首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to arsenic early in life has been associated with increased risk of several chronic diseases and is believed to alter epigenetic programming in utero. In the present study, we evaluate the epigenome-wide association of arsenic exposure in utero and DNA methylation in placenta (n = 37), umbilical artery (n = 45) and human umbilical vein endothelial cells (HUVEC) (n = 52) in a birth cohort using the Infinium HumanMethylation450 BeadChip array. Unadjusted and cell mixture adjusted associations for each tissue were examined along with enrichment analyses relative to CpG island location and omnibus permutation tests of association among biological pathways. One CpG in artery (cg26587014) and 4 CpGs in placenta (cg12825509; cg20554753; cg23439277; cg21055948) reached a Bonferroni adjusted level of significance. Several CpGs were differentially methylated in artery and placenta when controlling the false discovery rate (q-value<0.05), but none in HUVEC. Enrichment of hypomethylated CpG islands was observed for artery while hypermethylation of open sea regions were present in placenta relative to prenatal arsenic exposure. The melanogenesis pathway was differentially methylated in artery (Max F P < 0.001), placenta (Max F P < 0.001), and HUVEC (Max F P = 0.02). Similarly, the insulin-signaling pathway was differentially methylated in artery (Max F P = 0.02), placenta (Max F P = 0.02), and HUVEC (Max F P = 0.02). Our results show that prenatal arsenic exposure can alter DNA methylation in artery and placenta but not in HUVEC. Further studies are needed to determine if these alterations in DNA methylation mediate the effect of prenatal arsenic exposure and health outcomes later in life.  相似文献   

2.
3.
Inheritance of 5-methyl cytosine modification of CpG (CG/CG) DNA sequences is needed to maintain early developmental decisions in vertebrates. The standard inheritance model treats CpGs as independent, with methylated CpGs maintained by efficient methylation of hemimethylated CpGs produced after DNA replication, and unmethylated CpGs maintained by an absence of de novo methylation. By stochastic simulations of CpG islands over multiple cell cycles and systematic sampling of reaction parameters, we show that the standard model is inconsistent with many experimental observations. In contrast, dynamic collaboration between CpGs can provide strong error-tolerant somatic inheritance of both hypermethylated and hypomethylated states of a cluster of CpGs, reproducing observed stable bimodal methylation patterns. Known recruitment of methylating enzymes by methylated CpGs could provide the necessary collaboration, but we predict that recruitment of demethylating enzymes by unmethylated CpGs strengthens inheritance and allows CpG islands to remain hypomethylated within a sea of hypermethylation.  相似文献   

4.
DNA methyltransferase 1 (DNMT1) is essential for DNA methylation, gene regulation and chromatin stability. We previously discovered DNMT1 mutations cause hereditary sensory and autonomic neuropathy type 1 with dementia and hearing loss (HSAN1E; OMIM 614116). HSAN1E is the first adult-onset neurodegenerative disorder caused by a defect in a methyltransferase gene. HSAN1E patients appear clinically normal until young adulthood, then begin developing the characteristic symptoms involving central and peripheral nervous systems. Some HSAN1E patients also develop narcolepsy and it has recently been suggested that HSAN1E is allelic to autosomal dominant cerebellar ataxia, deafness, with narcolepsy (ADCA-DN; OMIM 604121), which is also caused by mutations in DNMT1. A hotspot mutation Y495C within the targeting sequence domain of DNMT1 has been identified among HSAN1E patients. The mutant DNMT1 protein shows premature degradation and reduced DNA methyltransferase activity. Herein, we investigate genome-wide DNA methylation at single-base resolution through whole-genome bisulfite sequencing of germline DNA in 3 pairs of HSAN1E patients and their gender- and age-matched siblings. Over 1 billion 75-bp single-end reads were generated for each sample. In the 3 affected siblings, overall methylation loss was consistently found in all chromosomes with X and 18 being most affected. Paired sample analysis identified 564,218 differentially methylated CpG sites (DMCs; P < 0.05), of which 300 134 were intergenic and 264 084 genic CpGs. Hypomethylation was predominant in both genic and intergenic regions, including promoters, exons, most CpG islands, L1, L2, Alu, and satellite repeats and simple repeat sequences. In some CpG islands, hypermethylated CpGs outnumbered hypomethylated CpGs. In 201 imprinted genes, there were more DMCs than in non-imprinted genes and most were hypomethylated. Differentially methylated region (DMR) analysis identified 5649 hypomethylated and 1872 hypermethylated regions. Importantly, pathway analysis revealed 1693 genes associated with the identified DMRs were highly associated in diverse neurological disorders and NAD+/NADH metabolism pathways is implicated in the pathogenesis. Our results provide novel insights into the epigenetic mechanism of neurodegeneration arising from a hotspot DNMT1 mutation and reveal pathways potentially important in a broad category of neurological and psychological disorders.  相似文献   

5.
6.
7.
Tissue-specific gene expression is regulated by epigenetic modification involving trans-acting factors. Here, we identified that the human MAGEB16 gene and its mouse homolog, Mageb16, are only expressed in the testis. To investigate the mechanism governing their expression, the promoter methylation status of these genes was examined in different samples. Two CpG islands (CGIs) in the 5'' upstream region of MAGEB16 were highly demethylated in human testes, whereas they were methylated in cells without MAGEB16 expression. Similarly, the CGI in Mageb16 was hypomethylated in mouse testes but hypermethylated in other tissues and cells without Mageb16 expression. Additionally, the expression of these genes could be activated by treatment with the demethylation agent 5''-aza-2''-deoxycytidine (5''-aza-CdR). Luciferase assays revealed that both gene promoter activities were inhibited by methylation of the CGI regions. Therefore, we propose that the testis-specific expression of MAGEB16 and Mageb16 is regulated by the methylation status of their promoter regions. [BMB Reports 2014; 47(2): 86-91]  相似文献   

8.
9.
10.
Aging is associated with highly reproducible DNA methylation (DNAm) changes, which may contribute to higher prevalence of malignant diseases in the elderly. In this study, we analyzed epigenetic aging signatures in 5,621 DNAm profiles of 25 cancer types from The Cancer Genome Atlas (TCGA). Overall, age-associated DNAm patterns hardly reflect chronological age of cancer patients, but they are coherently modified in a non-stochastic manner, particularly at CpGs that become hypermethylated upon aging in non-malignant tissues. This coordinated regulation in epigenetic aging signatures can therefore be used for aberrant epigenetic age-predictions, which facilitate disease stratification. For example, in acute myeloid leukemia (AML) higher epigenetic age-predictions are associated with increased incidence of mutations in RUNX1, WT1, and IDH2, whereas mutations in TET2, TP53, and PML-PARA translocation are more frequent in younger age-predictions. Furthermore, epigenetic aging signatures correlate with overall survival in several types of cancer (such as lower grade glioma, glioblastoma multiforme, esophageal carcinoma, chromophobe renal cell carcinoma, cutaneous melanoma, lung squamous cell carcinoma, and neuroendocrine neoplasms). In conclusion, age-associated DNAm patterns in cancer are not related to chronological age of the patient, but they are coordinately regulated, particularly at CpGs that become hypermethylated in normal aging. Furthermore, the apparent epigenetic age-predictions correlate with clinical parameters and overall survival in several types of cancer, indicating that regulation of DNAm patterns in age-associated CpGs is relevant for cancer development.  相似文献   

11.
Epigenetic studies are commonly conducted on DNA from tissue samples. However, tissues are ensembles of cells that may each have their own epigenetic profile, and therefore inter-individual cellular heterogeneity may compromise these studies. Here, we explore the potential for such confounding on DNA methylation measurement outcomes when using DNA from whole blood. DNA methylation was measured using pyrosequencing-based methodology in whole blood (n = 50–179) and in two white blood cell fractions (n = 20), isolated using density gradient centrifugation, in four CGIs (CpG Islands) located in genes HHEX (10 CpG sites assayed), KCNJ11 (8 CpGs), KCNQ1 (4 CpGs) and PM20D1 (7 CpGs). Cellular heterogeneity (variation in proportional white blood cell counts of neutrophils, lymphocytes, monocytes, eosinophils and basophils, counted by an automated cell counter) explained up to 40% (p<0.0001) of the inter-individual variation in whole blood DNA methylation levels in the HHEX CGI, but not a significant proportion of the variation in the other three CGIs tested. DNA methylation levels in the two cell fractions, polymorphonuclear and mononuclear cells, differed significantly in the HHEX CGI; specifically the average absolute difference ranged between 3.4–15.7 percentage points per CpG site. In the other three CGIs tested, methylation levels in the two fractions did not differ significantly, and/or the difference was more moderate. In the examined CGIs, methylation levels were highly correlated between cell fractions. In summary, our analysis detects region-specific differential DNA methylation between white blood cell subtypes, which can confound the outcome of whole blood DNA methylation measurements. Finally, by demonstrating the high correlation between methylation levels in cell fractions, our results suggest a possibility to use a proportional number of a single white blood cell type to correct for this confounding effect in analyses.  相似文献   

12.
Hepatocellular carcinoma (HCC) incidence has increased in the US and also has one of the fastest growing death rates of any cancer. The purpose of the current study was to discover novel genome-wide aberrant DNA methylation patterns in HCC tumors that are predominantly HCV-related. Infinium HumanMethylation 450K BeadChip arrays were used to examine genome-wide DNA methylation profiles in 66 pairs of HCC tumor and adjacent non-tumor tissues. After Bonferroni adjustment, a total of 130,512 CpG sites significantly differed in methylation level in tumor compared with non-tumor tissues, with 28,017 CpG sites hypermethylated and 102,495 hypomethylated in tumor tissues. Absolute tumor/non-tumor methylation differences ≥ 20% were found in 24.9% of the hypermethylated and 43.1% of the hypomethylated CpG sites; almost 10,000 CpG sites have ≥ 30% DNA methylation differences. Most (60.1%) significantly hypermethylated CpG sites are located in CpG islands, with 21.6% in CpG shores and 3.6% in shelves. In contrast, only a small proportion (8.2%) of significantly hypomethylated CpG sites are situated in islands, while most are found in open sea (60.2%), shore (17.3%) or shelf (14.3%) regions. A total of 2,568 significant CpG sites (2,441 hypermethylated and 127 hypomethylated) covering 589 genes are located within 684 differentially methylated regions defined as regions with at least two significant CpG sites displaying > 20% methylation differences in the same direction within 250-bp. The top 500 significant CpG sites can significantly distinguish HCC tumor from adjacent tissues with one misclassification. Within adjacent non-tumor tissues, we also identified 75 CpG sites significantly associated with gender, 228 with HCV infection, 17,207 with cirrhosis, and 56 with both HCV infection and cirrhosis after multiple comparisons adjustment. Aberrant DNA methylation profiles across the genome were identified in tumor tissues from US HCC cases that are predominantly related to HCV infection. These results demonstrate the significance of aberrant DNA methylation in HCC tumorigenesis.  相似文献   

13.
14.
15.

Background

Hepatocellular carcinoma (HCC) is one of the most common cancers and frequently presents with an advanced disease at diagnosis. There is only limited knowledge of genome-scale methylation changes in HCC.

Methods and Findings

We performed genome-wide methylation profiling in a total of 47 samples including 27 HCC and 20 adjacent normal liver tissues using the Illumina HumanMethylation450 BeadChip. We focused on differential methylation patterns in the promoter CpG islands as well as in various less studied genomic regions such as those surrounding the CpG islands, i.e. shores and shelves. Of the 485,577 loci studied, significant differential methylation (DM) was observed between HCC and adjacent normal tissues at 62,692 loci or 13% (p<1.03e-07). Of them, 61,058 loci (97%) were hypomethylated and most of these loci were located in the intergenic regions (43%) or gene bodies (33%). Our analysis also identified 10,775 differentially methylated (DM) loci (17% out of 62,692 loci) located in or surrounding the gene promoters, 4% of which reside in known Differentially Methylated Regions (DMRs) including reprogramming specific DMRs and cancer specific DMRs, while the rest (10,315) involving 4,106 genes could be potential new HCC DMR loci. Interestingly, the promoter-related DM loci occurred twice as frequently in the shores than in the actual CpG islands. We further characterized 982 DM loci in the promoter CpG islands to evaluate their potential biological function and found that the methylation changes could have effect on the signaling networks of Cellular development, Gene expression and Cell death (p = 1.0e-38), with BMP4, CDKN2A, GSTP1, and NFATC1 on the top of the gene list.

Conclusion

Substantial changes of DNA methylation at a genome-wide level were observed in HCC. Understanding epigenetic changes in HCC will help to elucidate the pathogenesis and may eventually lead to identification of molecular markers for liver cancer diagnosis, treatment and prognosis.  相似文献   

16.
To determine if ethanol consumption and alcoholism cause global DNA methylation disturbances, we examined alcoholics and controls using methylation specific microarrays to detect all annotated gene and non-coding microRNA promoters and their CpG islands. DNA was isolated and immunoprecipitated from the frontal cortex of 10 alcoholics and 10 age and gender-matched controls then labeled prior to co-hybridization. A modified Kolmogorov–Smirnov test was used to predict differentially enriched regions (peaks) from log-ratio estimates of amplified vs input DNA. More than 180,000 targets were identified for each subject which correlated with > 30,000 distinct, integrated peaks or high probability methylation loci. Peaks were mapped to regions near 17,810 separate annotated genes per subject representing hypothetical methylation targets. No global methylation differences were observed between the two subject groups with 80% genetic overlap, but extreme methylation was observed in both groups at specific loci corresponding with known methylated genes (e.g., H19) and potentially other genes of unknown methylation status. Methylation density patterns targeting CpG islands visually correlated with recognized chromosome banding. Our study provides insight into global epigenetic regulation in the human brain in relationship to controls and potentially novel targets for hypothesis generation and follow-up studies of alcoholism.  相似文献   

17.
Prenatal arsenic exposure is associated with increased risk of disease in adulthood. This has led to considerable interest in arsenic’s ability to disrupt fetal programming. Many studies report that arsenic exposure alters DNA methylation in whole blood but these studies did not adjust for cell mixture. In this study, we examined the relationship between arsenic in maternal drinking water collected ≤ 16 weeks gestational age and DNA methylation in cord blood (n = 44) adjusting for leukocyte-tagged differentially methylated regions. DNA methylation was quantified using the Infinium HumanMethylation 450 BeadChip array. Recursively partitioned mixture modeling examined the relationship between arsenic and methylation at 473,844 CpG sites. Median arsenic concentration in water was 12 µg/L (range < 1- 510 µg/L). Log10 arsenic was associated with altered DNA methylation across the epigenome (P = 0.002); however, adjusting for leukocyte distributions attenuated this association (P = 0.013). We also observed that arsenic had a strong effect on the distribution of leukocytes in cord blood. In adjusted models, every log10 increase in maternal drinking water arsenic exposure was estimated to increase CD8+ T cells by 7.4% (P = 0.0004) and decrease in CD4+ T cells by 9.2% (P = 0.0002). These results show that prenatal exposure to arsenic had an exposure-dependent effect on specific T cell subpopulations in cord blood and altered DNA methylation in cord blood. Future research is needed to determine if these small changes in DNA methylation alter gene expression or are associated with adverse health effects.  相似文献   

18.
The DNA of most vertebrates is depleted in CpG dinucleotides, the target for DNA methylation. The remaining CpGs tend to cluster in regions referred to as CpG islands (CGI). CGI have been useful as marking functionally relevant epigenetic loci for genome studies. For example, CGI are enriched in the promoters of vertebrate genes and thought to play an important role in regulation. Currently, CGI are defined algorithmically as an observed-to-expected ratio (O/E) of CpG greater than 0.6, G+C content greater than 0.5, and usually but not necessarily greater than a certain length. Here we find that the current definition leaves out important CpG clusters associated with epigenetic marks, relevant to development and disease, and does not apply at all to nonvertabrate genomes. We propose an alternative Hidden Markov model-based approach that solves these problems. We fit our model to genomes from 30 species, and the results support a new epigenomic view toward the development of DNA methylation in species diversity and evolution. The O/E of CpG in islands and nonislands segregated closely phylogenetically and showed substantial loss in both groups in animals of greater complexity, while maintaining a nearly constant difference in CpG O/E between islands and nonisland compartments. Lists of CGI for some species are available at http://www.rafalab.org.  相似文献   

19.
In utero exposure to diethylstilbestrol (DES) has been associated with increased risk of adverse health outcomes such as fertility problems and vaginal as well as breast cancer. Animal studies have linked prenatal DES exposure to lasting DNA methylation changes. We investigated genome-wide DNA methylation and in utero DES exposure in a sample of non-Hispanic white women aged 40–59 years from the Sister Study, a large United States cohort study of women with a family history of breast cancer. Using questionnaire information from women and their mothers, we selected 100 women whose mothers reported taking DES while pregnant and 100 control women whose mothers had not taken DES. DNA methylation in blood was measured at 485,577 CpG sites using the Illumina HumanMethylation450 BeadChip. Associations between CpG methylation and DES exposure status were analyzed using robust linear regression with adjustment for blood cell composition and multiple comparisons. Although four CpGs had p<105, after accounting for multiple comparisons using the false discovery rate (FDR), none reached genome-wide significance. In conclusion, adult women exposed to DES in utero had no evidence of large persistent changes in blood DNA methylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号