首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》1988,145(2):231-233
The photochemical oxidation reaction of W(CO)6 to [W(CO)4Cl2]2 with CCl4 was applied in the synthesis of [WCl2(CO)3(PPh3)2] and [WCl2(CO)2−- (dppe)].  相似文献   

2.
《Inorganica chimica acta》2006,359(11):3589-3595
Reactions between the activated cluster [Os3(CO)10(NCMe)2] and malonic acid, succinic acid and dicarboxylic acetylene, respectively, lead to the formation of the linked cluster complexes [{Os3H(CO)10}2(CO2CH2CO2)] (1), [{Os3H(CO)10}2(CO2C2H4CO2)] (2), and [{Os3H(CO)10}2(C4O4)] (3) in good yield. Cluster 3 was subsequently treated with [Co2(CO)8] and this results in the addition of a “Co2(CO)6” group giving [{Os3H(CO)10}2(C2O4){Co2(CO)6}] (4). The X-ray crystal structures are reported for 24. In each structure the two triangular triosmium units are linked by the carboxylate groups and within each complex the carboxylate groups are chelating and bridge two osmium atoms.  相似文献   

3.
The reaction of cis-[Os(CO)4Me2] with Me3NO in the THF or MeCN yields the complexes fac-[Os(CO)3(L)Me2] (where L = THF or MeCN). Whereas the THF complex is unstable and only characterised spectroscopically, fac-[Os(CO)3(MeCN)Me2] has been isolated as a white solid and fully characterized by both analytical and spectroscopic methods. These complexes fac-[Os(CO)3(L)Me2] are shown to be useful intermediates. Thus, reaction with PPh3 gives fac-[Os(CO)3(PPh3)Me2] in good yield.Reactions of fac-[Os(CO)3(L)Me2] (L = CO or MeCN) with CPh3PF6 or B(C6F5)3 have been investigated. Whereas cis-[Os(CO)4Me2] showed no reaction with either CPh3PF6 or B(C6F5)3, the reaction of fac-[Os(CO)3(MeCN)Me2] with CPh3PF6 in CH2Cl2 occurred over 16 h at room temperature to give an unstable cationic product and CPh3Me. The reaction was monitored by both IR and NMR spectroscopies. When this reaction of fac-[Os(CO)3(MeCN)Me2] was carried out in the presence of a trapping ligand such as MeCN, the stable cationic product [Os(CO)3(MeCN)2Me]+ could be isolated and identified spectroscopically.  相似文献   

4.
The kinetics of rapid CO substitution by PPh3 in Co4(CO)12 and Rh4(CO)12 have been examined by stopped-flow and low temperature FT-IR methods. In Co4(CO)12 rapid (kobs ∼ 1.8 s−1) substitution of CO occurs after a 1–15 s induction period at 28 °C in C6H5Cl solvent by a catalytic process. Addition of PPh3 to Rh4(CO)12 yields Rh4(CO)11(PPh3) according to a predominantly second order rate law k1[Rh4- (CO)12] + k2[Rh4(CO)12][PPh3] with k1 = 25 ± 11 s−1 and k2 = 2.97 ± 0.27 X 104 M−1 s−1 at 28 °C. Substitution of a second CO ligand also occurs rapidly with k1 = 0.15 ± 0.09 s−1 and k2 = 6.54 ± 0.07 X 102 M−1 s−1 at 28 °C. The reactivity of Rh4(CO)12 toward associative substitution is 104– 1011 faster than for the Co and Ir analogues, In Rh4(CO)11(PPh3) the increase in CO substitution rates over Co and Rh analogues is 102–107. The ordering of associative substitution rates Co << Rh >>> Ir in these clusters exaggerates the trend seen in mononuclear metal complexes.  相似文献   

5.
The reaction of Cp*2NbBH4 (Cp* = η5-C5Me5) with Ru3(CO)12 gave a mixture of compounds, from which only [Cp*2Nb(CO)2]2[Ru6(CO)16C] (1) could be characterized by spectroscopic and crystallographic methods. 11B NMR spectroscopy proved that interstitial boron may be present in other Ru6 clusters, but these compounds did not crystallize. The reaction of Cp*2NbBH4 with Co2(CO)8 gave among others the salts [Cp*2Nb(CO)2]2[Co6(CO)15C] (4) and [Cp*2Nb(CO)2]3[Co13(CO)24C2] (5), which were examined by X-ray diffraction studies. The true nature of the interstitial atoms in 5 was deduced from electrochemical investigations, which reveal similar redox properties as for the already known [Co13(CO)24C2]3− anion.  相似文献   

6.
The reaction of 2-(2-aminophenyl)benzothiazole (Habt) with [Re(CO)5Br] led to the isolation of the rhenium(I) complex fac-[Re(Habt)(CO)3Br] (1). With trans-[ReOCl3(PPh3)2], the ligand Habt decomposed to form the oxofree rhenium(V) complex [Re(itp)2Cl(PPh3)] (2) (itp = 2-amidophenylthiolate). From the reaction of trans-[ReOBr3(PPh3)2] with 2-(2-hydroxyphenyl)benzothiazole (Hhpd) the complex [ReVOBr2(hpd)(PPh3)] (3) was obtained. Complexes 1-3 are stable and lipophilic. 1H NMR and infrared assignments, as well as the X-ray crystal structures, of the complexes are reported.  相似文献   

7.
The silylphosphine ligand Ph2PSiMe3 reacts readily with a slurry of [Re(CO)5X] (X  Cl, Br) in polar and in non-polar solvents to yield soluble cis-[Re(CO)4- (Ph2PSiMe3)X] (Ia, X  Cl;Ib, X  Br) via CO substitution. Compound I is readily hydrolyzed by water or silica gel to cis-[Re(CO)4(Ph2PH)X]. Compound Ib reacts with [Re(CO)5Br] to yield [Re2(CO)8(μ-PPh2)- (μ-Br)] (II), and with [Mn(CO)5Br] to yield [MnRe- (CO)8(μ-PPh2)(μ-Br)] (III).The reaction of Ph2PSiMe3 with [Mn(CO)5X] (X=Cl,Br,I) is highly dependent upon reaction conditions.In polar and in non-polar solvents, an excess of ligand gives mainly cis-[Mn(CO)4(Ph2PSiMe3)X] (IVa, X  Cl;IVb, X  Br;IVc, X I). With ligand: [Mn(CO)5X] reacting ratios in the range 0.5–1.0:1, the products from the three respective halomanganese complexes in THF were: (a) mainly [Mn2(CO)8(μ- PPh2)(μ-Cl) (Va); (b) both [Mn(CO)4(Ph2PSiMe3)Br] and [Mn2(CO)8(μ-PPh2)(μ-Br)] (Vb); and (c) exclusively [Mn(CO)4(Ph2PSiMe3)I]. The compounds IVa-c are stable in solution at ambient temperatures and are readily hydrolyzed by water or methanol to [Mn(CO)4(Ph2PH)X]. Compound IVb reacts at room temperature with [Mn(CO)5Cl] to yield only [Mn2- (CO)8(μ-PPh2)(μ-Br)] (Vb); compound IVc reacts in hot toluene with [Mn(CO)5Cl] to yield mainly [Mn2(CO)8(μ-PPh2)(μ-I)] (Vc), together with a small amount of the chloro-bridged analog.The dinuclear species II, III and Va-c appear to be formed mainly via an intermolecular elimination of Me3SiX from the appropriate [M(CO)4(Ph2PSiMe3)X] and metalpentacarbonylhalide (chloride or bromide) complexes.  相似文献   

8.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

9.
Reaction of [Rh(CO)2I]2 (1) with MeI in nitrile solvents gives the neutral acetyl complexes, [Rh(CO)(NCR)(COMe)I2]2 (R=Me, 3a; tBu, 3b; vinyl, 3c; allyl, 3d). Dimeric, iodide-bridged structures have been confirmed by X-ray crystallography for 3a and 3b. The complexes are centrosymmetric with approximate octahedral geometry about each Rh centre. The iodide bridges are asymmetric, with Rh-(μ-I) trans to acetyl longer than Rh-(μ-I) trans to terminal iodide. In coordinating solvents, 3a forms mononuclear complexes, [Rh(CO)(sol)2(COMe)I2] (sol=MeCN, MeOH). Complex 3a reacts with pyridine to give [Rh(CO)(py)(COMe)I2]2 and [Rh(CO)(py)2(COMe)I2] and with chelating diphosphines to give [Rh(Ph2P(CH2)nPPh2)(COMe)I2] (n=2, 3, 4). Addition of MeI to [Ir(CO)2(NCMe)I] is two orders of magnitude slower than to [Ir(CO)2I2]. A mechanism for the reaction of 1 with MeI in MeCN is proposed, involving initial bridge cleavage by solvent to give [Rh(CO)2(NCMe)I] and participation of the anion [Rh(CO)2I2] as a reactive intermediate. The possible role of neutral Rh(III) species in the mechanism of Rh-catalysed methanol carbonylation is discussed.  相似文献   

10.
When a solution of [Co2(Ph2PCH2PPh2)(CO)6] in chloroform or deuterochloroform is allowed to stand in air at room temperature, it deposits dark green crystals of [Co{Ph2P(O)CH2P(O)Ph2}3][CoCl4] · 8CHCl3. The same product is formed more quickly and in much higher yield (80% based on Co) if the reaction is carried out in the presence of 2 equiv. of [Ph2PCH2PPh2]; the CoII appears to catalyse the air-oxidation of [Ph2PCH2PPh2]. The salt was characterised by X-ray crystallography and shown to contain octahedral CoII cations and CoII tetrahedral anions having normal bond lengths and angles.  相似文献   

11.
Mo(CO)4(LL) complexes, where LL = polypyridyl ligands such as 2,2′-bipyridine and 1,10-phenanthroline, undergo quasi-reversible, one-electron oxidations in methylene chloride yielding the corresponding radical cations, [Mo(CO)4(LL)]+. These electrogenerated species undergo rapid ligand substitution in the presence of acetonitrile, yielding [Mo(CO)3(LL)(CH3CN)]+; rate constants for these substitutions were measured using chronocoulometry and were found to be influenced by the steric and electronic properties of the polypyridyl ligands. [Mo(CO)3(LL)(CH3CN)]+ radical cations, which could also be generated by reversible oxidation of Mo(CO)3(LL)(CH3CN) in acetonitrile, can be irreversibly oxidized yielding [Mo(CO)3(LL)(CH3CN)2]2+ after coordination by an additional acetonitrile. Infrared spectroelectrochemical experiments indicate the radical cations undergo ligand-induced net disproportionations that follow first-order kinetics in acetonitrile, ultimately yielding the corresponding Mo(CO)4(LL) and [Mo(CO)2(LL)(CH3CN)3]2+ species. Rate constants for the net disproportionation of [Mo(CO)3(LL)(CH3CN)]+ and the carbonyl substitution reaction of [Mo(CO)3(LL)(CH3CN)2]2+ were measured. Thin-layer bulk oxidation studies also provided infrared characterization data of [Mo(CO)4(ncp)]+ (ncp = neocuproine), [Mo(CO)3(LL)(CH3CN)]+, [Mo(CO)3(LL)(CH3CN)2]2+ and [Mo(CO)2(LL)(CH3CN)3]2+ complexes.  相似文献   

12.
[Rh2Cl2(CO)4] reacts with the ligands L (2-pyridone, 2-thiopyridone, and the isomers 6-methyl-2-thiopyridone, 2-methylmercaptopyridine, and N-methylthiopyridone) to give initially, when L/Rh = 1, the bridged-cleaved compounds cis- [RhCl(CO)2L]. Further additions of 2-methyl- mercaptopyridine, N-methylthiopyridone, or 2-pyridone caused no further change, but 2- thiopyridone and 6-methyl-2-thiopyridone gave new cis-dicarbonyl species (L/Rh = 2) and eventually monocarbonyl species (L/Rh > 3). All these solutions are air-sensitive and air oxidation of a solution of [Rh2Cl2(CO)4] with an excess of 6-methyl-2- thiopyridone gave fac-[Rh(MeC5H3NS)3] the X-ray structure of which shows three equivalent chelating 6-methyl-2-thiopyridonato ligands.  相似文献   

13.
The organometallic Lewis acid, [CpFe(CO)2]+ (Cp = η5-C5H5) reacts with excess dry diethyl ether at low temperatures to form the labile complex [CpFe(CO)2(Et2O)]+[BF4] (1) which is stable at low temperatures and has been fully characterized. Complex 1 in turn reacts with 1-aminoalkanes and α,ω-diaminoalkanes to form new complexes of the type [CpFe(CO)2NH2(CH2)nCH3]BF4 (n = 2-6) (2) and [{CpFe(CO)2}2μ-(NH2(CH2)nNH2)](BF4)2 (n = 2-4) (3), respectively. These complexes have been fully characterized and the mass spectral patterns of complexes 2 are reported. The structures of compounds 2a (n = 2) and 2b (n = 3) have been confirmed by single crystal X-ray crystallography. The single crystal X-ray diffraction data show that complex 2a, [CpFe(CO)2NH2(CH2)2CH3]BF4, crystallizes in a triclinic space group while 2b, [CpFe(CO)2NH2(CH2)3CH3]BF4, crystallizes in an orthorhombic Pca21 space group with two crystallographically independent molecular cations in the asymmetric unit. Furthermore, the reaction of 1 with 1-alkenes gives the η2-alkene complexes in high yield.  相似文献   

14.
The crystal structures of the four-coordinate trans-[Rh(Cl)(CO)(SbPh3)2] (1) and the five-coordinate trans-[Rh(Cl)(CO)(SbPh3)3] (2) are reported, as well as the unexpected oxidative addition product, trans-[Rh(I)2(CH3)(CO)(SbPh3)2] (3), obtained from the reaction of 2 with CH3I. The formation constants of the five-coordinate complex were determined in dichloromethane, benzene, diethyl ether, acetone and ethyl acetate as 163±8, 363±10, 744±34, 1043±95 and 1261±96 M−1, respectively. While coordinating solvents facilitate the formation of the five-coordinate complex, the four-coordinate complex could be obtained from diethyl ether due to the favorable low crystallization energy. The tendency of stibine ligands to form five-coordinate rhodium(I) complexes is attributed mainly to electron deficient metal centers in these systems, with smaller contributions by the steric effects. The average effective cone angle for the SbPh3 ligand in the three crystallographic studies was determined as 139° with individual values ranging from 133 to 145°.  相似文献   

15.
The linkage isomers [Re(NCS)6]2? and [Re(NCS)5(SCN)]2? are obtained by the reaction of [ReBr6]2? with NCS? in dimethylformamide. Some differences in the chemical behavior allowed their separation and structural characterization in the form of (NBu4)2[Re(NCS)6] (1) and [Zn(NO3)(Me2phen)2]2[Re(NCS)5(SCN)] (2), respectively (Bu = n-C4H9 and Me2phen = 2,9-dimethyl-1,10-phenanthroline).  相似文献   

16.
The reaction of [Os6(CO)18] 1 with [(SPPh2)2NH] in the presence of Me3NO produces a purple compound characterized spectroscopically and by X-ray crystallography, as [HOs6(CO)17(SPPh2)2N] 2. The structure shows the hexanuclear fragment to have suffered a geometrical rearrangement to give a metal framework that can be described as an edge-bridged tetrahedron with an additional terminal osmium atom bonded to one of the bridged metal atoms. The ligand acts as a bimetallic tetraconnective unit through both sulphur atoms between two non-bonded osmium atoms.  相似文献   

17.
Reaction of [Mo2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 or metallic Mo under hydrothermal conditions (140 °C, 4 M HCl) gives oxido-sulfido cluster aqua complex [Mo33-S)(μ-O)2(μ-S)(H2O)9]4+ (1). Similarly, [W33-S)(μ-O)2(μ-S)(H2O)9]4+ (2) is obtained from [W2O2(μ-S)2(H2O)6]2+ and W(CO)6. While reaction of [Mo2O2(μ-S)2(H2O)6]2+ with W(CO)6 mainly proceeds as simple reduction to give 1, [W2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 produces new mixed-metal cluster [W2Mo(μ3-S)(μ-O)2(μ-S)(H2O)9]4+ (3) as main product. From solutions of 1 in HCl supramolecular adduct with cucurbit[6]uril (CB[6]) {[Mo3O2S2(H2O)6Cl3]2CB[6]}Cl2⋅18H2O (4) was isolated and structurally characterized. The aqua complexes were converted into acetylacetonates [M3O2S2(acac)3(py)3]PF6 (M3 = Mo3, W3, W2Mo; 5a-c), which were characterized by X-ray single crystal analysis, electrospray ionization mass spectrometry and 1H NMR spectroscopy. Crystal structure of (H5O2)(Me4N)4[W33-S)(μ2-S)(μ2-O)2(NCS)9] (6), obtained from 2, is also reported.  相似文献   

18.
The crystal structure of the dimeric Ag maleonitriledithiolate complex, Ag2[S2C2(CN)2] [P(C6- H5)3]4 (1), has been performed. Complex 1 crystallizes in the space group P21/c with a = 12.2898(77), b = 23.8325(91), c = 23.1790(118) Å, β = 101.315(43)° and Z = 4. Refinement using 3253 reflections with Fo2>3σ(Fo2) yielded R = 0.0662, Rw= 0.0669. The most interesting aspect of the structure is the strong bridging interaction of the chelating maleonitriledithiolate ligand with the second Ag center, where a Ag-S distance of 2.478 Å is observed. The residual bonding capability of the sulfur atoms in the chelating anion [Ag(S2C2(CN)2)(PPh3)2] for [Ag(PPh3)2]+ is demonstrated.  相似文献   

19.
The reactivity of the metalloligand [Pt2(μ-S)2(PPh3)4] towards a variety of indium(III) substrates has been explored. Reaction with excess In(NO3)3 and halide (KBr or NaI) gave the four-coordinate adducts [Pt2(μ-S)2(PPh3)4InX2]+[InX4] (X = Br, I). An X-ray structure determination on the iodo complex revealed a slightly distorted tetrahedral coordination geometry at indium. In contrast, reaction of [Pt2(μ-S)2(PPh3)4] with indium(III) chloride was more complex; the ion [Pt2(μ-S)2(PPh3)4InCl2]+ was initially observed in solution (using ESI mass spectrometry), and isolated as its BPh4 salt. Analysis of [Pt2(μ-S)2(PPh3)4InCl2]+[BPh4] by ESI MS showed the parent cation when analysed in MeCN solution. However in solutions containing methanol, partial solvolysis occurred to give the di-indium species [{Pt2(μ-S)2(PPh3)4InCl(OMe)}2]2+ (proposed to contain an In2(μ-OMe)2 unit with five-coordinate indium) and its fragment ion [Pt2(μ-S)2(PPh3)4InCl(OMe)]+. Reaction of [Pt2(μ-S)2(PPh3)4] with InCl3·3H2O, 8-hydroxyquinoline (HQ) and trimethylamine in methanol gave the adduct [Pt2(μ-S)2(PPh3)4InQ2]+, isolated as its PF6 salt. The same cationic complex is formed when [Pt2(μ-S)2(PPh3)4] is reacted with InQ3 in methanol, but in this case the product is contaminated with the mononuclear complex [(Ph3P)2PtQ]+ formed by disintegration of the trinuclear complex [Pt2(μ-S)2(PPh3)4InQ2]+ with byproduct Q. [(Ph3P)2PtQ]+BPh4 was independently prepared from cis-[PtCl2(PPh3)2] and HQ/Me3N, and is the first example of a platinum 8-hydroxyquinolinate complex containing phosphine ligands.  相似文献   

20.
The two clusters [HFe5NiN(CO)14]2− (1) and [HFe4Ni2N(CO)13]2− (2) were obtained by reaction of [Fe4N(CO)12] and [Ni6(CO)12]2− in refluxing MeCN and EtCN, respectively, along with other Fe-Ni mixed metal clusters. Their solid state structures were determined on the [PPh4]+ salts, and both have an octahedral metal cage, containing an interstitial nitrogen atom. The two Ni atoms in 2 are cis, with a Ni-Ni separation of 2.724(1) Å. The two anions have different stereochemistry of the carbonyl ligands: in 1, five CO’s are semi-bridging, and the remaining nine are terminal; in 2 there are three asymmetric bridging and ten terminal ligands (two for each iron and one for each nickel). The hydride ligands were located in the final difference maps, both bridging a Ni-Fe edge of the clusters but, thanks to the better quality of the diffraction data, the metal-hydrogen distances were refined only in 2. In this cluster, the Fe-H and Ni-H bond lengths are 1.77(2) and 1.79(2) Å, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号