbonyl)amidate), have been synthesized and structurally characterized. Complex 4 contains two dinuclear and one tetranuclear heterobimetallic clusters in an asymmetric unit whereas the structure of complex 5 features a one-dimensional heterobimetallic zigzag chain. The Cu(II) ion is penta-coordinated in the form of a distorted square-based pyramid. Magnetic studies show ferromagnetic coupling between Cu(II) and Fe(III) ions with g = 2.28, J1 = 2.64 cm?1, J2 = 5.40 cm?1 and TIP = ?2.36 × 10?3 for complex 4, and g = 2.17, J = 4.82 cm?1 and zJ = 0.029 cm?1 for complex 5.  相似文献   

7.
Two binuclear complexes of cobalt(III) have been prepared with 3,3′,4,4′-tetrahydroxy-5,5′-di-tert-butylbenzaldazine (H4thBu) as bis(catecholate) ligand and two different ancillary ligands, 2,2′-bipyridine (bpy) or 2,2′-dipyridylamine (dpa). These compounds were characterized by 1H NMR spectra, electrochemical measurements and UV–Vis spectra. In one case, [Co2(dpa)4(thBu)]2+, electrochemical oxidation of the complexes occurs at the bridges as two closely spaced one-electron couples (E1/2 = 1 mV and 168 mV versus Fc/Fc+). Chemical oxidation of [Co2(dpa)4(thBu)]2+ using Ag+ is observed to occur as a stepwise two-electron process forming [Co2(dpa)4(thBuCat,SQ)]3+ or [Co2(dpa)4(thBuSQ,SQ)]4+ by UV–Vis spectrum. However, [Co2(bpy)4(thBu)]2+ shows no change in electronic spectrum under the same conditions of oxidation. This illustrates the dependence of redox properties of the binuclear Co(III) complexes on the nature of the nitrogen-donor ancillary ligands. In this report we discuss the effect of two different nitrogen-donor ancillary ligands on the0 oxidation behavior of binuclear Co(III) complexes.  相似文献   

8.
《Inorganica chimica acta》2006,359(7):2263-2267
The preparation and characterisation of the Cu(I) aryloxides [Cu16(3-pyO)16(dppm)8] (1), [{Cu2(2-pyO)2(dppm)}2] (2) and [{Cu33-6-OQ)2(dppm)3}{(6-HOQ)2(μ-6-OQ)}] (3) (dppm = 1,2-bis-diphenylphosphinomethane, 6-HOQ = 6-hydroxyquinoline, py = pyridine) are described. A first attempt to employ organic anhydrides in insertion reactions with Cu(I) aryloxides was made producing the one-dimensional coordination polymer 1/[Cu3(3-pyO)(CO2C2H4Boc)(dppm)(dppm)] (4) (Boc = tert-butoxycarbonyl).  相似文献   

9.
《Inorganica chimica acta》2006,359(2):401-408
Four mixed-ligand complexes, cis-Rh[(bipy)(HDPA)Cl2]Cl (1), cis-[Rh(phen)(HDPA)Cl2]Cl (2), cis-[Rh(bipy)(DPA)Cl2] (3), and cis-[Rh(phen)(DPA)Cl2] (4) (where bipy = 2,2′-bipyridine, phen = 1,10-phenantroline, HDPA = 2,2′-dipyridylamine, and DPA = the deprotonated form of 2,2′-dipyridylamine) have been synthesized and characterized. In slightly acidic solution and at low temperature (77 K), both complexes 1 and 2 show a broad, symmetric and structureless red emission with microsecond lifetime identified as dd* phosphorescence. In slightly basic solution, the deprotonated complexes (3 and 4) exhibit a broad and asymmetric blue emission, showing no vibrational structure with a lifetime in the order of microseconds. Emission of complex 3 reveals a blue shift of 0.81 μm−1 compared to the emission of complex 1 and that of complex 4 shows a blue shift of 0.77 μm−1 with respect to complex 2. Electrochemical data have also been obtained for the four complexes in CH3CN. There are two reduction peaks observed for both complexes 1 and 2. Each peak is followed by a one-electron reduction at the metal, with an elimination of chloride during each reduction step, which is in consistent with the dd* phosphorescence assignment for the two complexes. For complexes 3 and 4, only a one-electron reduction process occurs at the metal with an elimination of chloride. Based on the luminescence and electrochemical data, the emission of complexes 3 and 4 are assigned as πd* phosphorescence. Results from density functional theory (DFT) calculations provide theoretical evidence in support of this πd* assignments.  相似文献   

10.
《Inorganica chimica acta》2006,359(9):2998-3006
The reaction of Nd(OTf)3 (OTf = O3SCF3) with two molar equivalents of LiCp″ [Cp″ = C5H3(SiMe3)2-1,3] in thf solution generated the blue, tetrametallic dimer [{Nd(η5-Cp″)222-O3SCF3)(μ33-O3SCF3)Li(thf)}2] (1a), which has been shown by X-ray crystallography to contain a tricyclic, ladder-like scaffold with Nd and Li cations and OTf anions at its core. Compound 1a was relatively labile, being readily cleaved by a variety of donor molecules. 18-Crown-6 efficiently encapsulated the lithium cation to yield the salt [Li(18-crown-6)][Nd(η5-Cp″)21-O3SCF3)(κ2-O3SCF3)] (2). Addition of N,N,N,N′-tetramethylethylenediamine (tmeda) afforded the monomeric bimetallic [Nd(η5-Cp″)222-O3SCF3)2Li(tmeda)] (3), while the more rigid donor 2,2′-bipyridine (bipy) produced the neutral, Li-free complex [Nd(η5-Cp″)21-O3SCF3)(bipy)] (4). The molecular and crystal structures of 24, as well as that of1b, the unstable La analogue of 1a, have been determined by X-ray methods.  相似文献   

11.
《Inorganica chimica acta》2006,359(5):1650-1658
A series of nickel(II) and palladium(II) complexes containing one or two pentafluorophenyl ligands and the phosphino-amides o-Ph2PC6H4CONHR [R = iPr (a), Ph (b)] displaying different coordination modes have been synthesised. The chelating ability of these ligands and the influence of both coligands and the metal centre in their potential hemilabile behaviour have been explored. The crystal structure of (b) has been determined and reveals N–H⋯O intermolecular hydrogen bonding. Bis-pentafluorophenyl derivatives [M(C6F5)2(o-Ph2PC6H4CO-NHR)] [M = Ni; R = iPr (1a); R = Ph (1b); M = Pd; R = iPr (2a); R = Ph (2b)] in which (a) and (b) act as rigid P, O-chelating ligands were readily prepared from the labile precursors cis-[M(C6F5)2(PhCN)2]. X-ray structures of (1a), (1b) and (2a) have been established, allowing an interesting comparative structural discussion. Dinuclear [{Pd(C6F5)(tht)(μ-Cl)}2] reacted with (a) and (b) yielding the monopentafluorophenyl complexes [Pd(C6F5)Cl{PPh2(C6H4–CONH–R)}] (R = iPr (3a), Ph (3b)) that showed a P, O-chelating behaviour of the ligands, confirmed by the crystal structure determination of (3a). New cationic palladium(II) complexes in which (a) and (b) behave as P-monodentate ligands have been synthesised by reacting them with [{Pd(C6F5)(tht)(μ-Cl)}2], stoichiometric Ag(O3SCF3) and external chelating reagents such as cod [Pd(C6F5)(cod){PPh2(C6H4-CONH-R)}](O3SCF3)(R = iPr (4a), Ph (4b)) and 2,2-bipy [Pd(C6F5)(bipy){PPh2(C6H4-CONH-R)}](O3SCF3) (R = iPr (5a), Ph (5b)). When chloride abstraction in [{Pd(C6F5)(tht)(μ-Cl)}2] is promoted by means of a dithioanionic salt as dimethyl dithiophospate in the presence of (a) or (b), the corresponding neutral complexes [Pd(C6F5){S(S)P(OMe)2}{PPh2(C6H4-CONH-R)}] (R = iPr (6a), Ph (6b)) were obtained.  相似文献   

12.
The linkage isomers [Re(NCS)6]2? and [Re(NCS)5(SCN)]2? are obtained by the reaction of [ReBr6]2? with NCS? in dimethylformamide. Some differences in the chemical behavior allowed their separation and structural characterization in the form of (NBu4)2[Re(NCS)6] (1) and [Zn(NO3)(Me2phen)2]2[Re(NCS)5(SCN)] (2), respectively (Bu = n-C4H9 and Me2phen = 2,9-dimethyl-1,10-phenanthroline).  相似文献   

13.
《Inorganica chimica acta》2006,359(7):2285-2290
Stopped-flow kinetic measurements were used to compare the reactivities of [Ru(medtra)(H2O)] (medtra3− = N-methylethylenediaminetriacetate) (1) and [Ru(hedtra)(H2O)] (2) (hedtra3− = N-hydroxyethylethylenediaminetriacetate) with NO in aqueous solution at 15 °C, pH 7.2 (phosphate buffer). The measured second-order rate constants (3 × 103 and 6 × 104 M−1 s−1 for 1 and 2, respectively) are three to four order of magnitudes lower than that for the reaction between [RuIII(edta)(H2O)] (3) with NO. However, NO scavenging studies of complexes 13, conducted by measuring the difference in nitrite production between treated and untreated murine macrophage cells, revealed that despite being less kinetically reactive toward NO, the [Ru(medtra)(H2O)] complex exhibited the highest NO scavenging ability and lowest toxicity of compounds 13.  相似文献   

14.
《Inorganica chimica acta》2006,359(9):2896-2909
[RuCl3(NO)(P–P)], [P–P = R2P(CH2)nPR2 (n = 1–3) and R2P(CH2)POR2, PR2–CHCH–PR2, R = Ph and (C6H11)2P-(CH2)2-P(C6H11)2] were obtained and characterized by 31P {1H} NMR, IR spectroscopies and cyclic voltammetry. The structures of fac-[RuCl3(NO)(P–P)], P–P = dppm (1), dppe (2), c-dppen (3) and dppp (4), mer-[RuCl3(NO)(dcpe)] (6a) and mer-[RuCl3(NO)(dppmO)] (7) have been determined by X-ray diffraction. Photochemical isomerization of fac- to mer-[RuCl3(NO)(P–P)] was observed under white light in a CH2Cl2 solution and in solid state. The isomerization processes were followed by IR and 31P {1H} spectra. The mer-[RuCl3(15NO)(dppb)] isomer was used for the definition of the phosphorus atoms in the structure of the complex in solution. The electrochemical study shows that the oxidation/reduction processes observed in these complexes are dependent on both the isomer (fac or mer) and the solvent. In CH2Cl2, the NO+ reduction potentials are less negative for the mer-isomers than for the fac ones, while in CH3CN solvent these potentials are, in general, very close for both isomers.  相似文献   

15.
A series of new cobalt(III) complexes were prepared. They are [CoL1(py)3]·NO3 (1), [CoL2(bipy)(N3)]·CH3OH (2), [CoL3(HL3)(N3)]·NO3 (3), and [CoL4(MeOH)(N3)] (4), where L1, L2, L3 and L4 are the deprotonated form of N′-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N′-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N′-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2′-bipyridine. The complexes were characterized by infrared and UV–Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L−1, respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L−1. While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed.  相似文献   

16.
[Ir(cyclometallated 4,5-diphenyl-2-methyl-thiazole)2(5-R-1,10-phenanthroline)][PF6] (R = CH3, NO2) complexes were prepared and fully characterized, the structure of the complex with 5-CH3-1,10-phenanthroline being also determined by X-ray diffraction. The emission properties of both complexes have been investigated and their second-order nonlinear optical (NLO) response has been determined experimentally by the EFISH technique and found to be similar but slightly lower than that of related [Ir(ppy)2(5-R-1,10-phenanthroline)][PF6] (ppy = cyclometallated 2-phenylpyridine), characterized by one of the highest second-order NLO response ever reported for a metal complex. In the complexes, SOS/TDDFT calculations show that the large and negative sign of the measured hyperpolarizability is mainly due to the significant contribution of rather intense MLCT transitions involving the phenanthroline as acceptor ligand.  相似文献   

17.
《Inorganica chimica acta》2006,359(11):3639-3648
A series of alkynylgold(I) bis(diphenylphosphino)alkyl- and aryl-amine complexes, [{Ph2PN(R)PPh2}Au2(CCR′)2] [R = nPr, R′ = Ph (1), C6H4OMe-p (2), C6H4Me-p (3), C6H4Cl-p (4); R = C6H4OMe-p, R′ = Ph (5)], has been synthesized. The X-ray crystal structures of 1 and 2 revealed the presence of short intramolecular Au⋯Au contacts with the distances of 2.8404(8) and 3.0708(7) Å. The luminescence behavior of the complexes were studied.  相似文献   

18.
《Inorganica chimica acta》2006,359(9):2835-2841
Rh(I) carbene complexes of [RhX(bmim)(η4-1,5-cod)] type (bmim = 1-butyl-3-methyl imidazolium cation, X = Cl 2, Br 3, I 4), obtained in the reaction of [Rh(OMe)(η4-1,5-cod)]2 (1) with [bmim]X ionic liquids, catalyzed polymerization of phenylacetylene (PA) to cis-polyphenylacetylene (PPA) in CH2Cl2 and in ionic liquids. The yield of PPA increased and molecular weight (Mw) decreased after addition of phosphorus ligands PPh3 or P(OPh)3. Complex 4 reacted with P(OPh)3 giving cis-[RhI(bmim)(P(OPh)3)2] (5) complex which catalyzed oligomerization but not polymerization of PA.  相似文献   

19.
《Inorganica chimica acta》2006,359(1):339-345
Chemical oxidation in acetonitrile of the previously reported phenolato-bridged binuclear Mn(II) complex [(mL)MnMn(mL)]2+ (1), where mLH is pentadentate N,N′-bis-(2-pyridylmethyl)-N-(2-hydroxybenzyl)-N′-methyl-ethane-1,2-diamine ligand [C. Hureau, et al., Chem. Eur. J. 2004, 10, 1998–2010] using iodosylbenzene PhIO (dissolved in methanol) is described. The addition of one to four equivalents of PhIO per Mn ion leads to the transient formation of the mono-μ-oxo binuclear Mn2(III,III) complex [(mL)Mn(μ-O)Mn(mL)]2+ (2), previously studied. After addition of five equivalents of PhIO per Mn ion, the mononuclear Mn(III) species [(mL)Mn(OMe)]+ (3) is quantitatively generated. The UV–Vis spectrum of 3 displays a broad band at 456 nm (ε = 1000 L mol−1 cm−1) attributed to phenolato to Mn(III) charge transfer transition. Complex 3 exhibits a reversible oxidation wave at E1/2 = 0.68 V versus SCE, and the mononuclear Mn(IV) complex [(mL)Mn(OMe)]2+ (3ox) can thus be generated by exhaustive electrolysis at 1.0 V versus SCE. The 9.4 GHz EPR spectrum of complex 3ox shows a strong transition near g = 4 consistent with a rhombically distorted S = 3/2 system with a zero-field splitting dominating the Zeeman effect. UV–Vis spectrum displays a large phenolato to Mn(IV) charge transfer transition at 670 nm (ε = 2450 L mol−1 cm−1).  相似文献   

20.
1-[2-(4-Methoxyphenyl)phenyl]piperazine (4) is a potent serotonin 5-HT7 receptor antagonist (Ki = 2.6 nM) with a low binding affinity for the 5-HT1A receptor (Ki = 476 nM). As a potential positron emission tomography (PET) radiotracer for the 5-HT7 receptor, [11C]4 was synthesized at high radiochemical yield and specific activity, by O-[11C]methylation of 2′-(piperazin-1-yl)-[1,1′-biphenyl]-4-ol (6) with [11C]methyl iodide. Autoradiography revealed that [11C]4 showed in vitro specific binding with 5-HT7 in the rat brain regions, such as the thalamus which is a region with high 5-HT7 expression. Metabolite analysis indicated that intact [11C]4 in the brain exceeded 90% of the radioactive components at 15 min after the radiotracer injection, although two radiolabeled metabolites were found in the rat plasma. The PET study of rats showed moderated uptake of [11C]4 in the brain (1.2 SUV), but no significant regional difference in radioactivity in the brain. Pretreatment with 5-HT7-selective antagonist SB269970 (3) did not decrease the uptake of [11C]4 in the rat brain. Further studies are warranted that focus on the development of PET ligand candidates with higher binding affinity for 5-HT7 and higher in vivo stability in brain than 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号