首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five days of a high-fat diet while training, followed by 1 day of carbohydrate (CHO) restoration, increases rates of whole body fat oxidation and decreases CHO oxidation during aerobic cycling. The mechanisms responsible for these shifts in fuel oxidation are unknown but involve up- and downregulation of key regulatory enzymes in the pathways of skeletal muscle fat and CHO metabolism, respectively. This study measured muscle PDH and HSL activities before and after 20 min of cycling at 70% VO2peak and 1 min of sprinting at 150% peak power output (PPO). Estimations of muscle glycogenolysis were made during the initial minute of exercise at 70% VO2peak and during the 1-min sprint. Seven male cyclists undertook this exercise protocol on two occasions. For 5 days, subjects consumed in random order either a high-CHO (HCHO) diet (10.3 g x kg(-1) x day(-1) CHO, or approximately 70% of total energy intake) or an isoenergetic high-fat (FAT-adapt) diet (4.6 g x kg(-1) x day(-1) FAT, or 67% of total energy) while undertaking supervised aerobic endurance training. On day 6 for both treatments, subjects ingested an HCHO diet and rested before their experimental trials on day 7. This CHO restoration resulted in similar resting glycogen contents (FAT-adapt 873 +/- 121 vs. HCHO 868 +/- 120 micromol glucosyl units/g dry wt). However, the respiratory exchange ratio was lower during cycling at 70% VO2peak in the FAT-adapt trial, which resulted in an approximately 45% increase and an approximately 30% decrease in fat and CHO oxidation, respectively. PDH activity was lower at rest and throughout exercise at 70% VO2peak (1.69 +/- 0.25 vs. 2.39 +/- 0.19 mmol x kg wet wt(-1) x min(-1)) and the 1-min sprint in the FAT-adapt vs. the HCHO trial. Estimates of glycogenolysis during the 1st min of exercise at 70% VO2peak and the 1-min sprint were also lower after FAT-adapt (9.1 +/- 1.1 vs. 13.4 +/- 2.1 and 37.3 +/- 5.1 vs. 50.5 +/- 2.7 glucosyl units x kg dry wt(-1) x min(-1)). HSL activity was approximately 20% higher (P = 0.12) during exercise at 70% VO2peak after FAT-adapt. Results indicate that previously reported decreases in whole body CHO oxidation and increases in fat oxidation after the FAT-adapt protocol are a function of metabolic changes within skeletal muscle. The metabolic signals responsible for the shift in muscle substrate use during cycling at 70% VO2peak remain unclear, but lower accumulation of free ADP and AMP after the FAT-adapt trial may be responsible for the decreased glycogenolysis and PDH activation during sprinting.  相似文献   

2.
The effects of supramaximal exercise on blood glucose, insulin, and catecholamine responses were examined in 7 healthy male physical education students (mean +/- SD: age = 21 +/- 1.2 years; VO2max = 54 +/- 6 ml X kg-1 X min-1) in response to the following three dietary conditions: a normal mixed diet (N); a 24-h low carbohydrate (CHO) diet intended to reduce liver glycogen content (D1); and a 24-h low CHO diet preceded by a leg muscle CHO overloading protocol intended to reduce hepatic glycogen content with increased muscle glycogen store (D2). Exercise was performed on a bicycle ergometer at an exercise intensity of 130% VO2max for 90 s. Irrespective of the dietary manipulation, supramaximal exercise was associated with a similar significant (p less than 0.01) increase in the exercise and recovery plasma glucose values. The increase in blood glucose levels was accompanied by a similar increase in insulin concentrations in all three groups despite lower resting insulin levels in conditions D1 and D2. Lactate concentrations were higher during the early phase of the recovery period in the D2 as compared to the N condition. At cessation of exercise, epinephrine and norepinephrine were greatly elevated in all three conditions. These results indicate that the increase in plasma glucose and insulin associated with very high intensity exercise, persists in spite of dietary manipulations intended to reduce liver glycogen content or increase muscle glycogen store.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The purpose of this investigation was to determine the effects of postexercise eucaloric carbohydrate-protein feedings on muscle glycogen restoration after an exhaustive cycle ergometer exercise bout. Seven male collegiate cyclists [age = 25.6 +/- 1.3 yr, height = 180.9 +/- 3.2 cm, wt = 75.4 +/- 4.0 kg, peak oxygen uptake (VO(2 peak)) = 4.20 +/- 0.2 l/min] performed three trials, each separated by 1 wk: 1) 100% alpha-D-glucose [carbohydrate (CHO)], 2) 70% carbohydrate-20% protein (PRO)-10% fat, and 3) 86% carbohydrate-14% amino acid (AA). All feedings were eucaloric, based on 1.0 g. kg body wt(-1). h(-1) of CHO, and administered every 30 min during a 4-h muscle glycogen restoration period in an 18% wt/vol solution. Muscle biopsies were obtained immediately and 4 h after exercise. Blood samples were drawn immediately after the exercise bout and every 0.5 h for 4 h during the restoration period. Increases in muscle glycogen concentrations for the three feedings (CHO, CHO-PRO, CHO-AA) were 118 mmol/kg dry wt; however, no differences among the feedings were apparent. The serum glucose and insulin responses did not differ throughout the restoration period among the three feedings. These results suggest that muscle glycogen restoration does not appear to be enhanced with the addition of proteins or amino acids to an eucaloric CHO feeding after exhaustive cycle exercise.  相似文献   

4.
The hypothesis tested was that disturbances in the sarcoplasmic reticulum (SR) Ca2+-cycling responses to exercise would associate with muscle glycogen reserves. Ten untrained males [peak O2 consumption (VO2 peak) = 3.41 +/- 0.20 (SE) l/min] performed a standardized cycle test (approximately 70% VO2 peak) on two occasions, namely, following 4 days of a high (Hi CHO)- and 4 days of a low (Lo CHO)-carbohydrate diet. Both Hi CHO and Lo CHO were preceded by a session of prolonged exercise designed to deplete muscle glycogen. SR Ca2+ cycling in crude homogenates prepared from vastus lateralis samples indicated higher (P < 0.05) Ca2+ uptake (microM x g protein(-1) x min(-1)) in Hi CHO compared with Lo CHO at 30 min (2.93 +/- 0.10 vs. 2.23 +/- 0.12) and at 67 min (2.77 +/- 0.16 vs. 2.10 +/- 0.12) of exercise, the point of fatigue in Lo CHO. Similar effects (P < 0.05) were noted between conditions for maximal Ca2+-ATPase (microM x g protein(-1) x min(-1)) at 30 min (142 +/- 8.5 vs. 107 +/- 5.0) and at 67 min (130 +/- 4.5 vs. 101 +/- 4.7). Both phase 1 and phase 2 Ca2+ release were 23 and 37% higher (P < 0.05) at 30 min of exercise and 15 and 34% higher (P < 0.05), at 67 min during Hi CHO compared with Lo CHO, respectively. No differences between conditions were observed at rest for any of these SR properties. Total muscle glycogen (mmol glucosyl units/kg dry wt) was higher (P < 0.05) in Hi CHO compared with Lo CHO at rest (+36%), 30 min (+53%), and at 67 min (+44%) of cycling. These results indicate that exercise-induced reductions in SR Ca2+-cycling properties occur earlier in exercise during low glycogen states compared with high glycogen states.  相似文献   

5.
The restorative capacities of a high carbohydrate-protein (CHO-PRO) beverage containing electrolytes and a traditional 6% carbohydrate-electrolyte sports beverage (SB) were assessed after glycogen-depleting exercise. Postexercise ingestion of the CHO-PRO beverage, in comparison with the SB, resulted in a 55% greater time to exhaustion during a subsequent exercise bout at 85% maximum oxygen consumption (VO(2)max). The greater recovery after the intake of the CHO-PRO beverage could be because of a greater rate of muscle glycogen storage. Therefore, a second study was designed to investigate the effects of after exercise CHO-PRO and SB supplements on muscle glycogen restoration. Eight endurance-trained cyclists (VO(2)max = 62.1 +/- 2.2 ml.kg(-1) body wt.min(-1)) performed 2 trials consisting of a 2-hour glycogen-depletion ride at 65-75% VO(2)max. Carbohydrate-protein (355 ml; approximately 0.8 g carbohydrate (CHO).kg(-1) body wt and approximately 0.2 g protein.kg(-1) body wt) or SB (355 ml; approximately 0.3 g CHO.kg(-1) body wt) was provided immediately and 2 hours after exercise. Trials were randomized and separated by 7-15 days. Ingestion of the CHO-PRO beverage resulted in a 17% greater plasma glucose response, a 92% greater insulin response, and a 128% greater storage of muscle glycogen (159 +/- 18 and 69 +/- 32 micromol.g(-1) dry weight for CHO-PRO and SB, respectively) compared with the SB (p < 0.05). These findings indicate that the rate of recovery is coupled with the rate of muscle glycogen replenishment and suggest that recovery supplements should be consumed to optimize muscle glycogen synthesis as well as fluid replacement.  相似文献   

6.
In an effort to determine the effects of carbohydrate (CHO) feedings immediately before exercise in both the fasted and fed state, 10 well-trained male cyclists [maximum O2 consumption (VO2 max), 4.35 +/- 0.11 l/min)] performed 45 min of cycling at 77% VO2 max followed by a 15-min performance ride on an isokinetic cycle ergometer. After a 12-h fast, subjects ingested 45 g of liquid carbohydrate (LCHO), solid carbohydrate confectionery bar (SCHO), or placebo (P) 5 min before exercise. An additional trial was performed in which a high-CHO meal (200 g) taken 4 h before exercise was combined with a confectionery bar feeding (M + SCHO) immediately before the activity. At 10 min of exercise, serum glucose values were elevated by 18 and 24% during SCHO and LCHO, respectively, compared with P. At 0 and 45 min no significant differences were observed in muscle glycogen concentration or total use between the four trials. Total work produced during the final 15 min of exercise was significantly greater (P less than 0.05) during M + SCHO (194,735 +/- 9,448 N X m), compared with all other trials and significantly greater (P less than 0.05) during LCHO and SCHO (175,204 +/- 11,780 and 176,013 +/- 10,465 N X m, respectively) than trial P (159,143 +/- 11,407 N X m). These results suggest that, under conditions when CHO stores are less than optimal, exercise performance is enhanced with the ingestion of 45 g of CHO 5 min before 1 h of intense cycling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study investigated the effects of prolonged exercise on muscle sarcoplasmic reticulum (SR) Ca2+ cycling properties and the metabolic responses with and without a session of exercise designed to reduce muscle glycogen reserves while on a normal carbohydrate (CHO) diet. Eight untrained males (VO(2peak) = 3.81 +/- 0.12 L/min, mean +/- SE) performed a standardized cycle-to-fatigue at 55% VO(2peak) while on a normal CHO diet (Norm CHO) and 4 days following prolonged exercise while on a normal CHO diet (Ex+Norm CHO). Compared to rest, exercise in Norm CHO to fatigue resulted in significant reductions (p < 0.05) in Ca2+ uptake (3.17 +/- 0.21 vs. 2.47 +/- 0.12 micromol.(g protein)-1.min-1), maximal Ca2+ ATPase activity (Vmax, 152 +/- 12 vs. 119 +/- 9 micromol.(g protein)-1.min-1) and both phase 1 (15.1 +/- 0.98 vs. 13.1 +/- 0.28 micromol.(g protein)-1.min-1) and phase 2 (6.56 +/- 0.33 vs. 4.91 +/- 0.28 micromol.(g protein)-1.min-1) Ca2+ release in vastus lateralis muscle. No differences were observed between Norm CHO and Ex-Norm CHO in the response of these properties to exercise. Compared with Norm CHO, Ex+Norm CHO resulted in higher (p < 0.05) resting Ca2+ uptake (3.17 +/- 0.21 vs. 3.49 +/- 0.24 micromol.(g protein).min-1 and higher ionophore ratio, defined as the ratio of Vmax measured with and without the Ca2+-ionophore A23187, (2.3 +/- 0.3 vs. 4.4 +/- 0.3 micromol.(g protein).min-1) at fatigue. No differences were observed between conditions in the concentration of muscle glycogen, the high-energy phosphates (ATP and PCr), or metabolites (Pi, Cr, and lactate). Ex+Norm CHO also failed to modify the exercise-induced changes in CHO and fat oxidation. We conclude that prolonged exercise to fatigue performed 4 days following glycogen-depleting exercise while on a normal CHO diet elevates resting Ca2+ uptake and prevents increases in SR membrane permeability to Ca2+ as measured by the ionophore ratio.  相似文献   

8.
Effect of carbohydrate ingestion on exercise metabolism   总被引:2,自引:0,他引:2  
Five male cyclists were studied during 2 h of cycle ergometer exercise (70% VO2 max) on two occasions to examine the effect of carbohydrate ingestion on muscle glycogen utilization. In the experimental trial (CHO) subjects ingested 250 ml of a glucose polymer solution containing 30 g of carbohydrate at 0, 30, 60, and 90 min of exercise; in the control trial (CON) they received an equal volume of a sweet placebo. No differences between trials were seen in O2 uptake or heart rate during exercise. Venous blood glucose was similar before exercise in both trials, but, on average, was higher during exercise in CHO [5.2 +/- 0.2 (SE) mmol/l] compared with CON (4.8 +/- 0.1, P less than 0.05). Plasma insulin levels were similar in both trials. Muscle glycogen levels were also similar in CHO and CON both before and after exercise; accordingly, there was no difference between trials in the amount of glycogen used during the 2 h of exercise (CHO = 62.8 +/- 10.1 mmol/kg wet wt, CON = 56.9 +/- 10.1). The results of this study indicate that carbohydrate ingestion does not influence the utilization of muscle glycogen during prolonged strenuous exercise.  相似文献   

9.
The exercise responses to two different progressive, upright cycle ergometer tests were studied in nine healthy, young subjects either with no drug (ND) or following 48 h or oral propranolol (P) (40 mg q.i.d.). The ergometer tests increased work rate by 30 W either every 30 s or every 4 min. Propranolol caused a significant (p less than 0.05) reduction in peak oxygen uptake (VO2) during both the 30-s and 4-min tests (30-s ND, 3949 +/- 718 mL X min-1 (means +/- SD); 30-s P, 3408 +/- 778 mL X min-1; 4-min ND, 4058 +/- 409 mL X min-1; 4-min P, 3725 +/- 573 mL X min-1). There was no difference between 30-s ND and 4-min ND for peak VO2. The ventilatory anaerobic threshold was not significantly different between any test (30-s ND, 2337 +/- 434 mL O2 X min-1; 30-s P, 2174 +/- 406 mL O2 X min-1; ND, 2433 +/- 685 mL O2 X min-1; 4-min P, 2296 +/- 604 mL O2 X min-1). The VO2 at which blood lactate had increased by 0.5 mM above resting levels was significantly lower than the ventilatory anaerobic threshold for the 4-min ND (1917 +/- 489) and the 4-min P (1978 +/- 412) tests, but was not different for the 30-s ND and 30-s P tests. At exhaustion in the progressive tests, the blood PCO2 was higher (p less than 0.05) in both 30-s tests than 4-min tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effect of a pattern of exercise and dietary modification, which is normally used to alter muscle glycogen content, upon the acid-base status of the blood and the ability to perform high intensity exercise was studied. Eleven healthy male subjects cycled to exhaustion on an electrically braked cycle ergometer at a workload equivalent to 100% of their maximal oxygen uptake (VO2max) on three separate occasions. The first exercise test took place after a normal diet (46.2 +/- 6.7% carbohydrate (CHO)), and was followed by prolonged exercise to exhaustion to deplete muscle glycogen stores. The second test was performed after three days of a low carbohydrate diet (10.1 +/- 6.8% CHO) and subsequently after three days of a high CHO diet (65.5 +/- 9.8% CHO) the final test took place. Acid-base status and selected metabolites were measured on arterialised venous blood at rest prior to exercise and during the post-exercise period. Exercise time to exhaustion was longer after the normal (p less than 0.05) and high (p less than 0.05). CHO dietary phases compared with the low CHO phase. Resting pre-exercise pH was higher after the high CHO diet (p less than 0.05) compared with the low CHO diet. Pre-exercise bicarbonate, PCO2 and base excess measurements were higher after the high CHO treatment compared with both the normal (p less than 0.01, p less than 0.05, p less than 0.01 respectively) and low CHO phases (p less than 0.001, p less than 0.01, p less than 0.001 respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
This study was undertaken to examine the effects of ingestion of carbohydrate (CHO) solutions of 0 (WP), 6 (CHO-6), 12 (CHO-12), and 18 g CHO/100 ml (CHO-18) on performance and muscle glycogen use. Ten trained cyclists performed five 120-min cycling trials. The first 105 min of each trial was at 70% of maximal O2 consumption (VO2max), and the final 15 min was an all-out performance ride on an isokinetic cycle ergometer equipped to measure total work output. In one of the trials (CHO-12I) the submaximal portion of the ride consisted of seven 15-min rides at 70% of VO2max with a 3-min rest between each ride. Every 15 min the men consumed 8.5 ml.kg-1.h-1 (approximately 150 ml) of one of the four test solutions. Venous blood samples were obtained every 15 min for glucose and insulin. Muscle biopsies were obtained from the vastus lateralis at 0 and 105 min in the WP and the CHO-12 continuous and intermittent trials. Biopsy samples were assayed for glycogen and sectioned and stained for myosin adenosinetriphosphatase and glycogen for single fiber depletion measurements. There were no differences in glycogen use (86.7 +/- 6.0, 75.5 +/- 7.9, and 83.5 +/- 5.5 mmol/kg for the WP, CHO-12C, and CHO-12I, respectively) or depletion patterns between the WP and the two CHO-12 trials. Blood glucose was significantly elevated in both the CHO-12 trials and in the CHO-18 trial compared with the WP trial.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We evaluated the effect of carbohydrate (CHO) loading on cycling performance that was designed to be similar to the demands of competitive road racing. Seven well-trained cyclists performed two 100-km time trials (TTs) on separate occasions, 3 days after either a CHO-loading (9 g CHO. kg body mass(-1). day(-1)) or placebo-controlled moderate-CHO diet (6 g CHO. kg body mass(-1). day(-1)). A CHO breakfast (2 g CHO/kg body mass) was consumed 2 h before each TT, and a CHO drink (1 g CHO. kg(.)body mass(-1). h(-1)) was consumed during the TTs to optimize CHO availability. The 100-km TT was interspersed with four 4-km and five 1-km sprints. CHO loading significantly increased muscle glycogen concentrations (572 +/- 107 vs. 485 +/- 128 mmol/kg dry wt for CHO loading and placebo, respectively; P < 0.05). Total muscle glycogen utilization did not differ between trials, nor did time to complete the TTs (147.5 +/- 10.0 and 149.1 +/- 11.0 min; P = 0.4) or the mean power output during the TTs (259 +/- 40 and 253 +/- 40 W, P = 0.4). This placebo-controlled study shows that CHO loading did not improve performance of a 100-km cycling TT during which CHO was consumed. By preventing any fall in blood glucose concentration, CHO ingestion during exercise may offset any detrimental effects on performance of lower preexercise muscle and liver glycogen concentrations. Alternatively, part of the reported benefit of CHO loading on subsequent athletic performance could have resulted from a placebo effect.  相似文献   

13.
There is evidence that increasing carbohydrate (CHO) availability during exercise by raising preexercise muscle glycogen levels attenuates the activation of AMPKalpha2 during exercise in humans. Similarly, increasing glucose levels decreases AMPKalpha2 activity in rat skeletal muscle in vitro. We examined the effect of CHO ingestion on skeletal muscle AMPK signaling during exercise in nine active male subjects who completed two 120-min bouts of cycling exercise at 65 +/- 1% V(O2 peak). In a randomized, counterbalanced order, subjects ingested either an 8% CHO solution or a placebo solution during exercise. Compared with the placebo trial, CHO ingestion significantly (P < 0.05) increased plasma glucose levels and tracer-determined glucose disappearance. Exercise-induced increases in muscle-calculated free AMP (17.7- vs. 11.8-fold), muscle lactate (3.3- vs. 1.8-fold), and plasma epinephrine were reduced by CHO ingestion. However, the exercise-induced increases in skeletal muscle AMPKalpha2 activity, AMPKalpha2 Thr(172) phosphorylation and acetyl-CoA Ser(222) phosphorylation, were essentially identical in the two trials. These findings indicate that AMPK activation in skeletal muscle during exercise in humans is not sensitive to changes in plasma glucose levels in the normal range. Furthermore, the rise in plasma epinephrine levels in response to exercise was greatly suppressed by CHO ingestion without altering AMPK signaling, raising the possibility that epinephrine does not directly control AMPK activity during muscle contraction under these conditions in vivo.  相似文献   

14.
Goforth, Jr., Harold W., David A. Arnall, Brad L. Bennett,and Patricia G. Law. Persistence of supercompensated muscle glycogen in trained subjects after carbohydrate loading.J. Appl. Physiol. 82(1): 342-347, 1997.Several carbohydrate (CHO)-loading protocols have been used toachieve muscle glycogen supercompensation and prolong enduranceperformance. This study assessed the persistence of muscle glycogensupercompensation over the 3 days after the supercompensation protocol.Trained male athletes completed a 6-day CHO-loading protocol thatincluded cycle ergometer exercise and dietary manipulations. The 3-daydepletion phase began with 115 min of cycling at 75% peak oxygenuptake followed by 3 × 60-s sprints and included the subjectsconsuming a low-CHO/high-protein/high-fat (10:41:49%) diet. Subjectscycled 40 min at the same intensity for the next 2 days. During the3-day repletion phase, subjects rested and consumed ahigh-CHO/low-protein/low-fat (85:08:07%) diet, including aglucose-polymer beverage. A 3-day postloading phase followed, whichinvolved a moderately high CHO diet (60%) and no exercise. Glycogenvalues for vastus lateralis biopsies at baseline and postloadingdays 1-3 were 408 ± 168 (SD),729 ± 222, 648 ± 186, and 714 ± 196 mmol/kg dry wt,respectively. The CHO-loading protocol increased muscle glycogen by1.79 times baseline, and muscle glycogen remained near this levelduring the 3-day postloading period. Results indicate thatsupercompensated muscle glycogen levels can be maintained for at least3 days in a resting athlete when a moderate-CHO diet is consumed.

  相似文献   

15.
The purpose of this study was to investigate the hypothesis that a single, extended session of heavy exercise would be effective in inducing adaptations in energy metabolism during exercise in the absence of increases in oxidative potential. Ten healthy males [maximal aerobic power (VO(2 peak)) = 43.4 +/- 2.2 (SE) ml x kg(-1) x min(-1)] participated in a 16-h training session involving cycling for 6 min each hour at approximately 90% of maximal oxygen consumption. Measurements of metabolic changes were made on tissue extracted from the vastus lateralis during a two-stage standardized submaximal cycle protocol before (Pre) and 36-48 h after (Post) the training session. At Pre, creatine phosphate (PCr) declined (P < 0.05) by 32% from 0 to 3 min and then remained stable until 20 min of exercise at 60% VO(2 peak) before declining (P < 0.05) by a further 35% during 20 min of exercise at 75% VO(2 peak). Muscle lactate (mmol/kg dry wt) progressively increased (P < 0.05) from 4.59 +/- 0.64 at 0 min to 17.8 +/- 2.7 and 30.9 +/- 5.3 at 3 and 40 min, respectively, whereas muscle glycogen (mmol glucosyl units/kg dry wt) declined (P < 0.05) from a rest value of 360 +/- 24 to 276 +/- 31 and 178 +/- 36 at similar time points. During exercise after the training session, PCr and glycogen were not as depressed (P < 0.05), and increases in muscle lactate were blunted (P < 0.05). All of these changes occurred in the absence of increases in oxidative potential as measured by the maximal activities of citrate synthase and malate dehydrogenase. These findings are consistent with other studies, namely, that muscle metabolic adaptations to regular exercise are an early adaptive event that occurs before increases in oxidative potential.  相似文献   

16.
Pulmonary clearance of 99mTc-DTPA: influence of background activity   总被引:4,自引:0,他引:4  
To study the effects of circulatory occlusion on the time course and magnitude of postexercise O2 consumption (VO2) and blood lactate responses, nine male subjects were studied twice for 50 min on a cycle ergometer. On one occasion, leg blood flow was occluded with surgical thigh cuffs placed below the buttocks and inflated to 200 mmHg. The protocol consisted of a 10-min rest, 12 min of exercise at 40% peak O2 consumption (VO2 peak), and a 28-min resting recovery while respiratory gas exchange was determined breath by breath. Occlusion (OCC) spanned min 6-8 during the 12-min work bout and elicited mean blood lactate of 5.2 +/- 0.8 mM, which was 380% greater than control (CON). During 18 min of recovery, blood lactate after OCC remained significantly above CON values. VO2 was significantly lower during exercise with OCC compared with CON but was significantly higher during the 4 min of exercise after cuff release. VO2 was higher after OCC during the first 4 min of recovery but was not significantly different thereafter. Neither total recovery VO2 (gross recovery VO2 with no base-line subtraction) nor excess postexercise VO2 (net recovery VO2 above an asymptotic base line) was significantly different for OCC and CON conditions (13.71 +/- 0.45 vs. 13.44 +/- 0.61 liters and 4.93 +/- 0.26 vs. 4.17 +/- 0.35 liters, respectively). Manipulation of exercise blood lactate levels had no significant effect on the slow ("lactacid") component of the recovery VO2.  相似文献   

17.
Skeletal muscle hormone-sensitive lipase (HSL) activity is increased by contractions and increases in blood epinephrine (EPI) concentrations and cyclic AMP activation of the adrenergic pathway during prolonged exercise. To determine the importance of hormonal stimulation of HSL activity during the onset of moderate- and high-intensity exercise, nine men [age 24.3 +/- 1.2 yr, 80.8 +/- 5.0 kg, peak oxygen consumption (VO2 peak) 43.9 +/- 3.6 ml x kg(-1) x min(-1)] cycled for 1 min at approximately 65% VO2 peak, rested for 60 min, and cycled at approximately 90% VO2 peak for 1 min. Skeletal muscle biopsies were taken pre- and postexercise, and arterial blood was sampled throughout exercise. Arterial EPI increased (P < 0.05) postexercise at 65% (0.45 +/- 0.10 to 0.78 +/- 0.27 nM) and 90% VO2 peak (0.57 +/- 0.34 to 1.09 +/- 0.50 nM). HSL activity increased (P < 0.05) following 1 min of exercise at 65% VO2 peak [1.05 +/- 0.39 to 1.78 +/- 0.54 mmol x min(-1) x kg dry muscle (dm)(-1)] and 90% VO2 peak (1.07 +/- 0.24 to 1.91 +/- 0.62 mmol x min(-1) x kg dm(-1)). Cyclic AMP content also increased (P < 0.05) at both exercise intensities (65%: 1.52 +/- 0.67 to 2.75 +/- 1.12, 90%: 1.85 +/- 0.65 to 2.64 +/- 0.93 micromol/kg dm). HSL Ser660 phosphorylation (approximately 55% increase) and ERK1/2 phosphorylation ( approximately 33% increase) were augmented following exercise at both intensities, whereas HSL Ser563 and Ser565 phosphorylation were not different from rest. The results indicate that increases in arterial EPI concentration during the onset of moderate- and high-intensity exercise increase cyclic AMP content, which results in the phosphorylation of HSL Ser660. This adrenergic stimulation contributes to the increase in HSL activity that occurs in human skeletal muscle in the first minute of exercise at 65% and 90% VO2 peak.  相似文献   

18.
To date, the results of studies that have examined the effects of altering preexercise muscle glycogen content and exercise intensity on endogenous carbohydrate oxidation are equivocal. Differences in the training status of subjects between investigations may, in part, explain these inconsistent findings. Accordingly, we determined the relative effects of exercise intensity and carbohydrate availability on patterns of fuel utilization in the same subjects who performed a random order of four 60-min rides, two at 45% and two at 70% of peak O(2) uptake (Vo(2 peak)), after exercise-diet intervention to manipulate muscle glycogen content. Preexercise muscle glycogen content was 596 +/- 43 and 202 +/- 21 mmol/kg dry mass (P < 0.001) for high-glycogen (HG) and low-glycogen (LG) conditions, respectively. Respiratory exchange ratio was higher for HG than LG during exercise at both 45% (0.85 +/- 0.01 vs. 0.74 +/- 0.01; P < 0.001) and 70% (0.90 +/- 0.01 vs. 0.79 +/- 0.01; P < 0.001) of Vo(2 peak). The contribution of whole body muscle glycogen oxidation to energy expenditure differed between LG and HG for exercise at both 45% (5 +/- 2 vs. 45 +/- 5%; P < 0.001) and 70% (25 +/- 3 vs. 60 +/- 3%; P < 0.001) of Vo(2 peak). Yet, despite marked differences in preexercise muscle glycogen content and its subsequent utilization, rates of plasma glucose disappearance were similar under all conditions. We conclude that, in moderately trained individuals, muscle glycogen availability (low vs. high) does not influence rates of plasma glucose disposal during either low- or moderate-intensity exercise.  相似文献   

19.
This study examined the ability of well-trained eumenorrheic women to increase muscle glycogen content and endurance performance in response to a high-carbohydrate diet (HCD; approximately 78% carbohydrate) compared with a moderate-carbohydrate diet (MD; approximately 48% carbohydrate) when tested during the luteal phase of the menstrual cycle. Six women cycled to exhaustion at approximately 80% maximal oxygen uptake (VO(2 max)) after each of the randomly assigned diet and exercise-tapering regimens. A biopsy was taken from the vastus lateralis before and after exercise in each trial. Preexercise muscle glycogen content was high after the MD (625.2 +/- 50.1 mmol/kg dry muscle) and 13% greater after the HCD (709.0 +/- 44.8 mmol/kg dry muscle). Postexercise muscle glycogen was low after both trials (MD, 91.4 +/- 34.5; HCD, 80.3 +/- 19.5 mmol/kg dry muscle), and net glycogen utilization during exercise was greater after the HCD. The subjects also cycled longer at approximately 80% VO(2 max) after the HCD vs. MD (115:31 +/- 10:47 vs. 106:35 +/- 8:36 min:s, respectively). In conclusion, aerobically trained women increased muscle glycogen content in response to a high-dietary carbohydrate intake during the luteal phase of the menstrual cycle, but the magnitude was smaller than previously observed in men. The increase in muscle glycogen, and possibly liver glycogen, after the HCD was associated with increased cycling performance to volitional exhaustion at approximately 80% VO(2 max).  相似文献   

20.
We tested the hypothesis that a shift to carbohydrate diet after prolonged adaptation to fat diet would lead to decreased glucose uptake and impaired muscle glycogen breakdown during exercise compared with ingestion of a carbohydrate diet all along. We studied 13 untrained men; 7 consumed a high-fat (Fat-CHO; 62% fat, 21% carbohydrate) and 6 a high-carbohydrate diet (CHO; 20% fat, 65% carbohydrate) for 7 wk, and thereafter both groups consumed the carbohydrate diet for an eighth week. Training was performed throughout. After 8 wk, during 60 min of exercise (71 +/- 1% pretraining maximal oxygen uptake) average leg glucose uptake (1.00 +/- 0.07 vs. 1.55 +/- 0.21 mmol/min) was lower (P < 0.05) in Fat-CHO than in CHO. The rate of muscle glycogen breakdown was similar (4.4 +/- 0.5 vs. 4.2 +/- 0.7 mmol. min(-1). kg dry wt(-1)) despite a significantly higher preexercise glycogen concentration (872 +/- 59 vs. 688 +/- 43 mmol/kg dry wt) in Fat-CHO than in CHO. In conclusion, shift to carbohydrate diet after prolonged adaptation to fat diet and training causes increased resting muscle glycogen levels but impaired leg glucose uptake and similar muscle glycogen breakdown, despite higher resting levels, compared with when the carbohydrate diet is consumed throughout training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号