首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arbuscular mycorrhizal fungi (AMF) form symbioses with most plant species. They are ecologically important determinants of plant growth and diversity. Considerable genetic variation occurs in AMF populations. Thus, plants are exposed to AMF of varying relatedness to each other. Very little is known about either the effects of coexisting AMF on plant growth or which factors influence intraspecific AMF coexistence within roots. No studies have addressed whether the genetics of coexisting AMF, and more specifically their relatedness, influences plant growth and AMF coexistence. Relatedness is expected to influence coexistence between individuals, and it has been suggested that decreasing ability of symbionts to coexist can have negative effects on the growth of the host. We tested the effect of a gradient of AMF genetic relatedness on the growth of two plant species. Increasing relatedness between AMFs lead to markedly greater plant growth (27% biomass increase with closely related compared to distantly related AMF). In one plant species, closely related AMF coexisted in fairly equal proportions but decreasing relatedness lead to a very strong disequilibrium between AMF in roots, indicating much stronger competition. Given the strength of the effects with such a shallow relatedness gradient and the fact that in the field plants are exposed to a steeper gradient, we consider that AMF relatedness can have a strong role in plant growth and the ability of AMF to coexist. We conclude that AMF relatedness is a driver of plant growth and that relatedness is also a strong driver of intraspecific coexistence of these ecologically important symbionts.  相似文献   

2.
Transgenic tomato plants with reduced expression of the sucrose transporter SlSUT2 showed higher efficiency of mycorrhization suggesting a sucrose retrieval function of SlSUT2 from the peri-arbuscular space back into the cell cytoplasm plant cytoplasm thereby limiting mycorrhiza fungal development. Sucrose uptake in colonized root cells requires efficient plasma membrane-targeting of SlSUT2 which is often retained intracellularly in vacuolar vesicles. Protein-protein interaction studies suggested a link between SISUT2 function and components of brassinosteroid biosynthesis and signaling. Indeed, the tomato DWARF mutant dx defective in BR synthesis1 showed significantly reduced mycorrhization parameters.2 The question has been raised whether the impact of brassinosteroids on mycorrhization is a general phenomenon. Here, we include a rice mutant defective in DIM1/DWARF1 involved in BR biosynthesis to investigate the effects on mycorrhization. A model is presented where brassinolides are able to impact mycorrhization by activating SUT2 internalization and inhibiting its role in sucrose retrieval.  相似文献   

3.
The effects of three soil temperatures on growth of spring barleys (Hordeum vulgare L.) and on their root colonization by vesicular arbuscular mycorrhizal (VAM) fungi from agricultural soils in Montana (USA) or Syria at different inoculum concentrations were tested in soil incubators in the greenhouse. The number of mycorrhizal plants as well as the proportion and intensity of roots colonized increased with higher soil temperatures. VAM fungi from Montana, primarily Glomus macrocarpum, were cold tolerant at 11°C while those from Syria, primarily G. hoi, were heat tolerant at 26°C. Inoculum potential of Montana VAM fungi was higher than Syrian VAM fungi in cool soils. Harmal, selected from Syrian barley land races, had the highest colonization by mycorrhizal fungi of the cultivars tested.Journal Series Paper: J-2532 Montana Agricultural Experiment Station.  相似文献   

4.
一种改进的丛枝菌根染色方法   总被引:7,自引:0,他引:7  
研究改进了Vierheilig等描述的AM菌根染色法:将根样于20%KOH溶液中60℃水浴透明40-120 min,5%醋酸酸化5min后,用5%醋酸墨水染色液(派克纯黑书写墨水Quink),于60℃水浴染色30 min,清水浸泡脱色(14h)后即可镜检。根皮层细胞内AM真菌的丛枝结构清晰可见,并且能够明确地分辨AM真菌与其它未知真菌。此外,Quink初染后,再经过SudanⅣ复染(60℃、60 min),70%乙醇脱色5min,暗隔真菌的透明菌丝内所积聚的脂类颗粒被SudanⅣ染上鲜红色,在复式显微镜下能够观察到此类透明菌丝在根皮层组织内的存在状况。采用甘油明胶为封固剂制片,根的染色效果可以保存长久。此项技术可以对同一种植物的多个根样进行同步的透明和染色处理,而且操作简便、低毒性、成本低廉、染色效果极佳,适用于野生和栽培草本植物AM菌根的染色和制片观察。  相似文献   

5.
The effect of an arbuscular mycorrhizal fungus “AMF” (Glomus constrictum Trappe) on growth, pigments, and phosphorous content of marigold (Tagetes erecta) plant grown under different levels of drought stress was investigated. The applied drought stress levels reduced growth vigor (i.e. plant height, shoot dry weight, flower diameter as well as its fresh and dry weights) of mycorrhizal and non-mycorrhizal plant as compared to control plant (non-drought stressed plant). The presence of mycorrhizal fungus, however, stimulated all growth parameters of the treated plant comparing to non-mycorrhizal treated plant. The photosynthetic pigments (carotene in flowers and chlorophylls a and b in leaves) were also stimulated by the mycorrhizal fungi of well-watered as well as of water-stressed plants. The total pigments of mycorrhizal plants grown under well-watered conditions were higher than those of non-mycorrhizal ones by 60%. In most cases, drought-stressed mycorrhizal plants were significantly better than those of the non-mycorrhizal plants. So, the overall results suggest that mycorrhizal fungal colonization affects host plant positively on growth, pigments, and phosphorous content, flower quality and thereby alleviates the stress imposed by water with holding.  相似文献   

6.
Li AR  Smith SE  Smith FA  Guan KY 《Annals of botany》2012,109(6):1075-1080

Background and Aims

Plant parasitism and arbuscular mycorrhizal (AM) associations have many parallels and share a number of regulatory pathways. Despite a rapid increase in investigations addressing the roles of AM fungi in regulating interactions between parasitic plants and their hosts, few studies have tested the effect of AM fungi on the initiation and differentiation of haustoria, the parasite-specific structures exclusively responsible for host attachment and nutrient transfer. In this study, we tested the influence of AM fungi on haustorium formation in a root hemiparasitic plant.

Methods

Using a facultative root hemiparasitic species (Pedicularis tricolor) with the potential to form AM associations, the effects of inoculation were tested with two AM fungal species, Glomus mosseae and Glomus intraradices, on haustorium initiation in P. tricolor grown alone or with Hordeum vulgare ‘Fleet’ (barley) as the host plant. This study consisted of two greenhouse pot experiments.

Key Results

Both AM fungal species dramatically suppressed intraspecific haustorium initiation in P. tricolor at a very low colonization level. The suppression over-rode inductive effects of the parasite''s host plant on haustoria production and caused significant growth depression of P. tricolor.

Conclusions

AM fungi had strong and direct suppressive effects on haustorium formation in the root hemiparasite. The significant role of AM fungi in haustorium initiation of parasitic plants was demonstrated for the first time. This study provides new clues for the regulation of haustorium formation and a route to development of new biocontrol strategies in management of parasitic weeds.  相似文献   

7.
8.
The aim of the present work was to study colonization patterns in roots by different arbuscular mycorrhizal fungi developing from a mixed community in soil. As different fungi cannot be distinguished with certainty in planta on the basis of fungal structures, taxon-discriminating molecular probes were developed. The 5' end of the large ribosomal subunit containing the variable domains D1 and D2 was amplified by PCR from Glomus mosseae (BEG12), G. intraradices (LPA8), Gigaspora rosea (BEG9) and Scutellospora castanea (BEG1) using newly designed eukaryote-specific primers. Sequences of the amplification products showed high interspecies variability and PCR taxon-discriminating primers were designed to distinguish between each of these four fungi. A nested PCR, using universal eukaryotic primers for the first amplification and taxon-discriminating primers for the second, was performed on individual trypan blue-stained mycorrhizal root fragments of onion and leek, and root colonization by four fungi inoculated together in a microcosm experiment was estimated. More than one fungus was detected in the majority of root fragments and all four fungi frequently co-existed within the same root fragment. Root colonization by G. mosseae and G. intraradices was similar from individual and mixed inoculum, whilst the frequency of S. castanea and Gig. rosea increased in the presence of the two Glomus species, suggesting that synergistic interactions may exist between some arbuscular mycorrhizal fungi.  相似文献   

9.
于洋  于涛  王洋  阎秀峰 《生态学报》2012,32(5):1370-1377
在前期工作中利用蜜色无梗囊霉(Acaulospora mellea)和根内球囊霉(Glomus intraradices)从接种时期角度分析了喜树碱含量与菌根形成过程对应关系的基础上,通过温室盆栽接种试验,继续观察了这两种丛枝菌根真菌接种后与喜树(Camptothecaacuminata)幼苗的共培养时间对喜树幼苗喜树碱积累的影响。分别用两种菌根真菌每隔7d接种一批喜树幼苗,第5批接种7 d后采样,获得菌根真菌与喜树幼苗共培养时间分别为35、28、21、14、7 d的喜树幼苗样品,测定了菌根浸染状况和喜树碱含量。结果表明:(1)接种两种丛枝菌根真菌均促进了喜树幼苗喜树碱的积累,表现为喜树碱含量和产量(单株幼苗所含的喜树碱量,喜树碱含量与幼苗生物量的乘积)的显著提高。(2)从接种后共培养时间的效果看,两种菌根幼苗各器官(根、茎、叶)及全株喜树碱含量和产量均呈现随着丛枝菌根真菌与喜树幼苗共培养时间的增加而增加的趋势。两种菌根幼苗的根和茎、根内球囊霉菌根幼苗的叶片和全株的的喜树碱含量和产量,在共培养时间增加至21 d时趋于稳定,而蜜色无梗囊霉菌根幼苗的叶片和全株的喜树碱含量和产量在共培养时间增加至28 d时达到最高,其后略有降低。(3)两种丛枝菌根真菌的侵染率和侵染强度同样随共培养时间的增加而增加,至共培养28 d后无显著变化。在一定共培养时间范围内,喜树碱含量和产量的变化与丛枝菌根真菌的侵染及菌根形成之间具有对应性。  相似文献   

10.
Versaw  Wayne K.  Chiou  Tzyy-Jen  Harrison  Maria J. 《Plant and Soil》2002,244(1-2):239-245
Most vascular plants acquire phosphate from their environment either directly, via the roots, or indirectly, via a symbiotic interaction with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the plant roots where the fungi colonize the cortex of the root to obtain carbon from the plant host, while assisting the plant with acquisition of phosphate and other mineral nutrients from the soil solution. As a first step toward understanding the molecular basis of the symbiosis and phosphate utilization, we have cloned and characterized phosphate transporter genes from the AM fungi Glomus versiforme and Glomus intraradices, and from the roots of a host plant, Medicago truncatula. Expression analyses and localization studies indicate that each of these transporters has a role in phosphate uptake from the soil solution.  相似文献   

11.
Molecular identification and phylogeny of arbuscular mycorrhizal fungi   总被引:9,自引:2,他引:7  
Redecker  Dirk 《Plant and Soil》2002,244(1-2):67-73
The fossil record and molecular data show that the evolutionary history of arbuscular mycorrhizal fungi (Glomales) goes back at least to the Ordovician (460 million years ago), coinciding with the colonization of the terrestrial environment by the first land plants. At that time, the land flora only consisted of plants on the bryophytic level. Ribosomal DNA sequences indicate that the diversity within the Glomales on the family and genus level is much higher than previously expected from morphology-based taxonomy. Two deeply divergent lineages were found and described in two new genera, Archaeospora and Paraglomus, each in its own family. Based on a fast-growing number of available DNA sequences, several systems for molecular identification of the Glomales within roots have been designed and tested in the past few years. These detection methods have opened up entirely new perspectives for studying the ecology of arbuscular mycorrhiza.  相似文献   

12.
Members of the Brassicaceae are generally believed to be non-mycorrhizal. Pennycress (Thlaspi) species of this family from diverse locations in Slovenia, Austria, Italy and Germany were examined for their colonisation by arbuscular mycorrhizal fungi (AMF). Meadow species (T. praecox, T. caerulescens and T. montanum) were sparsely but distinctly colonised, as indicated by the occurrence of intraradical hyphae, vesicles, coils, and occasionally arbuscules. Species from other locations were poorly colonised, but arbuscules were not discernible. The genus Thlaspi comprises several heavy metal hyperaccumulating species (T. caerulescens, T. goesingense, T. calaminare, T. cepaeifolium). All samples collected from heavy metal soils were at best poorly colonized. Thus the chance is small to find a "hypersystem" in phytoremediation consisting of an AM fungus which prevents the uptake of the major part of the heavy metals and of a Thlaspi species which effectively deposits the residual heavy metals inevitably taken up into its vacuoles. In two different PCR approaches, fungal DNA was amplified from most of the Thlaspi roots examined, even from those with a very low incidence of AMF colonization. Sequencing of the 28S- and 18S-rDNA PCR-products revealed that different Thlaspi field samples were colonized by Glomus intraradices and thus by a common AM fungus. However, none of the sequences obtained was identical to any other found in the present study or deposited in the databanks, which might indicate that a species continuum exists in the G. intraradices clade. An effective colonization of Thlaspi by AMF could not be established in greenhouse experiments. Although the data show that Thlaspi can be colonized by AMF, it is doubtful whether an effective symbiosis with the mutual exchange of metabolites is formed by both partners.  相似文献   

13.
丛枝菌根真菌(AMF)在自然界分布广泛,能与大部分维管植物的根系形成菌根共生体。它们在调节植物群落结构和全球的碳、氮、磷循环等方面发挥着重要的生态功能,也是农林、环境领域最具应用前景的微生物类群。受限于培养方法、研究手段等,长期以来对AMF基因组、转录组特征的认识非常有限。最近10年,AMF基因组和转录组的相关研究在高通量测序技术的推动下取得了较快发展;研究结果也显著提高了对AMF遗传发育、代谢生理、共生机制等的认识。本文综述了目前已完成测序的AMF种类的基因组、转录组信息。结果发现,已测序的AMF种类普遍具有基因组大、转座子丰富、AT碱基含量高、含大量未知功能基因与特异性基因、缺少部分共生相关基因等特点。在转录层面,总结了不同AMF种类、AMF不同共生结构、共生阶段以及与不同寄主植物共生时的转录本特征。结果发现,不同种类AMF的转录本大小差异明显。不同共生阶段或不同共生结构中的AMF转录本也具有较大的差异,且差异表达的基因大部分与养分交易、信号转导等密切相关。相比之下,同种AMF与不同寄主植物共生时的转录本表现出较高的保守性。最后,本文提出了本领域需要重点关注的研究方向,包括AMF纯培养技术的革新、AMF基因功能的解析、非模式AMF类群的研究以及对AMF蛋白组的研究。  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) are important members of the plant microbiome. They are obligate biotrophs that colonize the roots of most land plants and enhance host nutrient acquisition. Many AMF themselves harbor endobacteria in their hyphae and spores. Two types of endobacteria are known in Glomeromycota: rod-shaped Gram-negative Candidatus Glomeribacter gigasporarum, CaGg, limited in distribution to members of the Gigasporaceae family, and coccoid Mollicutes-related endobacteria, Mre, widely distributed across different lineages of AMF. The goal of the present study is to investigate the patterns of distribution and coexistence of the two endosymbionts, CaGg and Mre, in spore samples of several strains of Gigaspora margarita. Based on previous observations, we hypothesized that some AMF could host populations of both endobacteria. To test this hypothesis, we performed an extensive investigation of both endosymbionts in G. margarita spores sampled from Cameroonian soils as well as in the Japanese G. margarita MAFF520054 isolate using different approaches (molecular phylotyping, electron microscopy, fluorescence in situ hybridization and quantitative real-time PCR). We found that a single AMF host can harbour both types of endobacteria, with Mre population being more abundant, variable and prone to recombination than the CaGg one. Both endosymbionts seem to retain their genetic and lifestyle peculiarities regardless of whether they colonize the host alone or together. These findings show for the first time that fungi support an intracellular bacterial microbiome, in which distinct types of endobacteria coexist in a single cell.  相似文献   

15.
Bidirectional nutrient transfer is one of the key features of the arbuscular mycorrhizal symbiosis. Recently we were able to identify a Medicago truncatula mutant (mtha1-2) that is defective in the uptake of phosphate from the periarbuscular space due to a lack of the energy providing proton gradient provided by the symbiosis specific proton ATPase MtHA11 In order to further characterize the impact of fungal colonization on the plant metabolic status, without the beneficial aspect of improved mineral nutrition, we performed leaf ion analyses in mutant and wildtype plants with and without fungal colonization. Although frequency of fungal colonization was unaltered, the mutant did not show a positive growth response to mycorrhizal colonization. This indicates that nutrient transfer into the plant cell fails in the truncated arbuscules due to lacking expression of a functional MtHA1 protein. The leaves of wildtype plants showed clear metabolic responses to root mycorrhizal colonization, whereas no changes of leaf metabolite levels of mycorrhizal mtha1-2 plants were detected, even though they were colonized. These results show that MtHa1 is indispensable for a functional mycorrhizal symbiosis and, moreover, suggest that fungal root colonization per se does not depend on nutrient transfer to the plant host.  相似文献   

16.
17.
Communities, populations and individuals of arbuscular mycorrhizal fungi   总被引:5,自引:1,他引:4  
Arbuscular mycorrhizal fungi in the phylum Glomeromycota are found globally in most vegetation types, where they form a mutualistic symbiosis with plant roots. Despite their wide distribution, only relatively few species are described. The taxonomy is based on morphological characters of the asexual resting spores, but molecular approaches to community ecology have revealed a considerable unknown diversity from colonized roots. Although the lack of genetic recombination is not unique in the fungal kingdom, arbuscular mycorrhizal fungi are probably ancient asexuals. The long asexual evolution of the fungi has resulted in considerable genetic diversity within morphologically recognizable species, and challenges our concepts of individuals and populations. This review critically examines the concepts of species, communities, populations and individuals of arbuscular mycorrhizal fungi.  相似文献   

18.
Abstract

Interactions between three genotypes (Ljsym 71-1, Ljsym 71-2 and Ljsym 72) of Lotus japoicus and one isolate from each of four species of arbuscular mycorrhizal fungi (Glomus sp. R-10, Glomus intraradices, Glomus etunicatum, and Gigaspora margarita) were investigated and compared with the wild-type ‘Gifu’ B-129. All the three genotypes showed no or defective internal colonization after inoculation with these AM fungi. In Ljsym72 mutant, the AM fungi produced deformed appressoria on the root surface, but failed to form any internal structures (internal hyphae, arbuscules and vesicles) except only in Glomus intraradices. The Ljsym71-1 and Ljsym71-2 mutants had more deformed appressoria and occasionally formed internal hyphae, arbuscules and vesicles, depending on AM fungi used. Wild-type ‘Gifu’ (nod+myc+) plants had typical colonization. The colonization of mutants by several fungi varied and provides a basis for studying recognition and compatibility between plants and mycorrhizal fungal species. These mutants also will be useful in studies of the genetics of the symbiosis between plant species and AM fungi.  相似文献   

19.
[目的]揭示脱落酸(ABA)对丛枝菌根(AM)真菌侵染和产孢的影响,建立利用外源ABA促进孢子产量的高效菌剂扩繁方法.[方法]利用番茄毛状根和AM真菌Rhizophagus irregularis DAOM 197198建立双重培养体系,通过外源施用ABA、赤霉素(GA)或者使用ABA、GA的缺陷突变体,染色观察菌根侵...  相似文献   

20.
New information on N uptake and transport of inorganic and organic N in arbuscular mycorrhizal fungi is reviewed here. Hyphae of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) were shown to transport N supplied as 15N-Gly to wheat plants after a 48 h labelling period in semi-hydroponic (Perlite), non-sterile, compartmentalised pot cultures. Of the 15N supplied to hyphae in pot cultures over 48 h, 0.2 and 6% was transported to plants supplied with insufficient N or sufficient N, respectively. The increased 15N uptake at the higher N supply was related to the higher hyphal length density at the higher N supply. These findings were supported by results from in vitro and monoxenic studies. Excised hyphae from four Glomus isolates (BEG 84, 107, 108 and 110) acquired N from both inorganic (15NH4 15NO3, 15NO3 or 15NH4 +) and organic (15N-Gly and 15N-Glu, except in BEG 84 where amino acid uptake was not tested) sources in vitro during short-term experiments. Confirming these studies under sterile conditions where no bacterial mineralisation of organic N occurred, monoxenic cultures of Glomus intraradices Schenk and Smith were shown to transport N from organic sources (15N-Gly and 15N-Glu) to Ri T-DNA transformed, AM-colonised carrot roots in a long-term experiment. The higher N uptake (also from organic N) by isolates from nutrient poor sites (BEG 108 and 110) compared to that from a conventional agricultural field implied that ecotypic differences occur. Although the arbuscular mycorrhizal isolates used contributed to the acquisition of N from both inorganic and organic sources by the host plants/roots used, this was not enough to increase the N nutritional status of the mycorrhizal compared to non-mycorrhizal hosts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号