首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is concerned with the regulation of intracellular-free Mg2+ concentration ([Mg2+]i) in the smooth muscle of guinea pig taenia caeci. To assess an interaction of Ca2+ on the Na(+)-dependent Mg(2+)- extrusion mechanism (Na(+)-Mg2+ exchange), effects of Na+ removal (N- methyl-D-glucamine substitution) were examined in Ca(2+)-containing solutions. As changes in pHi in Na(+)-free solutions perturb estimation of [Mg2+]i using the single chemical shift only of the beta-ATP peak in 31P NMR (nuclear magnetic resonance) spectra, [Mg2+]i and pHi were concomitantly estimated from the chemical shifts of the gamma- and beta- peaks. When extracellular Na+ was substituted with N-methyl-D- glucamine, [Mg2+]i was reversibly increased. This increase in [Mg2+]i was eliminated in Mg(2+)-free solutions and enhanced in excess Mg2+ solutions. ATP content fluctuated little during removal and readmission of Na+, indicating that [Mg2+]i changes were not induced by Mg2+ release from ATP, and that Mg(2+)-extruding system would not be inhibited by fuel restriction. A slow acidification in Na(+)-free solutions and transient alkalosis by a readmission of Na+ were observed regardless of the extracellular Mg2+ concentration. When the extracellular Ca2+ concentration was increased from normal (2.4 mM) to 12 mM, only a marginal increase in [Mg2+]i was caused by Na+ removal, whereas a similar slow acidosis was observed, indicating that extracellular Ca2+ inhibits Mg2+ entry, and that the increase in [Mg2+]i is negligible through competition between Mg2+ and Ca2+ in intracellular sites. These results imply that Na(+)-Mg2+ exchange is the main mechanism to maintain low [Mg2+]i even under physiological conditions.  相似文献   

2.
The effect of Na+-K+ pump activation on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) was examined in mouse aorta and mouse aortic endothelial cells (MAECs). The Na+-K+ pump was activated by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM. In aortic rings, the Na+ ionophore monensin evoked EDR, and this EDR was inhibited by the Na+/Ca2+ exchanger (NCX; reverse mode) inhibitor KB-R7943. Monensin-induced Na+ loading or extracellular Na+ depletion (Na+ replaced by Li+) increased [Ca2+]i in MAECs, and this increase was inhibited by KB-R7943. Na+-K+ pump activation inhibited EDR and [Ca2+]i increase (K+-induced inhibition of EDR and [Ca2+]i increase). The Na+-K+ pump inhibitor ouabain inhibited K+-induced inhibition of EDR. Monensin (>0.1 microM) and the NCX (forward and reverse mode) inhibitors 2'4'-dichlorobenzamil (>10 microM) or Ni2+ (>100 microM) inhibited K+-induced inhibition of EDR and [Ca2+]i increase. KB-R7943 did not inhibit K+-induced inhibition at up to 10 microM but did at 30 microM. In current-clamped MAECs, an increase in [K+]o from 6 to 12 mM depolarized the membrane potential, which was inhibited by ouabain, Ni2+, or KB-R7943. In aortic rings, the concentration of cGMP was significantly increased by acetylcholine and decreased on increasing [K+]o from 6 to 12 mM. This decrease in cGMP was significantly inhibited by pretreating with ouabain (100 microM), Ni2+ (300 microM), or KB-R7943 (30 microM). These results suggest that activation of the forward mode of NCX after Na+-K+ pump activation inhibits Ca2+ mobilization in endothelial cells, thereby modulating vasomotor tone.  相似文献   

3.
Using digital imaging microscopy with the fluorescent indicator sodium-binding benzofuran isophtalate, we examined the cytosolic Na+ concentration ([Na+]i) in individual chick embryo heart cells. Inhibition of the Na(+)-H+ exchanger using Na(+)-free (Li+ substituted) medium and inhibition of the Na(+)-efflux through the Na(+)-Ca2+ exchanger using Ca(2+)-free medium didn't change the [Na+]i. The opening of voltage-dependent Na+ channels with veratridine (150 micrograms/ml) and inhibition of the Na(+)-K(+)-Cl(-)-cotransporter with bumetanide (10 microM) led to an increase in [Na+]i by 107% and 86%, respectively, suggesting that the Na+ channels and the Na(+)-K(+)-Cl- cotransporter predominantly regulate the [Na+]i in cultured chick embryo heart cells.  相似文献   

4.
Thin strips of guinea pig tenia cecum were loaded with the Mg2+ indicator furaptra, and the indicator fluorescence signals measured in Ca2+-free condition were converted to cytoplasmic-free Mg2+ concentration ([Mg2+]i). Lowering the extracellular Na+ concentration ([Na+]o) caused a reversible increase in [Mg2+]i, consistent with the inhibition of Na+ gradient-dependent extrusion of cellular Mg2+ (Na+-Mg2+ exchange). Curve-fitting analysis indicated that the relation between [Na+]o and the rate of rise in [Mg2+], had a Hill coefficient of approximately 3, a [Na+]o at the half-maximal rate of rise of approximately 30 mM, and a maximal rate of 0.16 +/- 0.01 microM/s (mean +/- SE, n = 6). Depolarization with 56 mM K+ shifted the curve slightly toward higher [Na+]o without significantly changing the maximal rate, suggesting that the Na+-Mg2+ exchange was inhibited by depolarization. The maximal rate would correspond to a flux of 0.15-0.4 pmol/cm2/s, if cytoplasmic Mg2+ buffering power (defined as the ratio of the changes in total Mg2+ and free Mg2+ concentrations) is assumed to be 2-5. Ouabain (1-5 microM) increased the intracellular Na+ concentration, as assessed with fluorescence of SBFI (sodium-binding benzofuran isophthalate, a Na+ indicator), and elevated [Mg2+]i. In ouabain-treated preparations, removal of extracellular Na+ rapidly increased [Mg2+]i, with an initial rate of rise roughly proportional to the degree of the Mg2+ load, and, probably, to the Na+ load caused by ouabain. The enhanced rate of rise in [Mg2+]i (up to approximately 1 microM/s) could be attributed to the Mg2+ influx as a result of the reversed Na+-Mg2+ exchange. Our results support the presence of a reversible and possibly electrogenic Na+-Mg2+ exchange in the smooth muscle cells of tenia cecum.  相似文献   

5.
The regulation of the intracellular free Mg2+ concentration ([Mg2+]i) was monitored in rat sublingual mucous acini using dual wavelength microfluorometry of the Mg(2+)-sensitive dye mag-fura-2. Acini attached to coverslips and superfused continuously with a Mg(2+)-containing medium (0.8 mM) have a steady-state [Mg2+]i of 0.35 +/- 0.01 mM. Adjusting the extracellular Mg2+ concentration to 0 and 10 mM or removing extracellular Na+ did not alter the resting [Mg2+]i. Stimulation with the Ca(2+)-mobilizing, muscarinic agonist, carbachol, induced a sustained increase in [Mg2+]i (approximately 50%; t1/2 < 20 s; Kd approximately 1.5 microM), the magnitude and the duration of which were unchanged in Mg(2+)-depleted medium indicating that the rise in [Mg2+]i was generated by Mg2+ release from an intracellular Mg2+ pool. Forskolin, which increases the intracellular cAMP content, produced a small, transient increase in the [Mg2+]i (< 10%). Muscarinic stimulation in a Ca(2+)-free medium blunted the initial increase in [Mg2+]i by approximately 50%, whereas the sustained increase in [Mg2+]i was lost. When the muscarinic-induced increase in [Ca2+]i was blocked by 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate, an inhibitor of the agonist-sensitive intracellular Ca2+ release pathway, both the initial and the sustained phases of the increase in [Mg2+]i were virtually eliminated. Thapsigargin and 2,5-di-(terbutyl)-1,4-benzohydroquinone, which increase [Ca2+]i by inhibiting microsomal Ca(2+)-ATPase, caused a dramatic increase in [Mg2+]i. Stimulation in a Na(+)-free medium or in the presence of bumetanide, an inhibitor of Na+/K+/2Cl- cotransport, blunted the agonist-induced rise in [Mg2+]i (approximately 50%), whereas ouabain, a Na+,K(+)-ATPase inhibitor, had no significant effect. FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), a mitochondrial uncoupler, mobilized an intracellular Mg2+ pool as well. The carbachol-induced increase in [Mg2+]i was markedly inhibited by FCCP (approximately 80%), suggesting that the same pool(s) of Mg2+ were primarily involved. The above results provide strong evidence that Ca(2+)-mobilizing agonists increase cytoplasmic free [Mg2+] by releasing an intracellular pool of Mg2+ that is associated with a rise in the [Na+]i.  相似文献   

6.
The effects of zero extracellular Ca2+ on the contractility of rat diaphragmatic strips in vitro were studied in conjunction with various pharmacological agents known to influence the intracellular Ca2+ concentration: the Na+ ionophore, monensin, and the Na(+)-K+ pump inhibitor, ouabain, which enhance [Ca2+]i, caffeine, which induces Ca2+ release from the sarcoplasmic reticulum (SR), and ryanodine, which prevents Ca2+ retention by the SR. The effect of increasing [Ca2+]i on diaphragmatic contraction was assessed by comparing contractions induced by 120 mM K+ in the small muscle strips before and after the addition of ouabain or monensin. Monensin (20 microM) and ouabain (1-100 microM) augmented contractions up to threefold. Treatment of diaphragm strips with 3 nM ryanodine increased baseline tension 360% above the original resting tension but only if the diaphragm was electrically stimulated concurrently; 100 microM ryanodine induced contracture in quiescent tissue. High K+ contractures were of greater magnitude in the presence of ryanodine compared with control, and relaxation time was prolonged by greater than 200%. Ca(2+)-free conditions ameliorated these actions of ryanodine. Ryanodine reduced contractions induced by 10 mM caffeine and nearly abolished them in Ca(2+)-free solution. The data demonstrate that extracellular Ca2+ is important in certain types of contractile responses of the diaphragm and suggest that the processes necessary to utilize extracellular Ca2+ are present in the diaphragm.  相似文献   

7.
The effect of arginine vasopressin (AVP) on Na+ kinetics was examined in cultured rat vascular smooth muscle cells (VSMC) and rat renal papillary collecting tubule cells (RPCT) by the direct measurement of intracellular sodium concentration [(Na+]i) using fluorescence dye; SBFI. AVP increased [Na+]i in a dose-dependent manner at a concentration of 10(-9) M or higher in rat VSMC but did not affect [Na+]i in rat RPCT. The calcium (Ca2+)-free solution completely blocked the increasing effect of AVP on [Na+]i in rat VSMC. A Ca2+ ionophore, ionomycin (1-2 x 10(-6) M) increased [Na+]i both in rat VSMC and RPCT. The Ca2(+)-free solution abolished the ionomycin-increased [Na+]i both in rat VSMC and RPCT. These results therefore indicate that after binding the V1 receptor AVP increases [Na+]i mediated through an increase in cellular Ca2+ uptake in VSMC.  相似文献   

8.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

9.
Human platelets were loaded with the fluorescent Na(+)-sensitive dye sodium-binding benzofuran isophtalate (SBFI), and changes in the fluorescence excited at 345 and 385 nm were analyzed after manipulations that evoked predictable changes in the cytosolic Na+ concentration ([Na+]i). Raising [Na+]i by either gramicidin D or monensin specifically increased the fluorescence excited at 345 nm and decreased that excited at 385 nm. Hence, calculation of changes in the 345/385 nm excitation ratio yields an estimate of actual changes in [Na+]i. A transient activation of Na+/H+ exchange evoked by addition of acidified platelets to buffer, pH 7.4, evoked a transient rise in [Na+]i. The re-establishment of basal [Na+]i could be prevented by ouabain, indicating an involvement of the Na+,K(+)-ATPase. Upon stimulation by 0.5 unit/ml of thrombin, [Na+]i immediately increased by 16 +/- 4 mM and this rise continued for at least 60 min after addition of agonist, albeit at a lower rate. This latter sustained rise could not be curtailed by scavenging thrombin by means of hirudin. Addition of ouabain or the phorbol ester 12-O-tetradecanoylphorbol-13-acetate induced a comparable slow rise in the 345/385 excitation ratio. This may indicate a protein kinase C-mediated inhibition by thrombin of the Na+,K(+)-ATPase. In the absence of extracellular Ca2+ (Ca2+o), the [Na+]i gain was augmented to 38 +/- 9 mM. This additional uptake of Na+ was prevented by (i) Mn2+ ions, (ii) La3+ ions, (iii) the blocker of receptor-mediated Ca2+ entry (1-[beta[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl]-1H-im ida zole hydrochloride), and (iv) by hirudin which reversed receptor occupancy by thrombin. These findings suggest that the additional thrombin-induced [Na+]i gain in the absence of Ca2+o is due to Na+ influx through a Ca2+ entry pathway. The increase in [Na+]i in the presence of Ca2+o results from Na+ influx via Na+/H+ exchange.  相似文献   

10.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+ -induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+ -induced increase in [Ca2+], was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25-2.0 mM). The L-type Ca2+ -channel blockers, verapamil and diltiazem, at low concentrations (1 microM) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 microM), and diltiazem (5 and 10 microM) as well as with amiloride (5-20 microM), nickel (1.25-5.0 mM), cyclopiazonic acid (25 and 50 microM) and thapsigargin (10 and 20 microM). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 microM). These data suggest that in addition to the sarcolemmal Na+ - Ca2+ exchanger, both sarcolemmal Na+ - K+ ATPase, as well as the sarcoplasmic reticulum Ca2+ -pump play prominent roles in the low Na+ -induced increase in [Ca2+]i.  相似文献   

11.
Ouabain at nanomolar concentrations stimulates total Rb+ influx by 20 +/- 2% in monolayer cultures of myocytes which were either in physiologic ionic steady-state conditions ('control') or 'loaded with Na+' following exposure to K+-free medium. The ouabain-stimulated Rb+ influx was completely abolished by 0.1 mM bumetanide both in 'control' and in 'Na+-loaded' myocytes. Thus, addition of nanomolar concentrations of ouabain to myocytes markedly stimulate the bumetanide-sensitive Rb+ influx. This influx was increased up to 3- and 4-fold in 'control' and 'Na+-loaded' myocytes, respectively. Ouabain at nanomolar concentrations had no significant effect on the component of 86Rb+ influx which is inhibited by millimolar concentrations of ouabain (the so called 'ouabain-sensitive' or 'pump-mediated' Rb+ influx) in 'control' and 'Na+-loaded' cells. It is proposed that the increased rates of bumetanide-sensitive Rb+ influx are accompanied by an increased bumetanide-sensitive Na+ influx through the Na+/K+ cotransporter and thus to a transient increase in intracellular Na+ concentrations [Na+]i. The increase in [Na+]i, subsequently causes a transient elevation in [Ca2+]i via the Na+/Ca2+ exchanger and may be involved in the regulation of cardiac cells' contractility.  相似文献   

12.
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation.  相似文献   

13.
The effects of membrane potential on resting and bradykinin-stimulated changes in [Ca2+]i were measured in fura-2 loaded cultured endothelial cells from bovine atria by spectrofluorimetry. The basal and bradykinin-stimulated release of endothelium-derived relaxing factor, monitored by bioassay methods, were dependent on extracellular Ca2+. Similarly, the plateau phase of the biphasic [Ca2+]i response to bradykinin stimulation exhibited a dependence on extracellular Ca2+, whereas the initial transient [Ca2+]i peak was refractory to the removal of extracellular Ca2+. The effect of membrane depolarization on the plateau phase of the bradykinin-induced change in [Ca2+]i was determined by varying [K+]o. The resting membrane potential measured under current clamp conditions was positively correlated with the extracellular [K+] (52 mV change/10-fold change in [K+]o). The observed decrease in resting and bradykinin-stimulated changes in [Ca2+]i upon depolarization is consistent with an ion transport mechanism where the influx is linearly related to the electrochemical gradient for Ca2+ entry (Em - ECa). The inhibition of bradykinin-stimulated Ca2+ entry by isotonic K+ was not due to the absence of extracellular Na+ since Li+ substitution did not inhibit the agonist-induced Ca2+ entry. In K(+)-free solutions and in the presence of ouabain, bradykinin evoked synchronized oscillations in [Ca2+]i in confluent endothelial cell monolayers. These [Ca2+]i oscillations between the plateau and resting [Ca2+]i levels were dependent on extracellular Ca2+ and K+ concentrations. Although the mechanism(s) underlying [Ca2+]i oscillations in vascular endothelial cells is unclear, these results suggest a role of the membrane conductance.  相似文献   

14.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

15.
P Hochstrate  A Juse 《Cell calcium》1991,12(10):695-712
The retinal tissue of blowflies was loaded with the fluorescent Ca2+ indicator Fura-2 by incubating cut heads in saline solutions which contained the membrane permeable acetoxymethylester of Fura-2 (Fura-2/AM). The spectral analysis of the tissue fluorescence showed that Fura-2/AM was intracellularly hydrolysed to Fura-2. In order to monitor the intracellular free Ca2+ concentration ([Ca2+]i) the Fura-2 fluorescence was excited by short light flashes. The fluorescence was calibrated by incubating the tissue in Ca2+ buffers of high buffering capacity and subsequent disruption of the cell membranes by freeze/thawing, which gave a dissociation constant for the Ca(2+)-Fura-2 complex of 100 nM. When the extracellular Ca2+ concentration ([Ca2+]o) was altered [Ca2+]i reversibly changed. The changes were most pronounced when [Ca2+]o was varied in the millimolar range, e.g. [Ca2+]i increased from 0.07 microM at [Ca2+]o = 0.1 mM to 1 microM at [Ca2+]o = 10 mM. When extracellular Na+ was replaced by Li+ or other monovalent ions, [Ca2+]i rapidly increased which supports the view that electrogenic Na+/Ca2+ exchange contributes to the control of [Ca2+]i. However, [Ca2+]i decreased again when the tissue was superfused with Na(+)-free media for longer periods, which points to a Ca(2+)-transporting system different from Na+/Ca2+ exchange. Light adaptation had only a small effect on [Ca2+]i. Even after intense stimulation [Ca2+]i increased by a factor of 1.5 only, which is in line with results obtained in the photoreceptors of Balanus and Apis.  相似文献   

16.
Coupled Na+ exit/Ca2+ entry (Na/Ca exchange operating in the Ca2+ influx mode) was studied in giant barnacle muscle cells by measuring 22Na+ efflux and 45Ca2+ influx in internally perfused, ATP-fueled cells in which the Na+ pump was poisoned by 0.1 mM ouabain. Internal free Ca2+, [Ca2+]i, was controlled with a Ca-EGTA buffering system containing 8 mM EGTA and varying amounts of Ca2+. Ca2+ sequestration in internal stores was inhibited with caffeine and a mitochondrial uncoupler (FCCP). To maximize conditions for Ca2+ influx mode Na/Ca exchange, and to eliminate tracer Na/Na exchange, all of the external Na+ in the standard Na+ sea water (NaSW) was replaced by Tris or Li+ (Tris-SW or LiSW, respectively). In both Na-free solutions an external Ca2+ (Cao)-dependent Na+ efflux was observed when [Ca2+]i was increased above 10(-8) M; this efflux was half-maximally activated by [Ca2+]i = 0.3 microM (LiSW) to 0.7 microM (Tris-SW). The Cao-dependent Na+ efflux was half-maximally activated by [Ca2+]o = 2.0 mM in LiSW and 7.2 mM in Tris-SW; at saturating [Ca2+]o, [Ca2+]i, and [Na+]i the maximal (calculated) Cao-dependent Na+ efflux was approximately 75 pmol#cm2.s. This efflux was inhibited by external Na+ and La3+ with IC50's of approximately 125 and 0.4 mM, respectively. A Nai-dependent Ca2+ influx was also observed in Tris-SW. This Ca2+ influx also required [Ca2+]i greater than 10(-8) M. Internal Ca2+ activated a Nai-independent Ca2+ influx from LiSW (tracer Ca/Ca exchange), but in Tris-SW virtually all of the Cai-activated Ca2+ influx was Nai-dependent (Na/Ca exchange). Half-maximal activation was observed with [Na+]i = 30 mM. The fact that internal Ca2+ activates both a Cao-dependent Na+ efflux and a Nai-dependent Ca2+ influx in Tris-SW implies that these two fluxes are coupled; the activating (intracellular) Ca2+ does not appear to be transported by the exchanger. The maximal (calculated) Nai-dependent Ca2+ influx was -25 pmol/cm2.s. At various [Na+]i between 6 and 106 mM, the ratio of the Cao-dependent Na+ efflux to the Nai-dependent Ca2+ influx was 2.8-3.2:1 (mean = 3.1:1); this directly demonstrates that the stoichiometry (coupling ratio) of the Na/Ca exchange is 3:1. These observations on the coupling ratio and kinetics of the Na/Ca exchanger imply that in resting cells the exchanger turns over at a low rate because of the low [Ca2+]i; much of the Ca2+ extrusion at rest (approximately 1 pmol/cm2.s) is thus mediated by an ATP-driven Ca2+ pump.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The new fluorescent Na+ indicator sodium-binding benzofuran isophthalate (SBFI) was used for determination of the cytosolic free Na+ concentration, [Na+]i, in human platelets. The dye could be loaded into platelets in the form of its acetoxymethyl ester (SBFI-AM). Calibration of the fluorescence in terms of [Na+]i was done by measuring the 345/385 nm excitation ratio (emission 490 nm) at various extracellular Na+ concentrations, [Na+]o, in the presence of gramicidin D. The 345/385 intensity ratio increased almost linearly when [Na+]i was stepwise raised from 20 to 60 mM. The basal value for [Na+]i was found to be 26.0 +/- 4.5 mM (n = 15). Incubation of platelets in Na(+)-free buffer decreased [Na+]i, whereas inhibition of the (Na+ + K+)-ATPase by 0.5 mM ouabain increased [Na+]i to 56 +/- 4 mM (n = 4) within 60 min. Activation of Na+/H+ exchange by exposing platelets to propionic acid also raised [Na+]i, and a comparable effect was produced by the Na+/H+ ionophore monensin. Activation of platelets with thrombin (0.1-0.5 unit/ml) also increased the 345/385 nm intensity ratio, an effect that was not seen in Na(+)-free buffer or after raising intracellular cAMP by treatment of platelets with prostaglandin E1. On the average, [Na+]i was raised to 59.5 +/- 5.3 mM (n = 15) at 10 min after addition of thrombin without a significant decrease for further 10 min. An increase in [Na+]i was also seen when platelets were challenged with the Ca2+ ionophore ionomycin, an effect that did not occur in the absence of Na+o. Our findings confirm earlier reports which demonstrated a rise in [Na+]i in stimulated platelets and show that SBFI is a useful tool for determination of [Na+]i in resting and stimulated platelets.  相似文献   

18.
A Ishihata  M Endoh 《Life sciences》1991,48(6):583-591
Confluent monolayers of human umbilical vein endothelial cells subcultured on glass coverslips were loaded with the fluorescent Ca2+ indicator, fura-2. Changes in fura-2 fluorescence were detected by means of a fluorescence spectrophotometer. Both ATP and ADP (0.3-100 microM) caused a concentration-dependent transient peak response of the intracellular free calcium concentration ([Ca2+]i), followed by a lower sustained response. AMP and adenosine did not induce detectable changes in [Ca2+]i. The sustained response to ATP was abolished by superfusion with the Ca2(+)-free solution (with 1 mM EGTA), while the transient peak response was uninfluenced. The transient peak response to ATP (30 microM) was inhibited by pre-exposure to ATP in a graded manner depending on the concentration of ATP. The response to ATP recovered after washout for 20 min with the solution containing Ca2+, but not with the Ca2(+)-free solution. The transient peak response to ATP was markedly reduced by preceding exposure to histamine, while the response to histamine was not influenced by pre-exposure to ATP. These findings indicate that depletion and refilling of the ATP-sensitive intracellular Ca2+ store may be responsible for the desensitization and recovery of the ATP-induced [Ca2+]i response. The pharmacological characteristics of the ATP-sensitive intracellular Ca2+ store seem different from those of the histamine-sensitive store.  相似文献   

19.
Contractions of isolated single myocytes of guinea pig heart stimulated by rectangular depolarizing pulses consist of a phasic component and a voltage dependent tonic component. In this study we analyzed the mechanism of activation of the graded, sustained contractions elicited by slow ramp depolarization and their relation to the components of contractions elicited by rectangular depolarizing pulses. Experiments were performed at 37 degrees C in ventricular myocytes of guinea pig heart. Voltage-clamped myocytes were stimulated by the pulses from the holding potential of -40 to +5 mV or by ramp depolarization shifting voltage within this range within 6 s. [Ca2+]i was monitored as fluorescence of Indo 1-AM and contractions were recorded with the TV edge-tracking system. Myocytes responded to the ramp depolarization between -25 and -6 mV by the slow, sustained increase in [Ca2+]i and shortening, the maximal amplitude of which was in each cell similar to that of the tonic component of Ca2+ transient and contraction. The contractile responses to ramp depolarization were blocked by 200 microM ryanodine and Ca2+-free solution, but were not blocked by 20 microM nifedipine or 100-200 microM Cd2+ and potentiated by 5 mM Ni2+. The responses to ramp depolarization were with this respect similar to the tonic but not to the phasic component of contraction: both components were blocked by 200 microM ryanodine, and were not blocked by Cd2+ or Ni2+ despite complete inhibition of the phasic Ca2+ current. However, the phasic component but not the tonic component of contraction in cells superfused with Ni2+ was inhibited by nifedipine. Both components of contraction were inhibited by Ca2+-free solution superfused 15 s prior to stimulation. CONCLUSIONS: In myocytes of guinea pig heart the contractile response to ramp depolarization is equivalent to the tonic component of contraction. It is activated by Ca2+ released from the sarcoplasmic reticulum by the ryanodine receptors. Their activation and inactivation is voltage dependent and it does not depend on the Ca2+ influx by the Ca2+ channels or reverse mode Na+/Ca2+ exchange, however, it may depend on Ca2+ influx by some other, not yet defined route.  相似文献   

20.
Using the fluorescence indicator, quin2, we compared the cytoplasmic Ca2+ concentration ([Ca2+]i) of cultured myotubes obtained from control subjects and myotonic dystrophy (MyD) patients. In Ca2(+)-free buffer the [Ca2+]i of the cultured MyD muscle cells was not significantly different from that of the control cells. In the presence of 1 mM external Ca2+ the cultured MyD muscle cells showed a significantly higher [Ca2+]i, which was due to the influx of Ca2+ through voltage-operated nifedipine-sensitive Ca2+ channels. In the presence of external Ca2+, MyD myotubes did not respond to acetylcholine, whereas control myotubes showed a transient increase in [Ca2+]i after addition of acetylcholine. This increase was inhibited by the addition of nifedipine. The differences in Ca2(+)-homeostasis between cultured MyD muscle cells and control cells were not due to differences in the resting membrane potential or the inability of the MyD cells to depolarize as a response to acetylcholine. Therefore, cultured MyD muscle cells exhibit altered nifedipine-sensitive voltage-operated channels which are active under conditions in which they are normally present in the inactive state, and which are unable to respond to depolarization caused by acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号