首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel C16:0 sulfur-linked phosphonolipids (S-lipid and SO(2)-lipid) and two ether-linked phosphonolipids (C16:0 DEPN-8 and C16:1 UnDEPN-8) were studied for surface behavior alone and in mixtures with purified bovine lung surfactant proteins (SP)-B and/or SP-C. Synthetic C16:0 phosphonolipids all had improved adsorption and film respreading compared to dipalmitoyl phosphatidylcholine, and SO(2)-lipid and DEPN-8 reached maximum surface pressures of 72mN/m (minimum surface tensions of <1mN/m) in compressed films on the Wilhelmy balance (23 degrees C). Dispersions of DEPN-8 (0.5mg/ml) and SO(2)-lipid (2.5mg/ml) also reached minimum surface tensions of <1mN/m on a pulsating bubble surfactometer (37 degrees C, 20cycles/min, 50% area compression). Synthetic lung surfactants containing DEPN-8 or SO(2)-lipid+0.75% SP-B+0.75% SP-C had dynamic surface activity on the bubble equal to that of calf lung surfactant extract (CLSE). Surfactants containing DEPN-8 or SO(2)-lipid plus 1.5% SP-B also had very high surface activity, but less than when both apoproteins were present together. Adding 10wt.% of UnDEPN-8 to synthetic lung surfactants did not improve dynamic surface activity. Surfactants containing DEPN-8 or SO(2)-lipid plus 0.75% SP-B/0.75% SP-C were chemically and biophysically resistant to phospholipase A(2) (PLA(2)), while CLSE was severely inhibited by PLA(2). The high activity and inhibition resistance of synthetic surfactants containing DEPN-8 or SO(2)-lipid plus SP-B/SP-C are promising for future applications in treating surfactant dysfunction in inflammatory lung injury.  相似文献   

2.
This paper reports the chemical synthesis and purification of a novel phospholipase-resistant C16:0, C16:1 diether phosphonoglycerol with structural analogy to ester-linked anionic phosphatidylglycerol (PG) in endogenous pulmonary surfactant. This diether phosphonoglycerol (PG 1) is studied for phospholipase A(2) (PLA(2)) resistance and for surface activity in synthetic exogenous surfactants combined with Super Mini-B (S-MB) peptide and DEPN-8, a previously-reported diether phosphonolipid analog of dipalmitoyl phosphatidylcholine (DPPC, the major zwitterionic phospholipid in native lung surfactant). Activity experiments measured both adsorption and dynamic surface tension lowering due to the known importance of these surface behaviors in lung surfactant function in vivo. Synthetic surfactants containing 9 : 1 DEPN-8:PG 1 + 3% S-MB were resistant to degradation by PLA(2) in chromatographic studies, while calf lung surfactant extract (CLSE, the substance of the bovine clinical surfactant Infasurf?) was significantly degraded by PLA(2). The 9 : 1 DEPN-8:PG 1 + 3% S-MB mixture also had small but consistent increases in both adsorption and dynamic surface tension lowering ability compared to DEPN-8 + 3% S-MB. Consistent with these surface activity increases, molecular dynamics simulations using Protein Modeller, GROMACS force-field, and PyMOL showed that bilayers containing DPPC and palmitoyl-oleoyl-PC (POPC) as surrogates of DEPN-8 and PG 1 were penetrated to a greater extent by S-MB peptide than bilayers of DPPC alone. These results suggest that PG 1 or related anionic phosphono-PG analogs may have functional utility in phospholipase-resistant synthetic surfactants targeting forms of acute pulmonary injury where endogenous surfactant becomes dysfunctional due to phospholipase activity in the innate inflammatory response.  相似文献   

3.
The effects of surfactant protein (SP)-A on the dynamic surface tension lowering and resistance to inhibition of dispersions of calf lung surfactant extract (CLSE) and mixtures of synthetic phospholipids combined with SP-B,C hydrophobic apoproteins were studied at 37 degrees C and rapid cycling rate (20 cycles/min). Addition of SP-A to CLSE, which already contains SP-B and -C, gave a slight improvement in the time course of surface tension lowering on an oscillating bubble apparatus in the absence of inhibitory protein molecules such as albumin or hemoglobin. However, when these proteins were present at concentrations of 10-50 mg/ml, SP-A substantially improved the resistance of CLSE to their inhibitory effects. The beneficial effect of SP-A required the presence of Ca2+ ions, and disappeared when EDTA was substituted for this divalent cation in the subphase. The effect was also retained when SP-A was heated to 50 degrees C prior to addition to CLSE, but was abolished by heating SP-A to 99 degrees C. Additional studies showed that similar improvements in resistance to inhibition were found when SP-A was added to synthetic mixtures of dipalmitoyl phosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (80:20 by weight) reconstituted with 1% SP-B or SP-B and -C, but not to phospholipid mixtures containing only SP-C. The requirements for SP-B and calcium for the beneficial effects of SP-A on surface activity suggest that the formation of ordered, larger phospholipid-apoprotein aggregates may be involved in the process. The finding that SP-A enhances the ability of CLSE and other surfactant mixtures containing SP-B to resist inhibition is an advantage that will need to be weighed against other factors such as increased antigenicity and heat sensitivity in therapeutic applications in surfactant replacement therapy.  相似文献   

4.
Biophysical inhibition of synthetic lung surfactants   总被引:3,自引:0,他引:3  
The biophysical activity and inhibition of a series of synthetic surfactant mixtures was studied and correlated with physiological effectiveness in restoring pressure-volume (P-V) mechanics of excised lungs. Results showed that several simple mixtures of dipalmitoyl phosphatidylcholine (DPPC) with fatty acids or diacylglycerols could be formulated to give good adsorption facility and dynamic surface tension lowering to less than 1 mN/m in pulsating bubble measurements at 37 degrees C. However, although biophysical activity approached that of natural lung surfactant (LS) and a related surfactant extract (CLSE) under normal conditions, surface properties were sharply inhibited by relatively small amounts of the plasma protein albumin (2 mg/ml) with minimum surface tensions greater than 30 nM/m even at high surfactant concentrations (5-20 mg lipids/ml). This sensitivity to biophysical inhibition was markedly increased compared to LS and CLSE, and had direct consequences for physiological efficacy: in spite of initially high activity, synthetic surfactants did not exert beneficial effects on P-V mechanics when instilled into surfactant-deficient excised rat lungs. Endogenous protein material was shown to be present upon surfactant recovery by lavage, and bubble measurements confirmed surface activity well below pre-instillation levels. Moreover, full biophysical activity was restored when lavage fluid was extracted to separate the synthetic surfactants from endogenous inhibitors. These results show that it is important to define relative sensitivity to biophysical inhibition in the development of effective lung surfactant substitutes. In addition, the existence of inhibition effects can generate an apparent lack of correspondence between initial biophysical activity and ultimate physiological actions of exogenous surfactant mixtures.  相似文献   

5.
This research studies the biophysical surface activity of synthetic phospholipids combined in vitro with purified lung surfactant apoprotein, having an Mr of 6000. Hydrophobic surfactant-associated protein (SAP-6) was delipidated and purified from both bovine and canine lung lavage, and was combined in vitro with a synthetic phospholipid mixture (SM) of similar composition to natural lung surfactant phospholipids. SM phospholipids were also combined and studied biophysically with another purified surfactant-associated protein, SAP-35. The biophysical activity of synthetic phospholipid-apoprotein combinants was assessed by measurements of adsorption facility and dynamic surface tension lowering ability at 37 degrees C. The SM-SAP-6 combinants had adsorption facility equivalent to natural lung surfactant, and to the surfactant extract preparations CLSE and surfactant-TA used in exogenous surfactant replacement therapy for the neonatal Respiratory Distress Syndrome (RDS). The synthetic phospholipid-SAP-6 combinants also lowered surface tension to less than 1 dyne/cm under dynamic compression in an oscillating bubble apparatus at concentrations as low as 0.5 mg phospholipid/ml. A striking finding was that this excellent dynamic surface activity was preserved as SAP-6 composition was reduced to values as low as 5 micrograms/5 mg SM phospholipid (0.1% SAP-6 protein), an order of magnitude less than the 1% protein content of CLSE and surfactant-TA. Mixtures of SM phospholipids plus SAP-35, the major surfactant glycoprotein, had significantly lower biophysical activity, which did not approach that of a functional lung surfactant. These results suggest that synthetic exogenous surfactants of potential utility for replacement therapy in RDS can be formulated by combining synthetic phospholipids in vitro with specifically purified, hydrophobic surfactant-associated protein, SAP-6.  相似文献   

6.
The content-dependent activity of surfactant protein (SP)-B was studied in mixtures with dipalmitoyl phosphatidylcholine (DPPC), synthetic lipids (SL), and purified phospholipids (PPL) from calf lung surfactant extract (CLSE). At fixed SP-B content, adsorption and dynamic surface tension lowering were ordered as PPL/SP-B approximately SL/SP-B > DPPC/SP-B. All mixtures were similar in having increased surface activity as SP-B content was incrementally raised from 0.05 to 0.75% by weight. SP-B had small but measurable effects on interfacial properties even at very low levels < or =0.1% by weight. PPL/SP-B (0.75%) had the highest adsorption and dynamic surface activity, approaching the behavior of CLSE. All mixtures containing 0.75% SP-B reached minimum surface tensions <1 mN/m in pulsating bubble studies at low phospholipid concentration (1 mg/ml). Mixtures of PPL or SL with SP-B (0.5%) also had minimum surface tensions <1 mN/m at 1 mg/ml, whereas DPPC/SP-B (0.5%) reached <1 mN/m at 2.5 mg/ml. Physiological activity also was strongly dependent on SP-B content. The ability of instilled SL/SP-B mixtures to improve surfactant-deficient pressure-volume mechanics in excised lavaged rat lungs increased as SP-B content was raised from 0.1 to 0.75% by weight. This study emphasizes the crucial functional activity of SP-B in lung surfactants. Significant differences in SP-B content between exogenous surfactants used to treat respiratory disease could be associated with substantial activity variations.  相似文献   

7.
Two small hydrophobic proteins, SP-B and SP-C, are responsible for rapid adsorption of pulmonary surfactant to the air/water interface. Despite their physiological importance, the number of protein molecules required to trigger an absorption event remains unknown. To investigate this issue, we varied the protein content of calf lung surfactant extract (CLSE) by dilution with protein-depleted surfactant lipids (neutral and phospholipids, N&PL). Vesicles of a constant size and of composition ranging between 100% N&PL and 100% CLSE were generated by probe sonication. Their adsorption kinetics to an air/water interface were monitored at different temperatures using a Wilhelmy plate to measure surface tension. When plotted versus protein concentration, the adsorption rates during the initial change in surface tension exhibit a diphasic behavior, first increasing rapidly and linearly between 0% and 25% CLSE, and then more slowly at higher concentrations. Direct linearity at low protein content (0-5% CLSE ratio) was confirmed at 37 degrees C. These observations argue against cooperative behavior, for which the adsorption rate would first rise slowly with the protein content, and then increase suddenly once the critical number of proteins on each vesicle is reached. The apparent activation energy E(a) and the free energy of activation DeltaG(0)*, calculated from the temperature dependence of adsorption, further support the view that at least the early stages of protein-induced surfactant adsorption proceeds through a sequence of events involving not several, but a single surfactant protein.  相似文献   

8.
These experiments characterize the effects of hemoglobin and erythrocyte membrane lipids on the dynamic surface activity and adsorption facility of whole lung surfactant (LS) and a calf lung surfactant extract (CLSE) used clinically in surfactant replacement therapy for the neonatal respiratory distress syndrome (RDS). The results show that, at concentrations from 25 to 200 mg/ml, hemoglobin (Hb) increased the minimum dynamic surface tension of LS or CLSE mixtures (0.5 and 1.0 mumol/ml) from less than 1 to 25 dyn/cm on an oscillating bubble apparatus at 37 degrees C. Similarly, erythrocyte membrane lipids (0.5-3 mumol/ml) also prevented LS and CLSE suspensions (0.5-2.0 mumol/ml) from lowering surface tension below 19 dyn/cm under dynamic compression on the bubble. Surface pressure-time adsorption isotherms for LS suspensions (0.084 and 0.168 mumol phospholipid/ml) were also adversely affected by Hb (0.3-2.5 mg/ml), having a slower adsorption rate and magnitude. Significantly, these inhibitory effects of Hb and membrane lipids could be abolished if LS and CLSE concentrations were raised to high levels. In complementary physiological experiments, instillation of Hb, membrane lipids, or albumin into excised rat lungs was shown to cause a decrease in pressure-volume compliance. This decreased compliance was most prominent in lungs made partially surfactant deficient before inhibitor delivery and could be reversed by supplementation with active exogenous surfactant. Taken together, these data show that molecular components in hemorrhagic pulmonary edema can biophysically inactivate endogenous LS and adversely affect lung mechanics. Moreover, exogenous surfactant replacement can reverse this process even in the continued presence of inhibitor molecules and thus has potential utility in therapy for adult as well as neonatal RDS.  相似文献   

9.
Two small hydrophobic proteins, SP-B and SP-C, are responsible for rapid adsorption of pulmonary surfactant to the air/water interface. Despite their physiological importance, the number of protein molecules required to trigger an absorption event remains unknown. To investigate this issue, we varied the protein content of calf lung surfactant extract (CLSE) by dilution with protein-depleted surfactant lipids (neutral and phospholipids, N&PL). Vesicles of a constant size and of composition ranging between 100% N&PL and 100% CLSE were generated by probe sonication. Their adsorption kinetics to an air/water interface were monitored at different temperatures using a Wilhelmy plate to measure surface tension. When plotted versus protein concentration, the adsorption rates during the initial change in surface tension exhibit a diphasic behavior, first increasing rapidly and linearly between 0% and 25% CLSE, and then more slowly at higher concentrations. Direct linearity at low protein content (0-5% CLSE ratio) was confirmed at 37 °C. These observations argue against cooperative behavior, for which the adsorption rate would first rise slowly with the protein content, and then increase suddenly once the critical number of proteins on each vesicle is reached. The apparent activation energy Ea and the free energy of activation ΔG0*, calculated from the temperature dependence of adsorption, further support the view that at least the early stages of protein-induced surfactant adsorption proceeds through a sequence of events involving not several, but a single surfactant protein.  相似文献   

10.
Synthesis methods and initial surface property characterizations are reported for two sulfur-containing phosphonolipids related structurally to dipalmitoyl phosphatidylcholine (DPPC), the major lung surfactant glycerophospholipid. Sulfur linkages in these compounds affect molecular interactions relative to ester linkages, and are structurally resistant to cleavage by phospholipases. The SO2-linked analog synthesized here had increased adsorption and improved film respreading compared to DPPC, while reaching very low surface tensions (1 mN/m) in cycled interfacial films on both the Wilhelmy balance and the pulsating bubble surfactometer. This compound appears to have potential utility as a component in future phospholipase-resistant synthetic exogenous surfactants for treating clinical forms of inflammatory lung injury.  相似文献   

11.
The inhibitory effects of oleic acid (OA) on the surface activity of pulmonary surfactant were characterized by use of the oscillating bubble surfactometer, the Wilhelmy balance, and excised rat lungs. Oscillating bubble studies showed that OA prevented lavaged calf surfactant [0.5 mM phospholipid (PL)] from lowering surface tension below 15 mN/m at or above a molar ratio of OA/PL = 0.5. In contrast to inhibition of surfactant by plasma proteins, increasing the surfactant concentration did not eliminate inhibition by oleic acid, which occurred at OA/PL greater than 0.67 on the oscillating bubble even at surfactant concentrations of 1.5 and 12 mM PL. Studies of surfactant adsorption showed that preformed films of OA had little effect on the adsorption of pulmonary surfactant. Wilhelmy balance studies showed that OA did interfere with the ability of spread films of surfactant to reach low surface tensions during dynamic compression. Further balance experiments with binary films of OA and dipalmitoyl phosphatidylcholine showed that these compounds were miscible in surface films. Together these findings suggested that OA inhibited pulmonary surfactant activity by disrupting the rigid interfacial film responsible for the generation of very low surface tension during dynamic compression. Mechanical studies in excised rat lungs showed that instillation of OA gave altered deflation pressure-volume characteristics with decreased quasi-static compliance, indicating disruption of pulmonary surfactant function in situ. This alteration of mechanics occurred without major changes in the composition of lavaged PLs or in the tissue compliance of the lungs defined by mechanical measurements during inflation-deflation with saline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between monolayers and multilayers within the fluid phase domains of the monolayer. The morphology and thickness of the multilayer phase depends on the lipid composition of the monolayer and the concentration of SP-C or SP-C peptide. Lung surfactant protein SP-B and peptides based on SP-B induce a reversible folding transition at monolayer collapse that allows all components of surfactant to be retained at the interface during respreading. Supplementing Survanta, a clinically used replacement lung surfactant, with a peptide based on the first 25 amino acids of SP-B also induces a similar folding transition at monolayer collapse. Palmitic acid makes the monolayer rigid at low surface tension and fluid at high surface tension and modifies SP-C function. Identifying the function of lung surfactant proteins and lipids is essential to the rational design of replacement surfactants for treatment of respiratory distress syndrome.  相似文献   

13.
Several protocols for purification of milligram quantities of lung surfactant proteins (SP)-B and SP-C were studied for separation efficiency and surface activity of the isolated proteins recombined with synthetic phospholipids (SPL). SP-B and SP-C were obtained from calf lung surfactant extract by C8 chromatography with isocratic elution by either of three solvent systems: 7:1:0.4 MeOH/CHCl(3)/5% 0.1 M HCl (solvent A), 7:1 MeOH/CHCl(3)+ 0.1% TFA (solvent B), and 7:1:0.4 MeOH/CHCl(3)/H(2)O + 0.1% TFA (solvent C). Solvents A and C yielded pure apoprotein in a single pass, with estimated total protein recoveries of >85 and >90%, respectively. Solvent B was less effective in purifying SP-B and SP-C, had a lower recovery efficiency, and gave isolates with less surface activity. Mixtures of SPL plus SP-B eluted with solvents A and C adsorbed to equilibrium surface tensions of 21-22 mN/m and reached minimum surface tensions <1 mN/m during dynamic cycling. Mixtures of SPL with SP-C obtained with solvents A and C had equilibrium surface tensions of 26-27 mN/m and minimum dynamic values of 2-7 mN/m. The ability to obtain milligrams of virtually lipid-free SP-B and SP-C in a single column pass will facilitate research on their biological, structural, and biophysical properties.  相似文献   

14.
Surfactant protein B (SP-B) enhances lipid insertion into the alveolar air/liquid interface upon inhalation. The aim of this study was (i) to apply a palette of tests for a detailed biochemical and biophysical characterization of SP-B and (ii) to use these tests to compare native SP-B with a fluorescent (Bodipy) SP-B analog. The method of labeling was fast and resulted in a covalent fluorophore-protein bond. The ability of both proteins to spread a surfactant film on top of a buffer surface was determined in a spreading tray using the Wilhelmy plate technique to allow detection of alterations in surface tension and calculation of spreading velocities. In a captive bubble surfactometer surface tensions of spread films were measured. Similar biophysical properties were found for both native and Bodipy-labeled SP-B. It is concluded that the combination of tests used allows detection of small differences in structure and activity between the two proteins.  相似文献   

15.
SP-B and SP-C alter diffusion in bilayers of pulmonary surfactant   总被引:2,自引:0,他引:2       下载免费PDF全文
Schram V  Hall SB 《Biophysical journal》2004,86(6):3734-3743
The hydrophobic proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface by an unknown mechanism. We tested the hypothesis that these proteins accelerate adsorption by disrupting the structure of the lipid bilayer, either by a generalized increase in fluidity or by a focal induction of interfacial boundaries within the bilayer. We used fluorescence recovery after photobleaching to measure diffusion of nitrobenzoxadiazolyl-dimyristoyl-phosphatidylethanolamine between 11 and 54 degrees C in multilayers containing the complete set of lipids and proteins in calf lung surfactant extract (CLSE), or the complete set of neutral and phospholipids without the proteins. Above 35 degrees C, Arrhenius plots of diffusion were parallel for CLSE and neutral and phospholipids, but shifted to lower values for CLSE, suggesting that the proteins rigidify the lipid bilayer rather than producing the proposed increase in membrane fluidity. The slopes of the Arrhenius plots for CLSE were steeper below 35 degrees C, suggesting that the proteins induce phase separation at that temperature. The mobile fraction fell below 27 degrees C, consistent with a percolation threshold of coexisting gel and liquid-crystal phases. The induction of lateral phase separation in CLSE, however, does not correlate with apparent changes in adsorption kinetics at this temperature. Our results suggest that SP-B and SP-C accelerate adsorption through a mechanism other than the disruption of surfactant bilayers, possibly by stabilizing a high-energy, highly curved adsorption intermediate.  相似文献   

16.
These in vitro experiments study a potential mechanism by which plasma proteins, found in the alveoli during pulmonary edema and hemorrhage, may act to inhibit the surface activity of pulmonary surfactant. The results indicate that the inhibition of the adsorption facility and surface tension lowering ability of a calf lung surfactant extract (CLSE) by albumin, hemoglobin, or fibrinogen may be completely abolished by centrifugation of the protein-surfactant mixture at 12,500 x g. Furthermore, albumin, hemoglobin and fibrinogen (1.25 mg/ml) were shown to inhibit the adsorption of high concentrations of CLSE (0.32 mg/ml), normally unaffected by the addition of exogenous proteins, when the CLSE was injected into the subphase under a preformed protein surface film. Similarly, injection of large amounts of these proteins (2.5 mg/ml) into the subphase beneath a preformed CLSE surface film was without effect, even though the CLSE concentration was only 0.06 mg/ml, a surfactant concentration which is normally inhibited by even small amounts of exogenous protein. Taken together, the data suggest that some proteins may inhibit surfactant function by preventing the surfactant phospholipids from adsorbing to the air-liquid interface, possibly by a competition between the proteins and CLSE phospholipids for space at the air-liquid interface rather than direct molecular interactions between proteins and surfactant.  相似文献   

17.
Schram V  Hall SB 《Biophysical journal》2001,81(3):1536-1546
We determined the influence of the two hydrophobic proteins, SP-B and SP-C, on the thermodynamic barriers that limit adsorption of pulmonary surfactant to the air-water interface. We compared the temperature and concentration dependence of adsorption, measured by monitoring surface tension, between calf lung surfactant extract (CLSE) and the complete set of neutral and phospholipids (N&PL) without the proteins. Three stages generally characterized the various adsorption isotherms: an initial delay during which surface tension remained constant, a fall in surface tension at decreasing rates, and, for experiments that reached approximately 40 mN/m, a late acceleration of the fall in surface tension to approximately 25 mN/m. For the initial change in surface tension, the surfactant proteins accelerated adsorption for CLSE relative to N&PL by more than ten-fold, reducing the Gibbs free energy of transition (DeltaG(O)) from 119 to 112 kJ/mole. For the lipids alone in N&PL, the enthalpy of transition (DeltaH(O), 54 kJ/mole) and entropy (-T. DeltaS, 65 kJ/mole at 37 degrees C) made roughly equal contributions to DeltaG(O). The proteins in CLSE had little effect on -T. DeltaS(O) (68 kJ/mole), but lowered DeltaG(O) for CLSE by reducing DeltaH(O) (44 kJ/mole). Models of the detailed mechanisms by which the proteins facilitate adsorption must meet these thermodynamic constraints.  相似文献   

18.
Inhibition of pulmonary surfactant function by phospholipases   总被引:7,自引:0,他引:7  
Previous studies have shown that respiratory failure associated with disorders such as acute pancreatitis correlates well with increased levels of phospholipase A2 (PLA2) in lung lavages and that intratracheal administration of PLA2 generates an acute lung injury. In addition, bacteria such as Pseudomonas have been shown to secrete phospholipase C (PLC). We studied the effects of these phospholipases on pulmonary surfactant activity using a pulsating bubble surfactometer. Concentrations greater than or equal to 0.1 unit/ml PLA2 destroyed surfactant biophysical activity, increasing surface tension at minimum bubble size from less than 1 to 15 mN/m. This surfactant inactivation was predominantly related to the effect of lysophosphatidylcholine on the surface film, although the fatty acids released with higher PLA2 concentrations also had a detrimental effect on surfactant function. Similarly, as little as 0.1 unit PLC increased the surface tension at minimal size of an oscillating bubble from less than 1 to 15 mN/m, an effect that could be mimicked by the addition of dipalmitin to surfactant in the absence of PLC. Moreover, lower, noninhibitory concentrations (0.01 unit/ml) of PLA2 and PLC increased the sensitivity of surfactant to other inhibitory agents, such as albumin. Thus, relatively low concentrations of PLC and PLA2 can cause severe breakdown of surfactant function and may contribute significantly to some forms of lung injury.  相似文献   

19.
The captive bubble tensiometer was employed to study interactions of phospholipid (PL) mixtures of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) at 50 microg/ml with physiological levels of the surfactant protein (SP) A SP-B, and SP-C alone and in combination at 37 degrees C. All surfactant proteins enhanced lipid adsorption to equilibrium surface tension (gamma), with SP-C being most effective. Kinetics were consistent with the presence of two adsorption phases. Under the conditions employed, SP-A did not affect the rate of film formation in the presence of SP-B or SP-C. Little difference in gamma(min) was observed between the acidic POPG and the neutral POPC systems with SP-B or SP-C with and without SP-A. However, gamma(max) was lower with the acidic POPG system during dynamic, but not during quasi-static, cycling. Considerably lower compression ratios were required to generate low gamma(min) values with SP-B than SP-C. DPPC-POPG-SP-B was superior to the neutral POPC-SP-B system. Although SP-A had little effect on film formation with SP-B, surface activity during compression was enhanced with both PL systems. In the presence of SP-C, lower compression ratios were required with the acidic system, and with this mixture, SP-A addition adversely affected surface activity. The results suggest specific interactions between SP-B and phosphatidylglycerol, and between SP-B and SP-A. These observations are consistent with the presence of a surface-associated surfactant reservoir which is involved in generating low gamma during film compression and lipid respreading during film expansion.  相似文献   

20.
This study examines the direct inhibitory effects of Pneumocystis carinii (Pc) organisms and chemical components on the surface activity and composition of whole calf lung surfactant (WLS) and calf lung surfactant extract (CLSE) in vitro. Incubation of WLS suspensions with intact Pc organisms (10(7) per milligram of surfactant phospholipid) did not significantly alter total phospholipid levels or surfactant protein A content. Incubation with intact Pc organisms also did not impair dynamic surface tension lowering in suspensions of WLS or centrifuged large surfactant aggregates on a bubble surfactometer (37 degrees C, 20 cycles/min, 0.5 and 2.5 mg phospholipid/ml). However, exposure of WLS or CLSE to disrupted (sonicated) Pc organisms led to severe detriments in activity, with minimum surface tensions of 17-19 mN/m vs. <1 mN/m for surfactants alone. Extracted hydrophobic chemical components from Pc (98.8% lipids, 0.1 mM) reduced the surface activity of WLS and CLSE similarly to sonicated Pc organisms, whereas extracted hydrophilic chemical components from Pc (primarily proteins) had only minor effects on surface tension lowering. These results indicate that in addition to surfactant dysfunction induced by inflammatory lung injury and edema-derived inhibitors in Pc pneumonia, disrupted Pc organisms in the alveolar lumen also have the potential to directly inhibit endogenous and exogenous lung surfactants in affected patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号