首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of [C5H4(CH2)nX]Tl (1: n = 2, X = NMe2, OMe, CN; n = 3, X = NMe2) with [(η6-C6H6)RuCl(μ-Cl)]2, 2, afforded the sandwich compounds [{η5-C5H4(CH2)nX}Ru(η6-C6H6)]PF6, 3, and [η5-C5H4(CH2)nX]2Ru, 4. Photolytic cleavage of 3 in acetonitrile afforded the tethered products [{η5N-C5H4(CH2)nX}Ru(CH3CN)2]PF6, 5.  相似文献   

2.
The coordination chemistry of thioether functionalized cyclodiphosphazane ligand, cis-{tBuNP(OCH2CH2SCH3)}2 (1) is described. The reactions of 1 with [Pd (COD)Cl2] in 1:1, 1:2 and 2:1 M ratios afforded cis-[PdCl2{tBuNP(OCH2CH2SCH3)}2] (2), cis-[{PdCl2}2{tBuNP(OCH2CH2SCH3)}2] (3) and trans-[PdCl2{(tBuNP(OCH2CH2SCH3))2}2] (4), respectively. Treatment of 1 with [Pd(PEt3)Cl2]2 or [PdCl(η3-C3H5)]2 in appropriate molar ratios produce the mono- and binuclear complexes [PdCl2(PEt3{tBuNP(OCH2CH2SCH3)}2] (5) and [{PdCl(η3-C3H5)}2{tBuNP(OCH2CH2SCH3)}2] (6) in good yield. The reaction of 1 with [{Ru(p-cymene)Cl2}2] afforded the mononuclear cationic complex, [{(p-cymene)RuCl{tBuNP(OCH2CH2SCH3)}2]Cl (7), whereas the reactions of [Rh(COD)Cl]2, [Pt(COD)Cl2] and [Au(SMe2)Cl] with 1 yielded the corresponding P-coordinated neutral complexes, [RhCl(COD){tBuNP(OCH2CH2SCH3)}2] (8)cis-[PtCl2{tBuNP(OCH2CH2SCH3)}2] (9), respectively. The binuclear palladium(II) complex 3 was found to be an effective catalyst for the Suzuki-Miyaura cross-coupling reactions.  相似文献   

3.
A new cumulene diiron complex related to the Fe-only hydrogenase active site [(μ-SCH2C(S)CCH2)Fe2(CO)6] (1) was obtained by treatment of (μ-LiS)2Fe2(CO)6 with excess 1,4-dichloro-2-butyne. By controllable CO displacement of 1 with PPh3 and bis(diphenylphosphino)methane (dppm), mono- and di-substituted complexes, namely [(μ-SCH2C(S)CCH2)Fe2(CO)5L] (2: L = PPh3; 3: L = dppm) and [(μ-SCH2C(S)CCH2)Fe2(CO)4L2] (4: L = PPh3; 5: L = dppm) could be prepared in moderate yields. Treatment of 1 with bis(diphenylphosphino)ethane (dppe) afforded a double butterfly complex [(μ-SCH2C(S)CCH2)Fe2(CO)5]2(μ-dppe) (7). With dppm in refluxing toluene, a dppm-bridged complex [(μ-SCH2C(S)CCH2)Fe2(CO)4(μ-dppm)] (6) was obtained. These model complexes were characterized by IR, 1H, 31P NMR spectra and the molecular structures of 1, 2 and 5-7 were determined by single crystal X-ray analyses. The electrochemistry of 1-3 was studied and the electrocatalytic property of 1 was investigated for proton reduction in the presence of HOAc.  相似文献   

4.
The syntheses and crystal structures of two new hexanuclear complexes are reported: [{(LCuII(ONO2))(LCuII(H2O))NdIII}2(μ-C2O4)](NO3)2 · 6H2O (1) and [{(LNiII(H2O))(N(CN)2)}2PrIII}2(ONO2)](OH) · 2H2O · 3CH3CN (2) (L is the dianion of the Schiff-base resulted from the 2:1 condensation of 3-methoxysalyciladehyde with 1,3-propanediamine). Compounds 1 and 2 were obtained by connecting heterotrinuclear cationic complexes [{LMII}2LnIII]3+ with oxalato or nitrato linkers. The structure of the complex cation in 1 shows two almost linear trinuclear [Cu2Nd] moieties which are linked by a bis-chelating oxalato bridge between the neodymium ions. The hexanuclear cationic moiety in 2 is built up of two heterotrinuclear [Ni2Pr] units that are linked by a nitrato group bridging two praseodymium(III) ions. The spectroscopic (FTIR, UV-Vis) and magnetic properties of 1 and 2 have been investigated.  相似文献   

5.
Chemically modified electrodes were prepared by adsorption of Nafion/catalyst films of the type Nafion/Cp(PPh3)Ru(μ-I)(μ-dppm)PdCl2 (N1), Nafion/[η5-C5H4CH2CH2(NHMe2)+]Ru(PPh3)(μ-I)(μ-dppm)PtCl2 (N2), Nafion/[η5-C5H4CH2CH2(NHMe2)+]Ru(PPh3)(μ-Cl)(μ-dppm)PdCl2 (N3), Nafion/Cp(CO)Fe(μ-I)(μ-dppm)PdI2 (N4) and Nafion/Cp(CO)Ru(μ-I)(μ-dppm)PtI2 (N5) on glassy and vitreous carbon electrodes. Cyclic voltammetry and bulk electrolysis experiments were performed to assess the ability of these modified electrodes to electrocatalytically oxidize ethanol. Cyclic voltammograms using the N1-N5 modified glassy carbon electrodes displayed significant catalytic activity compared to oxidation of ethanol catalyzed by 1 in homogeneous solution. Bulk electrolysis of ethanol using electrodes coated with Nafion supported complexes 1-3 resulted in formation of the two- and four-electron oxidation products acetaldehyde and acetic acid, respectively, whilst bulk electrolysis using the complexes 4 and 5 produced only acetaldehyde.  相似文献   

6.
Depending on experimental conditions and the nature of the phosphite, the reaction of OsH2P4 [P=P(OEt)3 and PPh(OEt)2] with bis(aryldiazonium) salts [N2Ar-ArN2](BF4)2 [Ar-Ar=4,4-C6H4-C6H4, 4,4-(2-CH3)C6H3-C6H3(2-CH3), 4,4-C6H4-CH2-C6H4 and 1,5-C10H6] afford the cis and the trans binuclear [{OsHP4}2(μ-HNNAr-ArNNH)](BPh4)21, 2 aryldiazene derivatives. These complexes 1, 2 further react with the mono(diazonium) (4-CH3C6H4N2)BF4 salt to give the bis(aryldiazene) [{Os(4-CH3C6H4NNH)P4}2(μ-HNNAr-ArNNH)](BPh4)43, 4 derivatives. Binuclear bis(aryldiazenido) [{OsP4}2(μ-N2Ar-ArN2)](BPh4)2 (6) [P=P(OEt)3; Ar-Ar=4,4-C6H4-C6H4, 4,4-C6H4-CH2-C6H4] complexes were prepared by deprotonating with NEt3 the nitrile-diazene [{Os(4-CH3C6H4CN)P4}2(μ-HNNAr-ArNNH)](BPh4)4 (5) derivatives. The aryldiazenido compounds 6 react with HCl to give the new aryldiazene [{OsClP4}2(μ-HNNAr-ArNNH)](BPh4)2 (7) derivatives. The characterisation of the complexes by IR and 1H, 31P, 15N NMR data is also discussed. The reaction of the hydride OsH2(PPh2OEt)4 with mono(diazonium) salts was also studied and led exclusively to the mono(aryldiazene) [OsH(ArN NH)(PPh2OEt)4]BPh4 (8) (Ar=C6H5, 4-CH3C6H4) derivatives. Spectroscopic data (1H, 31P, 15N NMR) on 15N-labelled derivatives suggest the presence of two isomers with the N-bonded and the π-bonded ArNNH ligand, respectively.  相似文献   

7.
The reaction of the cyclometalated IrIII dimer [{(ppy)2Ir}2(μ-Cl)2] (ppyH = 2-phenylpyridine) with silver triflate followed by a multidentate ligand [1,4-bis[3-(2-pyridyl)pyrazolylmethyl]benzene (bppb), 1,3,5-tri[3-(2-pyridyl)pyrazolylmethyl]-2,4,6-trimethylbenzene (tppb), 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), 2-chloro-4,6-bis(dipyridin-2-ylamino)-1,3,5-triazine (cddt) or 2,4,6-tris(dipyridin-2-ylamino)-1,3,5-triazine (tdat)] afforded di- or trinuclear compounds: [{Ir(ppy)2}2(μ-bppb)](OTf)2 (1), [{Ir(ppy)2}3(μ-tppb)](OTf)3 (2), [{Ir(ppy)2}2(μ-tptz-OH)](OTf) (3), [{Ir(ppy)2}2(μ-cddt)](OTf)2 (4) and [{Ir(ppy)2}2(μ-tdat)](OTf)2 (5). All of these compounds contain cationic metal cores with corresponding triflate counter anions. The molecular structures of 1-4 reveal that the structural feature of the Ir(ppy)2 center of the starting precursor is conserved in the products. Also, because of the nature of the ligands, there is virtually no electronic communication between the IrIII centers except in 3 where a ring hydroxylation at the triazine carbon atom is effected upon metalation. Compounds 1-5 are robust in solution where they retain their structural integrity. The UV-Vis and emission spectra of 1-5 compounds are very similar to each other with the exception of 3 which seems to possess a different electronic structure. All the compounds are luminescent at room temperature. The emission bands indicate significant contribution from 3LC. Increase in the number of ‘Ir(ppy)2’ units does not have any effect on emission color.  相似文献   

8.
The reactions of the Keplerate super cluster [Mo132O372(CH3CO2)30(H2O)72]42− with a Cu(II) source and an organonitrogen donor in methanol/DMF solutions yielded a series of bimetallic organic-inorganic oxide hybrid materials, including the molecular species [Cu(phen)2MoO4] (1) and [{Cu(terpy)}2(MoO4)2] (2) and a series of materials constructed from the tetranuclear building block {Mo4O10(OMe)6}2−: the molecular [{Cu2(phen)2(O2CCH3)2 (MeOH)}Mo4O10(OMe)6] (3), [{Cu(terpy)(O2CCH3)}2Mo4O10(OMe)6] (4) and [{Cu(terpy)Cl}2Mo4O10(OMe)6] (5), the one-dimensional phases [{Cu(bpy)(HOMe)2}Mo4O10(OMe)6] (6), [{Cu(bpy)(DMF)2}Mo4O10(OMe)6] (7), [{Cu(bpa)(DMF)2}Mo4O10(OMe)6] (8), [{Cu(phen)(DMF)2}Mo4O10(OMe)6] (9) and [{CuCl(dpa)}2Mo4O10(OMe)6] (10), and the two-dimensional material [{Cu2(DMF)2(pdpa)}{Mo4O10(OMe)6}2] (11). When methanol is replaced by the tridentate alkoxide tris-methoxypropane (trisp), the {Mo2O4(trisp)2}2− cluster building block is observed for [Cu(phen)Mo2O4(trisp)2] (12), [Cu(bpa)(DMF)Mo2O4(trisp)2] (13) and [{Cu(bpy)(NO3)}2Mo2O4(trisp)2] (14).  相似文献   

9.
Attempted syntheses of ruthenium(II) monosubstituted squarate complexes in acetonitrile using cis-[RuCl2(dmso)4] and anisole-, methoxy-, methyl- and diphenylamino-squarate ligands, respectively, resulted in the formation in each case of the monomer cis, fac-Ru(CH3CN)Cl2(dmso)3 (1) with the ruthenium atom in a distorted octahedral environment. A second crop of crystals harvested from the reaction with the methoxysquarate ligand was identified as the oxalato-bridged dimer [{cis-(CH3CN)(Cl)(dmso)2Ru}2(μ-C2O4)] (2). When cis-[RuCl2(dmso)4] and methylsquarate were reacted in aqueous solution instead of acetonitrile, the dimer [{fac-(Cl)(dmso)3Ru}2(μ-C2O4)] (3) was produced. The dimers 2 and 3 are formed from oxidation/ring opening of the methoxy- and methyl-squarate ligands, respectively. Use of the salts of these ligands instead of their non-ionised forms under different reaction conditions, afforded [Na] fac-[RuCl3(dmso)3] (4) and [(C4H9)4N]2[(C4O4)(C4H2O4)2] (7), respectively, which were shown to be products of competing reactions. The information acquired from these failed attempts has provided the basis for the development of a strategy to overcome these problems and lead to a successful synthetic route to ruthenium(II) monosubstituted squarates.  相似文献   

10.
The [ReOX3(AsPh3)(OAsPh3)] (X = Cl or Br) complexes react with two equivalents of 3,5-dimetylopyrazole (3,5-Me2pzH) in acetone at room temperature to give [{Re(O)X2(3,5- Me2pzH)2}2(μ-O)] (1 and 2). In the case of [ReOBr3(AsPh3)(OAsPh3)], a small quantity of the dinuclear rhenium complex [{Re(O)Br(3,5-Me2pzH)}2(μ-O)(μ-3,5-Me2pz)2] (3) has been isolated next to the main product 2. Treatment of [ReOX3(PPh3)2] compounds with two equivalents of 3,5-Me2pzH in acetone at room temperature leads to the isolation of symmetrically substituted dinuclear rhenium complexes [{Re(O)X(PPh3)}2(μ-O)(μ-3,5-Me2pz)2] (4 and 5). Refluxing of [ReO(OEt)X2(PPh3)2] complexes with 3,5-Me2pzH in ethanol affords unsymmetrically substituted dinuclear rhenium [{Re(O)X(PPh3)}(μ-O)(μ-3,5-Me2pz)2{Re(O)X(3,5- Me2pzH)}] complexes (6 and 7). The complexes obtained in these reactions have been characterised by IR, UV-Vis, 1H and 31P NMR. The crystal and molecular structures have been determined for 1, 2, 3, 4, 6 and 7 complexes.  相似文献   

11.
Diphosphine-bridged dimers of oxo-centered triruthenium-acetate cluster units, i.e., [{Ru3O(OAc)6(py)2}2(dppan)](PF6)2 (2) and [{Ru3O(OAc)6(py)2}2(dppf)](PF6)2 (3) were prepared by reaction of 2.3 equivalent [Ru3O(OAc)6(py)2(CH3OH)](PF6) with 9,10-bis(diphenylphosphino)anthracene (dppan) or 1,1′-bis(diphenylphosphino)ferrocene (dppf), respectively. Apparent redox wave splitting is observed in complex 2, revealing the presence of electronic communication between two triruthenium units mediated through bridging dppan. The complexes were characterized by elemental analysis, IR, UV-Vis, 31P NMR, and ES-MS spectroscopies, and cyclic and differential-pulse voltammetry. The crystal structure of complex 3 was determined by X-ray crystallography.  相似文献   

12.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

13.
Reactions of [Re2(CO)10] with Me3NO and diphosphines [Ph2P(CH2)nPPh2, n=1-6] yield mixtures of the monodentate-coordinated diphosphine complexes [Re2(CO)91-P-P)] (P-P=Ph2P(CH2)nPPh2, n=1-6) (yields 5-40%) and bridged dimers [{Re2(CO)9}2(μ-P-P)] (5-50%). These complexes were isolated as either equatorial or axial isomers, or a mixture of two isomers. Reactions of the monodentate complexes with Me3NO yield close-bridged complexes [Re2(CO)8(μ-P-P)] and phosphine oxide complexes [Re2(CO)9{P-P(O)}]. The structures of the close-bridged complexes 1 (n=3) and 2 (n=4), were determined by X-ray crystallography. The Re-Re bond in the close-bridged complex with the longest phosphine chain (n=6) is readily cleaved in CDCl3 to give the complex [{cis-ReCl(CO)4}2(μ-dpph)] (3) as the product, the structure of which was also determined by X-ray crystallography.  相似文献   

14.
The iridium 1,1,1-tris(diphenylphosphinomethyl)ethane (triphos) complexes [{κ2(C1,C4)-CRCRCRCR}{CH3C(CH2PPh2)3}Ir(NCMe)]BF4 (2-NCMe, R = CO2Me) and [{κ2(C1,C4)-CRCRCRCR}{CH3C(CH2PPh2)3}Ir(CO)]BF4 (2-CO, R = CO2Me) serve as models for proposed iridium-vinylidene intermediates of relevance to the [2 + 2 + 1] cyclotrimerization of alkynes. The solid-state structures of 2-NCMe, 2-CO, and [κ2(C1,C4)-CRCRCRCR]{CH3C(CH2PPh2)3}Ir(Cl) (2-Cl), were determined by X-ray crystallography.  相似文献   

15.
Six new coordination polymers namely [{Cu(μ-L1)(CH3COO)2}]1a, [{Cu(μ-L1)2(CH3COO)2]1b, [{Cu(μ-L1)2(H2O)2}(NO3)2]2, [{Cu(μ-L1)2(H2O)2}(ClO4)2]3, [{Cu(μ-L1)(H2O)2(μ-SO4)}·3H2O]4a and [{Cu(μ-L1)2SO4}·X]4b (L1 = N,N′-bis-(3-pyridyl)terephthalamide) have been synthesized. Single crystal structures of five coordination polymers namely 1a, 2-4b and the free ligand L1 are discussed in the context of the effect of conformation dependent ligating topology of the ligands, hydrogen bonding backbone, counter anions on the resultant supramolecular structures observed in these coordination polymers. It was revealed from the single crystal X-ray structure analysis that conformation dependent ligating topology of the bis-amide ligand L1, counter anion’s ligating strength dependent metal: ligand ratio, hydrogen bonding ability of the ligand as well as counter anions are responsible for the formation of 1D zigzag, 1D looped chain, 2D corrugated sheet in 1a, 2-3, 4a4b, respectively. By following in situ coordination polymer crystallization technique, anion binding and separation studies have also been performed; nitrate anion has been separated as neat coordination polymer crystals from a complex mixture of anions.  相似文献   

16.
Tetrapodal ligands H4L1 and H4L2 containing imidazole groups have been synthesized by the reaction of 1,10‐phenanthroline‐5,6‐dione with 1,2,4,5‐tetrakis[(4‐formylphenoxy)methyl]benzene and 1,2,4,5‐tetrakis[(3‐formylphenoxy)methyl]benzene, respectively, in presence of NH4OAc. Two star‐shaped complexes [{Ru(bpy)2}44‐H4L1)](PF6)8 and [{Ru(bpy)2}44‐H4L2)](PF6)8 (bpy = 2,2′‐bipyridine) have been prepared by refluxing Ru(bpy)2Cl2·2H2O and each ligand in ethylene glycol. The deprotonated complexes [{Ru(bpy)2}44‐L1)](PF6)4 and [{Ru(bpy)2}44‐L2)](PF6)4 have been obtained by the reaction of sodium methoxide with [{Ru(bpy)2}44‐H4L1)](PF6)8 and [{Ru(bpy)2}44‐H4L2)](PF6)8, respectively, in methanol. The pH effects on the UV–vis light absorption and emission spectra of both complexes have been studied, and ground‐ and excited‐state ionization constants of both complexes have been derived. The photophysical properties of both complexes are strongly dependent on the solution pH. They act as proton‐induced off–on–off luminescent sensors through two successive deprotonation processes of imidazole groups, with a maximum on–off ratio of 8 in buffer solution at room temperature. Theoretical calculations for the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LOMO) orbitals of bridging ligand are also presented for plausible explanations of the fluorescence changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The heterobimetallic Ru/Pt and Ru/Pd complexes [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PtCl2 (7), [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PtI2 (8), [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PdCl2 (9), and [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PdI2 (10) were prepared by the reaction of [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)I(κ1-dppm) (6) with Pt(COD)Cl2, Pt(COD)I2, and Pd(COD)Cl2, respectively. Electronic interaction between the two metals is significant for the iodide-bridged compounds 7-10, as evidenced by the shifts of their redox potentials in comparison to the mononuclear complexes. The electrochemical oxidation of methanol was carried out with heterobimetallic complexes 7-10 and leads to the formation of dimethoxymethane (DMM) and methyl formate (MF) as the major oxidation products. The chloride complexes 7 and 9 are the most active catalysts, as evidenced by their TON and current efficiencies. Addition of water at the beginning of the electrolysis results in increased formation of the more oxidized product MF along with higher current efficiencies and TON.  相似文献   

18.
Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)4]2− (NN = 2,2′-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)4]2− salts, in the formation of small amounts of salts of the dinuclear species [Ru2(NN)2(CN)7]3−. These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)4]2− following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)5.5][Ru2(bipy)2(CN)7] · 11H2O and [Pr(H2O)6][Ru2(phen)2(CN)7] · 9H2O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru2Ln2(μ-CN)4 squares and Ru4Ln2(μ-CN)6 hexagons, which alternate to form a one-dimensional chain. In [CH6N3]3[Ru2(bipy)2(CN)7] · 2H2O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru2(NN)2(CN)7]3− anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4′-tBu2-2,2′-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3]2[Ru(tBu2bipy)(CN)4] · 2H2O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru2(phen)2(CN)7]3− could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)4]2− if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru2(bipy)2(CN)7]3− (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)4]2−, with a 3MLCT emission at 581 nm.  相似文献   

19.
An unprecedented octanuclear aggregate, [{Co(phen)2}6{W(CN)8}2Cl2] · 2Cl, 2, resulted from the assembling of {Co(phen)2Cl2}, 1, and {W(CN)8}4?. Surprisingly, the reaction with the paramagnetic {Nb(CN)8}4? unit did not afford the homologous {Co–Nb} cluster. Instead the latter building unit undergoes dissociation which led to the formation of a mixed-valence [{CoII(phen)2}{CoIII(phen)(CN)4}2], 3. This observation is in contrast to the usual trend that {NbIV(CN)8}4? forms compounds isostructural to that observed for {MoIV(CN)8}4? and {WIV(CN)8}4?. The structures of the compounds 2 and 3 have been established by single crystal X-ray diffraction. Magnetic behaviors for compounds 13 are reported.  相似文献   

20.
Reaction of the potassium salts of (EtO)2P(O)CH2C6H4-4-(NHC(S)NHP(S)(OiPr)2) (HLI), (CH2NHC(S)NHP(S)(OiPr)2)2 (H2LII) or cyclam(C(S)NHP(S)(OiPr)2)4 (H4LIII) with [Cu(PPh3)3I] or a mixture of CuI and Ph2P(CH2)1-3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Cu(PPh3)LI] (1), [Cu2(Ph2PCH2PPh2)2LII] (2), [Cu{Ph2P(CH2)2PPh2}LI] (3), [Cu{Ph2P(CH2)3PPh2}LI] (4), [Cu{Ph2P(C5H4FeC5H4)PPh2}LI] (5), [Cu2(PPh3)2LII] (6), [Cu2(Ph2PCH2PPh2)LII] (7), [Cu2{Ph2P(CH2)2PPh2}2LII] (8), [Cu2{Ph2P(CH2)3PPh2}2LII] (9), [Cu2{Ph2P(C5H4FeC5H4)PPh2}2LII] (10), [Cu8(Ph2PCH2PPh2)8LIIII4] (11), [Cu4{Ph2P(CH2)2PPh2}4LIII] (12), [Cu4{Ph2P(CH2)3PPh2}4LIII] (13) or [Cu4{Ph2P(C5H4FeC5H4)PPh2}4LIII] (14) complexes. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy; their compositions were examined by microanalysis. The luminescent properties of the complexes 1-14 in the solid state are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号