首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invited review: pulmonary capillary stress failure.   总被引:3,自引:0,他引:3  
J B West 《Journal of applied physiology》2000,89(6):2483-9;discussion 2497
The pulmonary blood-gas barrier is an extraordinary bioengineering structure because of its vast area but extreme thinness. Despite this, almost no attention has been given to its mechanical properties. The remarkable area and thinness come about because gas exchange occurs by passive diffusion. However, the barrier also needs to be immensely strong to withstand the very high stresses in the capillary wall when capillary pressure rises during exercise. The strength of the thin region of the barrier comes from type IV collagen in the basement membranes. When the stresses in the capillary walls rise to high levels, ultrastructural changes occur in the barrier, a condition known as stress failure. Physiological conditions that alter the properties of the barrier include severe exercise in elite human athletes. Animals that have been selectively bred for high aerobic activity, such as Thoroughbred racehorses, consistently break their pulmonary capillaries during galloping. Pathophysiological conditions causing stress failure include high-altitude pulmonary edema and overinflation of the lung, which frequently occurs with mechanical ventilation. Remodeling of the capillary wall occurs in response to increased wall stress in diseases such as mitral stenosis. The barrier is able to maintain its extreme thickness with sufficient strength as a result of continual regulation of its wall structure. How it does this is a central problem in lung biology.  相似文献   

2.
Thepulmonary blood-gas barrier is an extraordinary bioengineeringstructure because of its vast area but extreme thinness. Despite this,almost no attention has been given to its mechanical properties. Theremarkable area and thinness come about because gas exchange occurs bypassive diffusion. However, the barrier also needs to be immenselystrong to withstand the very high stresses in the capillary wall whencapillary pressure rises during exercise. The strength of the thinregion of the barrier comes from type IV collagen in the basementmembranes. When the stresses in the capillary walls rise to highlevels, ultrastructural changes occur in the barrier, a condition knownas stress failure. Physiological conditions that alter the propertiesof the barrier include severe exercise in elite human athletes. Animalsthat have been selectively bred for high aerobic activity, such asThoroughbred racehorses, consistently break their pulmonary capillariesduring galloping. Pathophysiological conditions causing stress failureinclude high-altitude pulmonary edema and overinflation of the lung,which frequently occurs with mechanical ventilation. Remodeling of thecapillary wall occurs in response to increased wall stress in diseasessuch as mitral stenosis. The barrier is able to maintain its extreme thickness with sufficient strength as a result of continual regulation of its wall structure. How it does this is a central problem in lung biology.

  相似文献   

3.
Comprehensive pulmonary morphometric data from 42 species of birds representing ten orders were compared with those of other vertebrates, especially mammals, relating the comparisons to the varying biological needs of these avian taxa. The total lung volume was strongly correlated with body mass. The volume density of the exchange tissue was lowest in the charadriiform and anseriform species and highest in the piciform, cuculiform and passeriform species. The surface area of the blood-gas (tissue) barrier, the volume of the pulmonary capillary blood and the total morphometric pulmonary diffusing capacity were all strongly correlated with body mass. The harmonic mean thickness of both the blood-gas (tissue) barrier and the plasma layer were weakly correlated with body mass. The mass-specific surface area of the blood-gas (tissue) barrier (surface area per gram body mass) and the surface density of the blood-gas (tissue) barrier (i.e. its surface area per unit volume of exchange tissue) were inversely correlated (though weakly) with body mass. The passeriform species exhibited outstanding pulmonary morphometric adaptations leading to a high specific total diffusing capacity per gram body mass, consistent with the comparatively small size and energetic mode of life which typify passeriform birds. The relatively inactive, ground-dwelling domestic fowl (Gallus gallus) had the lowest pulmonary diffusing capacity per gram body mass. The specific total lung volume is about 27% smaller in birds than in mammals but the specific surface area of the blood-gas (tissue) barrier is about 15% greater in birds. The ratio of the surface area of the tissue barrier to the volume of the exchange tissue was also much greater in the birds (170-305%). The harmonic mean thickness of the tissue barrier was 56-67% less in the birds, but that of the plasma layer was about 66% greater in the birds. The pulmonary capillary blood volume was also greater (22%) in the birds. Except for the thickness of the plasma layer, these morphometric parameters all favour the gas exchange capacity of birds. Consequently, the total specific mean morphometric pulmonary diffusing capacity for oxygen was estimated to be about 22% greater in birds than in mammals of similar body mass. This estimate was obtained by employing oxygen permeation constants for mammalian tissue, plasma and erythrocytes, as avian constants were not then available.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The extreme thinness of the pulmonary blood-gasbarrier results in high mechanical stresses in the capillary wall whenthe capillary pressure rises during exercise. We have previously shown that, in elite cyclists, 6-8 min of maximal exercise increase blood-gas barrier permeability and result in higher concentrations ofred blood cells, total protein, and leukotrieneB4 in bronchoalveolar lavage (BAL)fluid compared with results in sedentary controls. To test thehypothesis that stress failure of the barrier only occurs at thehighest level of exercise, we performed BAL in six healthy athletesafter 1 h of exercise at 77% of maximalO2 consumption. Controls wereeight normal nonathletes who did not exercise before BAL. In contrastwith our previous study, we did not find higher concentrations of redblood cells, total protein, and leukotriene B4 in the exercising athletescompared with control subjects. However, higher concentrations ofsurfactant apoprotein A and a higher surfactant apoproteinA-to-phospholipid ratio were observed in the athletes performingprolonged exercise, compared with both the controls and the athletesfrom our previous study. These results suggest that, in elite athletes,the integrity of the blood-gas barrier is altered only at extremelevels of exercise.

  相似文献   

5.
1. The lungs of four species of bats, Phyllostomus hastatus (PH, mean body mass, 98 g), Pteropus lylei (PL, 456 g), Pteropus alecto (PA, 667 g), and Pteropus poliocephalus (PP, 928 g) were analysed by morphometric methods. These data increase fivefold the range of body masses for which bat lung data are available, and allow more representative allometric equations to be formulated for bats. 2. Lung volume ranged from 4.9 cm3 for PH to 39 cm3 for PP. The volume density of the lung parenchyma (i.e. the volume proportion of the parenchyma in the lung) ranged from 94% in PP to 89% in PH. Of the components of the parenchyma, the alveoli composed 89% and the blood capillaries about 5%. 3. The surface area of the alveoli exceeded that of the blood-gas (tissue) barrier and that of the capillary endothelium whereas the surface area of the red blood cells as well as that of the capillary endothelium was greater than that of the tissue barrier. PH had the thinnest tissue barrier (0.1204 microns) and PP had the thickest (0.3033 microns). 4. The body mass specific volume of the lung, that of the volume of pulmonary capillary blood, the surface area of the blood-gas (tissue) barrier, the diffusing capacity of the tissue barrier, and the total morphometric pulmonary diffusing capacity in PH all substantially exceeded the corresponding values of the pteropid species (i.e. PL, PA and PP). This conforms with the smaller body mass and hence higher unit mass oxygen consumption of PH, a feature reflected in the functionally superior gas exchange performance of its lungs. 5. Morphometrically, the lungs of different species of bats exhibit remarkable differences which cannot always be correlated with body mass, mode of flight and phylogeny. Conclusive explanations of these pulmonary structural disparities in different species of bats must await additional physiological and flight biomechanical studies. 6. While the slope, the scaling factor (b), of the allometric equation fitted to bat lung volume data (b = 0.82) exceeds the value for flight VO2max (b = 0.70), those for the surface area of the blood-gas (tissue) barrier (b = 0.74), the pulmonary capillary blood volume (b = 0.74), and the total morphometric lung diffusing capacity for oxygen (b = 0.69) all correspond closely to the VO2max value. 7. Allometric comparisons of the morphometric pulmonary parameters of bats, birds and non-flying mammals reveal that superiority of the bat lung over that of the non-flying mammal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The von-Hippel Lindau tumor suppressor protein (pVHL) is conserved throughout evolution, as its homologues are found in organisms ranging from mammals to the Drosophila melanogaster and Anopheles gambiae insects and the Caenorhabditis elegans nematode. Although the physiological role of pVHL is not fully understood, it has been shown to interact with a large number of unrelated proteins and was suggested to play a role in protein degradation as an E3 ubiquitin ligase component in the ubiquitin pathway. To gain insight into the molecular basis of pVHL activity, we analyzed its folding and stability in solution under physiologically relevant conditions. Dynamic light-scattering and gel filtration chromatography of the purified pVHL clearly indicated that the Stokes radius of the protein is larger than what would be expected from its crystal structure. However, under these conditions, the protein shows a clear secondary structure as determined by far-UV circular dichroism. Yet, the near-UV CD experiments show an absence of a tertiary structure. Upon the addition of urea, even at very low concentrations, the protein unfolds in a non-reversible manner, leading to the formation of amorphous aggregates. Furthermore, a large increase in fluorescence (>50-fold) is observed upon the addition of pVHL into a solution containing 8-anilino-1-naphthalene sulfonic acid. We therefore conclude that, under native conditions, the non-bound pVHL has a molten globule configuration with marginal stability. Although molten globular structures can be induced in many proteins under extreme conditions, this is one of the few reported cases of such a structure under the physiological conditions of pH, ionic strength, and temperature. The significance of the pVHL structural properties is being discussed in the context of its physiological activities.  相似文献   

7.
Recent palaeontological data and novel physiological hypotheses now allow a timescaled reconstruction of the evolution of endothermy in birds and mammals. A three‐phase iterative model describing how endothermy evolved from Permian ectothermic ancestors is presented. In Phase One I propose that the elevation of endothermy – increased metabolism and body temperature (Tb) – complemented large‐body‐size homeothermy during the Permian and Triassic in response to the fitness benefits of enhanced embryo development (parental care) and the activity demands of conquering dry land. I propose that Phase Two commenced in the Late Triassic and Jurassic and was marked by extreme body‐size miniaturization, the evolution of enhanced body insulation (fur and feathers), increased brain size, thermoregulatory control, and increased ecomorphological diversity. I suggest that Phase Three occurred during the Cretaceous and Cenozoic and involved endothermic pulses associated with the evolution of muscle‐powered flapping flight in birds, terrestrial cursoriality in mammals, and climate adaptation in response to Late Cenozoic cooling in both birds and mammals. Although the triphasic model argues for an iterative evolution of endothermy in pulses throughout the Mesozoic and Cenozoic, it is also argued that endothermy was potentially abandoned at any time that a bird or mammal did not rely upon its thermal benefits for parental care or breeding success. The abandonment would have taken the form of either hibernation or daily torpor as observed in extant endotherms. Thus torpor and hibernation are argued to be as ancient as the origins of endothermy itself, a plesiomorphic characteristic observed today in many small birds and mammals.  相似文献   

8.
Among the air-breathing vertebrates, the avian respiratory apparatus, the lung-air sac system, is the most structurally complex and functionally efficient. After intricate morphogenesis, elaborate pulmonary vascular and airway (bronchial) architectures are formed. The crosscurrent, countercurrent, and multicapillary serial arterialization systems represent outstanding operational designs. The arrangement between the conduits of air and blood allows the respiratory media to be transported optimally in adequate measures and rates and to be exposed to each other over an extensive respiratory surface while separated by an extremely thin blood-gas barrier. As a consequence, the diffusing capacity (conductance) of the avian lung for oxygen is remarkably efficient. The foremost adaptive refinements are: (1) rigidity of the lung which allows intense subdivision of the exchange tissue (parenchyma) leading to formation of very small terminal respiratory units and consequently a vast respiratory surface; (2) a thin blood-gas barrier enabled by confinement of the pneumocytes (especially the type II cells) and the connective tissue elements to the atria and infundibulae, i.e. away from the respiratory surface of the air capillaries; (3) physical separation (uncoupling) of the lung (the gas exchanger) from the air sacs (the mechanical ventilators), permitting continuous and unidirectional ventilation of the lung. Among others, these features have created an incredibly efficient gas exchanger that supports the highly aerobic lifestyles and great metabolic capacities characteristic of birds. Interestingly, despite remarkable morphological heterogeneity in the gas exchangers of extant vertebrates at maturity, the processes involved in their formation and development are very similar. Transformation of one lung type to another is clearly conceivable, especially at lower levels of specialization. The crocodilian (reptilian) multicameral lung type represents a Bauplan from which the respiratory organs of nonavian theropod dinosaurs and the lung-air sac system of birds appear to have evolved. However, many fundamental aspects of the evolution, development, and even the structure and function of the avian respiratory system still remain uncertain.  相似文献   

9.
The Australian Brush Turkey Alectura lathami is a member of the Megapodiidae, the mound-building birds that produce totally independent, "superprecocial" hatchlings. This study examined the post-hatching development of resting and maximal metabolic rates, and the morphometrically determined changes in pulmonary gas exchange anatomy, in chicks during 3.7 months of growth from hatchlings (122 g) to subadults (1.1 kg). Allometric equations of the form y=aM(b) related gas exchange variables (y) to body mass (M, g). Metabolic rates were measured with open-flow respirometry (mL O2 min(-1)) of chicks resting in the dark and running above the aerobic limit on a treadmill. Resting metabolic rate (RMR=0.02 M(0.99)) and maximal metabolic rate (MMR=0.05 M(1.07)) scaled with exponents significantly above those of interspecific allometries of adult birds. However MMR was below that expected for other species of adult birds in flapping flight, consistent with the Brush Turkey's ground-dwelling habits. Total lung volumes (mL) increased faster than isometrically (V(L)=0.0075 M(1.19)), as did the surface area (cm(2)) of the blood-gas barrier (S(t)=7.80 M(1.23)), but the data overlapped those of adult species. Harmonic mean thickness of the blood-gas barrier was independent of body size (mean tau(ht),=0.39 microm) and was about twice that expected for flying birds. Diffusing capacity (mL O2 min(-1) kPa(-1)) of the blood-gas tissue barrier increased faster than isometrically (Dto2=0.049 M(1.23)); in hatchling Brush Turkeys, it was about 30% expected for adult birds, but this difference disappeared when they became subadults. When compared to altricial Australian pelicans that hatch at similar body masses, superprecocial Brush Turkeys had higher MMR and higher Dto2 at the same body size. A parallel allometry between MMR and Dto2 in Brush Turkeys and pelicans is consistent with the concept of symmorphosis during development.  相似文献   

10.
The Australian Brush Turkey Alectura lathami is a member of the Megapodiidae, the mound-building birds that produce totally independent, "superprecocial" hatchlings. This study examined the post-hatching development of resting and maximal metabolic rates, and the morphometrically determined changes in pulmonary gas exchange anatomy, in chicks during 3.7 months of growth from hatchlings (122 g) to subadults (1.1 kg). Allometric equations of the form y=aM(b) related gas exchange variables (y) to body mass (M, g). Metabolic rates were measured with open-flow respirometry (mL O2 min(-1)) of chicks resting in the dark and running above the aerobic limit on a treadmill. Resting metabolic rate (RMR=0.02 M(0.99)) and maximal metabolic rate (MMR=0.05 M(1.07)) scaled with exponents significantly above those of interspecific allometries of adult birds. However MMR was below that expected for other species of adult birds in flapping flight, consistent with the Brush Turkey's ground-dwelling habits. Total lung volumes (mL) increased faster than isometrically (V(L)=0.0075 M(1.19)), as did the surface area (cm(2)) of the blood-gas barrier (S(t)=7.80 M(1.23)), but the data overlapped those of adult species. Harmonic mean thickness of the blood-gas barrier was independent of body size (mean tau(ht),=0.39 microm) and was about twice that expected for flying birds. Diffusing capacity (mL O2 min(-1) kPa(-1)) of the blood-gas tissue barrier increased faster than isometrically (Dto2=0.049 M(1.23)); in hatchling Brush Turkeys, it was about 30% expected for adult birds, but this difference disappeared when they became subadults. When compared to altricial Australian pelicans that hatch at similar body masses, superprecocial Brush Turkeys had higher MMR and higher Dto2 at the same body size. A parallel allometry between MMR and Dto2 in Brush Turkeys and pelicans is consistent with the concept of symmorphosis during development.  相似文献   

11.
Boswell T  Takeuchi S 《Peptides》2005,26(10):1733-1743
The mammalian melanocortin system has been established as a crucial regulatory component in an extraordinarily diverse number of physiological functions. In contrast, comparatively little is known about the avian melanocortin system: interest in the physiological role of alpha-MSH in birds has been limited by the fact that birds lack the intermediate lobe of the pituitary, the main source of circulating alpha-MSH in most vertebrates. Recently, however, the main avian melanocortin system genes, including POMC, AGRP, and all the melanocortin receptors, have been cloned and their physiological roles are the beginning to be elucidated. This review outlines our improved understanding of the avian melanocortin system, particularly in relation to two of the most widely studied physiological functions of the melanocortin system in mammals, the regulation of pigmentation and energy homeostasis. The data reviewed here indicate that the melanocortin system has been strongly conserved during vertebrate evolution and that alpha-MSH is produced locally in birds to act as an autocrine/paracrine hormone.  相似文献   

12.
During amniote evolution, an early divergence occurred about 300 million years ago between the reptilian lines leading to the appearance of birds (anapsids) and mammals (synapsids). The different functional requirements of these vertebrate groups have involved divergent evolution of their brains. Even superficial examination reveals major anatomical differences between mammalian and avian brains, such as extensive development of the optic lobes and cerebellum in birds and a highly developed cortex in mammals. It has been nearly impossible to identify avian homologs of some mammalian brain regions by standard morphological criteria. This has long frustrated efforts at clarifying hypotheses regarding the anatomical location, field size, and regulation of brain functions shared between these two classes, despite the certainty that the principles of neurobiology apply equally at the cellular level in both groups. In an effort to remove this barrier, we have sought markers of common function that despite apparent anatomical dissimilarity, can allow recognition of homologous brain structures. We illustrate here how comparative analysis of the distribution of the steroid-metabolizing enzyme estrogen synthetase (aromatase) may help to understand the differences and similarities in the limbic system and hypothalamus of birds and mammals.  相似文献   

13.
Mechanical ventilation at high tidal volumes compromises the blood-gas barrier and increases lung vascular permeability, which may lead to ventilator-induced lung injury and pulmonary edema. Using pulmonary endothelial cell (ECs) exposed to physiologically [5% cyclic stretch (CS)] and pathologically (18% CS) relevant magnitudes of CS, we evaluated the potential protective effects of hepatocyte growth factor (HGF) on EC barrier dysfunction induced by CS and vascular endothelial growth factor (VEGF). In static culture, HGF enhanced EC barrier function in a Rac-dependent manner and attenuated VEGF-induced EC permeability and paracellular gap formation. The protective effects of HGF were associated with the suppression of Rho-dependent signaling triggered by VEGF. Five percent CS promoted HGF-induced enhancement of the cortical F-actin rim and activation of Rac-dependent signaling, suggesting synergistic barrier-protective effects of physiological CS and HGF. In contrast, 18% CS further enhanced VEGF-induced EC permeability, activation of Rho signaling, and formation of actin stress fibers and paracellular gaps. These effects were attenuated by HGF pretreatment. EC preconditioning at 5% CS before HGF and VEGF further promoted EC barrier maintenance. Our data suggest synergistic effects of HGF and physiological CS in the Rac-mediated mechanisms of EC barrier protection. In turn, HGF reduced the barrier-disruptive effects of VEGF and pathological CS via downregulation of the Rho pathway. These results support the importance of HGF-VEGF balance in control of acute lung injury/acute respiratory distress syndrome severity via small GTPase-dependent regulation of lung endothelial permeability.  相似文献   

14.
Strenuously exercising horses exhibit arterial hypoxemia and exercise-induced pulmonary hemorrhage (EIPH), the latter resulting from stress failure of pulmonary capillaries. The present study was carried out to examine whether the structural changes in the blood-gas barrier caused by a prior bout of high-intensity short-term exercise capable of inducing EIPH would affect the arterial hypoxemia induced during a successive bout of exercise performed at the same workload. Two sets of experiments, double- and single-exercise-bout experiments, were carried out on seven healthy, sound Thoroughbred horses. Experiments were carried out in random order, 7 days apart. In the double-exercise experiments, horses performed two successive bouts (each lasting 120 s) of galloping at 14 m/s on a 3.5% uphill grade, separated by an interval of 6 min. Exertion at this workload induced arterial hypoxemia within 30 s of the onset of galloping as well as desaturation of Hb, a progressive rise in arterial PCO2, and acidosis as exercise duration increased from 30 to 120 s. In the single-exercise-bout experiments, blood-gas/pH data resembled those from the first run of the double-exercise experiments, and all horses experienced EIPH. Thus, in the double-exercise experiments, before the horses performed the second bout of galloping at 14 m/s on a 3.5% uphill grade, stress failure of pulmonary capillaries had occurred. Although arterial hypoxemia developed during the second run, arterial PO2 values were significantly (P < 0.01) higher than in the first run. Thus prior exercise not only failed to accentuate the severity of arterial hypoxemia, it actually diminished the magnitude of exercise-induced arterial hypoxemia. The decreased severity of exercise-induced arterial hypoxemia in the second run was due to an associated increase in alveolar PO2, as arterial PCO2 was significantly lower than in the first run. Thus our data do not support a role for structural changes in the blood-gas barrier related to the stress failure of pulmonary capillaries in causing the exercise-induced arterial hypoxemia in horses.  相似文献   

15.
Energetics, body size, and the limits to endothermy   总被引:1,自引:0,他引:1  
The scaling rate of metabolism with respect to body mass is analysed. Scaling of heat production implies that scaling also exists between temperature regulation and body mass. Most vertebrates follow a Kleiber relation down to a "critical mass, below which the scaling of metabolism must be changed to ensure the maintenance of endothermy. Such an adjustment is found interspecifically in birds and mammals, and is found intraspecifically in mammals during post-natal growth. If the Kleiber scaling relation is maintained below the critical mass, mammals and birds shiR from endothermic temperature regulation (above critical mass) to endothermy with obligatory torpor (below critical mass). If the Kleiber relation is followed to masses far below the critical mass, ectothermy results. Critical mass varies inversely with the level of energy expenditure, which therefore accounts for the fact that most mammals and birds are endotherms and most reptiles and fish are ectotherms. The same relationship permits the facultative endothermy found in some insects and plants.
The scaling relations existing among rate of metabolism, endothermy, and body mass can be written as a modification of the Kleiber relation. This analysis suggests that any organism, irrespective of phylogenetic position, can be endothermic at any body size, if its rate of metabolism is high enough, or can be endothermic with any rate of metabolism, if it is large enough. Consequently, it is difficult to distinguish minimal endothermy from inertial homoiothermy in animals having a large mass. The boundary conditions for effective endothermy are similar to the relationship described between metabolism and mass in the evolution of endothermy through a decrease in mass in the phylogeny of mammals. Even though endothermy may evolve with an increase in mass, its perfection may always require an evolutionary decrease in mass.  相似文献   

16.
The gas exchanging region in the avian lung, although proportionally smaller than that of the mammalian lung, efficiently manages respiration to meet the high energetic requirements of flapping flight. Gas exchange in the bird lung is enhanced, in part, by an extremely thin blood-gas barrier (BGB). We measured the arithmetic mean thickness of the different components (endothelium, interstitium, and epithelium) of the BGB in the domestic chicken lung and compared the results with three mammals. Morphometric analysis showed that the total BGB of the chicken lung was significantly thinner than that of the rabbit, dog, and horse (54, 66, and 70% thinner, respectively) and that all layers of the BGB were significantly thinner in the chicken compared with the mammals. The interstitial layer was strikingly thin in the chicken lung ( approximately 86% thinner than the dog and horse, and 75% thinner than rabbit) which is a paradox because the strength of the BGB is believed to come from the interstitium. In addition, the thickness of the interstitium was remarkably uniform, unlike the mammalian interstitium. The uniformity of the interstitial layer in the chicken is attributable to a lack of the supportive type I collagen cable that is found in mammalian alveolar lungs. We propose that the surrounding air capillaries provide additional structural support for the pulmonary capillaries in the bird lung, thus allowing the barrier to be both very thin and extremely uniform. The net result is to improve gas exchanging efficiency.  相似文献   

17.
L-Arginine is an essential amino acid for birds and young mammals, and it is a conditionally essential amino acid for adult mammals, as it is important in situations in which requirements exceed production, such as pregnancy. Recent findings indicate that increased metabolism of L-arginine by myeloid cells can result in the impairment of lymphocyte responses to antigen during immune responses and tumour growth. Two enzymes that compete for L-arginine as a substrate - arginase and nitric-oxide synthase - are crucial components of this lymphocyte-suppression pathway, and the metabolic products of these enzymes are important moderators of T-cell function. This Review article focuses on the relevance of L-arginine metabolism by myeloid cells for immunity under physiological and pathological conditions.  相似文献   

18.
Disruption of pulmonary endothelial cell (EC) barrier function is a critical pathophysiologic event in highly morbid inflammatory conditions such as sepsis and acute respiratory disease stress syndrome. Actin cytoskeleton, an essential regulator of endothelial permeability, is a dynamic structure whose stimuli-induced rearrangement is linked to barrier modulation. Here, we used atomic force microscopy to characterize structural and mechanical changes in the F-actin cytoskeleton of cultured human pulmonary artery EC in response to both barrier-enhancing (induced by sphingosine 1-phosphate (S1P)) and barrier-disrupting (induced by thrombin) conditions. Atomic force microscopy elasticity measurements show differential effects: for the barrier protecting molecule S1P, the elastic modulus was elevated significantly on the periphery; for the barrier-disrupting molecule thrombin, on the other hand, it was elevated significantly in the central region of the cell. The force and elasticity maps correlate with F-actin rearrangements as identified by immunofluorescence analysis. Significantly, reduced expression (via siRNA) of cortactin, an actin-binding protein essential to EC barrier regulation, resulted in a shift in the S1P-mediated elasticity pattern to more closely resemble control, unstimulated endothelium.  相似文献   

19.
Rate of ageing in tyrannosaurs was calculated from parameters of Weibull functions fitted to survival curves based on the estimated ages at death of fossilized remains. Although tyrannosaurs are more closely related to birds than to mammals, they apparently aged at rates similar to mammals of comparable size. Rate of growth in body mass of tyrannosaurs was similar to that of large mammals, and their rates of ageing were consistent with the estimated extrinsic mortality, which is strongly correlated with the rate of ageing across birds and mammals. Thus, tyrannosaurs appear to have had life histories resembling present-day large terrestrial mammals. Rate of ageing in warm-blooded vertebrates appears to be adjusted in response to extrinsic mortality and potential lifespan, independently of both physiological and developmental rates. However, individuals in species with the slowest rates of ageing suffer the highest proportion of ageing-related mortality, hence potentially strong selection to further postpone senescence. Thus, the longest observed lifespans in birds, tyrannosaurs and mammals might be close to the maximum possible.  相似文献   

20.
The analysis of allometric dependence of energy expenditure on body mass among reptiles, birds and mammals has shown that standard metabolic rate of reptiles when they are warmed up to the temperature of homoiothermic animals is an order of magnitude lower than that of birds and mammals. Basal metabolism is originated as special feature historically related to the metabolism during active behavior, rather than thermal regulation. Facultative endothermy was not advantageous for large animals because of long time needed to warm up the body. The ancestors of birds and animals escaped negative consequences of van't-Hoff equation by choosing constant body temperature. Heat conductivity of reptile's covers is so great, that it cannot keep endogenous warm of resting animal at any temperature of the body. Reptile "dressed" in covers of bird or mammal would be able to keep warm under conditions of maximal aerobic muscular activity and body temperature similar to that of homoiothermic animals. The base of chemical thermoregulation in birds and mammals is a thermoregulatory muscle tonus which remains unknown. One can suppose that during evolution of birds and mammals the saltation-liked origin of endothermy "fixed" the level of metabolism typical for running reptile and transformed in into the basal metabolism. This event took place at the cell and tissue level. The absence of palaeontological evidences and intermediate forms among recent species does not allow easy understanding of homoiothermy origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号